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Calculation of XN and TY N Scattering Lengths and Phase Shifts
by a Pole-Dominance Method*
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Recently, a procedure for representing a two-particle scattering amplitude as a sum of resonances in all
three channels was derived by Schwarz. In addition to satisfying crossing symmetry, such a formula has a
large domain of validity in the (s,t,u) plane. This method is applied here to EX and EE scattering. The ex-
perimental parameters for the scattering are calculated in the low-energy region. They are (1) the s-wave
scattering lengths for XX isospin-zero and -one channels; (2) the Spl, Pp1, SII, P11, PI3, and D» phase shifts
(S;; denotes the s-wave isospin i and angular momentum, j) for scattering in the energy region up to
center-of-mass momentum 0.3 BeV/c; (3) the real part of the s-wave scattering lengths for EX isospin-zero
and -one channels. In addition, a sum rule relating amplitudes of the EX channel and the EE channel is ob-
tained. It is well satisfied for the real part of the amplitude and is not satisfied for the imaginary part.

I. INTRODUCTION

HEORETICAL understanding of KA scattering
is hindered by the presence of inelastic channels,

even at the threshold, where approximations such as
eGective-range expansions can be successfully applied
to wE scattering. Also, the existence of the I'o*(1405)
and I'i*(1385) resonances near the EE threshold
makes it even more important to have an understanding
of the unphysical cuts.

Experiments show that the EE, Zw, Aw, and Aww

channels are all strongly coupled, and we cannot treat
them separately. An effective-range analysis of the
multichannel-scattering problem has been completed
by Kim. ' In his analysis, it was found that the I'i*(1385)
does not couple appreciably to the KE channel and the
I'0*(1405) may be regarded as a bound state of the EiV
system. The knowledge of the unphysical cut thus ob-
tained enabled him to calculate the coupling constants
g'ii„x-/4w and g'~s'x-/4w by saturating once-subtracted
dispersion relations. It was also found that the high-
energy contribution to the forward dispersion relation
was large. This implies that we cannot saturate dis-
persion integrals with low-lying resonances as is corn-
monly done for the highly convergent amplitudes
(A —,8+) in the 7r,V problem.

In this paper, we point out that some further progress
can be made toward understanding the low-energy
behavior of E'iV and EE scattering using the pole-
dominance method (PDM) recently discussed by
Schwarz. ~ The PDM gives low-energy-scattering ampli-
tudes as a sum of low-energy resonance contributions
from all three channels without any double counting.
Furthermore, within its region of validity, the formula
is insensitive to the high-energy contributions. Thus we
have scattering amplitudes that involve only low-energy

* Research sponsored by the U. S. Air Force OfEce of Scientific
Research under Contract No. AF 49 (638}-1545.

f Present address: Department of Physics, Columbia University,
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G. FORMULATION OF PDM

In order to avoid unnecessary complications, only
the equal-mass and spin-zero case is considered in this
section. ' Consider elastic scattering of two particles
of mass p, and let the scattering amplitude be denoted
by Fi(t,s).4 The fixed-t dispersion relation, neglecting
subtraction and Born terms, is

1 " IniFr (t,s')
F'(t, s) =- ds

4' s S —S
1 " IntFr(t, u')+- du'. (2.1)

4p2 I —Q

The partial-wave decomposition is

F'(t, s) = Q (2J+1)asr(t)Ps(s, ),
J=p

(2.2)

where s,= 1+s/2qP, q, is the c.m. three-momentum in
the t channel, s= —2qP(1 —s,), and t=4(qi2+ti2). We
calculate ass(t) by the Froissart-Gribov formula, if the

'This section does not contain anything new; the basic idea
was presented in Ref. 2.'E (t,s) denotes isospin I in the channel indicated by the
variable appearing on the left.

resonance parameters and avoid the problem of poor
convergence. By evaluating the amplitude at the thresh-
old of the E.V and K"V channels, we obtain scattering
lengths for both the E.V and KX channels. Further-
more, having obtained explicit analytic functions, one
can deduce the energy and angular dependences of the
scattering amplitudes. By doing a partial-wave analysis,
the energy dependence of the K."V phase shifts Sl.l.,
&pi, Spy, I p3 and Dp3 is obtained.

In Sec. II, the PDM is formulated for the equal-mass
spinless case, and in Sec. III, it is generalized to the
A. 'V problem. In Sec. IV, we calculate the scattering
lengths and in Sec. V the phase shifts.
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integrals converge:

1
asr(t) =—

tion of Fr(t, s), provided we have some independent
method to calculate aJ for J~&Jo. Note that any
approximation used to evaluate (2.4) will not require
the knowledge of the high-energy behavior of the
amplitude.

Q du We choose to evaluate as&(t) for J~&J() using partial-
(I'e)Q ( I, , ' (I") e Chip et I tt . O fi 1 I I '(I)= '(t)/I, ',

again neglecting subtractions, we can write

s ds
Imt'(t, t')Q, (1+

2(P 2gP

(neglecting possible logarithms). Choosing JQ sllch that
n(t) Js 1—&0,—we obtain

Jp
F'(t, s) = Q (2J+1)as'(t)Ps(s, )

1 ~ ImFr (t,s') 1 s" ImF'(t, u')+- ds +— — du
s —s Q —Q

(2J+1)Ps(s,)ass "(t), (2.4)

N

a r, x(t)
s lds

Imfi'(t, t')Q, (1+
2t(7 I 2171

Q du
Imfi'(te )Q ( I—,'—

2III 2g t,

(2.3)

and we have neglected the term

00 s
(2J+1)Psi 1+

J=Jo+I 2q,s

dS s
X — ImFr(t, s')Qs 1+

N 2$P 2QP

1 dQ Q
ImFi(t, u')Qs —1— —, (2.f))

N 2gP 2g

((t' and p' denote (I q and p p throughout this paper. )
Although this formula usually arises in the discussion
of complex J, we will use it only for the physical value
of J.

We note that (2.3) is derived from the fixed-t dis-
persion relation of the form (2.1). Therefore, if (2.3)
does not converge for some J, (2.1) will not converge.
This implies that whenever (2.1) is divergent, we can
blame it on low partial waves, provided that the scatter-
ing amplitude is bounded by a polynomial so that the
Froissart-Gribov formula exists for J)Jo for some Jo.

Denoting the trajectory of the leading Regge pole
or cut in the t channel by a(t), we have

ImFr(t,s):s (I&)&(function of t)l~l~

1 'o 1mb''(tt) 1 " Imf) J'(t')
b, (t) =— dt'+ — dt', (2., 7)

vr „ t' —t t' —t

where to denotes the position at which the left-hand cut
begins. We will show that the left-hand-cut contribu-
tion to (2.7), when put into the first term of (2.4),
cancels the last term of (2.4). The left-hand discon-

continuitp function is given by the usual formula

1 4~ ' ds'
Imb&r(t) =—

, ImFr(t, s')Ps 1+
2 4„2qPJ+' 2q,2)

1 4f' ' du' u
r(t ut)Ps 1 (2 8)

2q 2J+2 2g 2

If resonances of the s and u channels are put into (2.8),
each resonance of spin Jg gives a term which behaves
like t ~ ' as t~ —~. High-spin resonances will,
therefore, give divergences. However, we have assumed
polynomial boundedness of bs(t), and since it has cuts
and poles only on the real axis, the unitarity bound
bs(t) (which can be applied for t pfio) must hold for all
directions on the complex t plane. " In other words,
many resonance contributions, which individually
give divergent asymptotic behavior (for t fi —Io),
will cancel each other in such a way that the unitarity
bound is satisfied in all directions. We are, therefore,
justified in taking only low-mass-exchange contribu-
tions to (2.8) when unitarity implies good convergence
of the partial-wave dispersion relation. When narrow
resona, nces are put into (2.8), we have

7l g; m, 2

1mb''(t) =Q Ps, 1+ Ps 1+
q

2J+2 2(t

7l gs2
)(t&(4&('-—m, s —t) —Q Ps, 1+

I 4q 2J+2 2q 2

m"
)(IJ —1 — 8 4P2 —m 2 —t . 2.9

2fff

ing the Sugawara-Kanazawa theorem I M. Sugawara and
A. Kanazawa, Phys. Rev. 123, 1895 (1961)j, provided that thepriate choice of Xand Js. Equation (2.4) is a representa- amphtude approaches some limit along the left-hand cut.
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When narrow resonances are put into (2.5), we have

l, X ~ g.2 nZ'2

Ps 1+ Qs 1+
(2J . )2(2J+2 2 2 „,)

-x " ~,(i+ ')g,(-i-'), (2. io)
z=I 2q, J+2 2fttu 2gt,

FIG. 1. Definition of
variables in scattering.

N

Pp

Q1

where zzz„z( iV. Thus, to this approximation (high-
mass exchange can be neglected),

wave expansion is made. To take account of spin and.
isospin, we define the amplitudes'

ImbJ'(t) ,= Imari '
/qP ~, '

(2.11) T;(pz qz ~ pi qz) = —A, (s,t)+~i(qz+qz). yB,(s, t)

and if both sides of (2.11) vanish as t —+ —~, we have and

q
zs " Imbsr(t )

dt'=asr, x(t) (2 12)
7r — t' —t

1
Fr(t, s) =—

" ImF'(t, s') 1
ds +—

s —s

' ImFr (t,u')
dR

Imbs(t) —+ 0 only when J;—J( 1 for all i 1, =. . . , zz.

When this inequality is not satisfied, then (2.12) is
true only up to an additive polynomial in t, and (2.5)
becomes

Z';(p» —q,
~
pi, —qi) = —A;(s, t)+2z(qi+qz) yB;(s,t),

where four-momenta are defined in Fig. 1, and i is 2
or ——,

' so that T; and 7', describe the following reactions:

K+p ~ K+p, Tjf2. K p ~ E' p,
T yfg.' E' P~E P T A)2.

' K P~KP.
Here we have assumed isospin conservation, and thus
all other KiY and E1V elastic reactions may be written
in terms of those listed above. If we define

Jp
(21+1)P (1+ )2(t

8,+(s,t) =A;(s, t)&A, (s,t),
(8,~(s, t) =B,(s,t) &B,(s,t),

" 1mb'(t') s
X dt'+ Q (2J+l)Ps 1+

tl JW 2gt

X (polynomial in t) . (2.13)

If the right-hand-cut integrals are also approximated
by narrow-resonance contributions, we can write
F'(t,s) as a sum of poles in all three channels and terms
due to possible subtractions.

Another way of looking at (2.13) is as the result
of subtracting the fixed-t dispersion relation until only
low-energy contributions are significant. In doing this,
however, we have extracted the t dependence of the
subtraction terms. This was done through added in-
formation such as analyticity of partial-wave ampli-
tudes and convergence arguments.

III. FORMULATION OF PDM
FOR ECN SCATTERING

The unequal-mass problem is complicated by the
analytic properties of the partial-wave amplitudes.
This complication can be avoided, however, if we choose
the t channel to be EK —+ ~VX. Then we will be con-
sidering the partial-wave amplitude of EK —+ ~VX.
Since the initial and final states both have equal masses,
pseudothreshold and circular cuts do not appear. The
special role played by the t channel is only of a kine-
matical nature. The final result, with contributions from
all three channels, is quite symmetric and does not de-
pend on the choice of the channel in which the partial-

these amplitudes behave under interchange of I and s
just as the invariant amplitudes of mS scattering:

e,~(s,u) ~~ a ti'„+(u,s),
SP(s,u) ~ &(BP(u,s),

under s ~~u. The PDM will be formulated in terms of
the amplitudes O', +, S+.The fixed-t dispersion relations,
which are required in the generalized form of (2.3),
can be written for 8;(s,t) and $,(s,t) just as in the zr V
case. The important thing to show here is the cancella-
tion of (1) the low-energy contribution to the low-
partial-wave amplitudes, expressed in terms of the
Froissart-Gribov formula with cutoff X, and (2) the
left-hand-cut contribution to the partial-wave dis-
persion relation evaluated by inserting only low-mass
exchanges.

For example, consider the amplitude (8; (s,t)z.
(1) LLow-energy contribution to the low-partiai-

(J+z)(pq)' '
wave expansion for S; (s,t)]=8zr

P(J+I)]'t'
Xf;: (t)Ps'(z, ), (3.1)

where z,= (p'+q~+s)(2pq and f;~+s(t) is the Jth
partial-wave amplitude. The lower ~ signs stands for

6 These amplitudes, their isospin properties, and the dispersion
relations are discussed in detail by D. Amati and B.Vitale, Xuovo
Cimento 17, 190 (1957). For t-channel partial-wave expansion
see %. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1603 (1960).
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the helicity TABLE I. The asymptotic contributions of A and Yp*(1405)
to the left-hand cut of the partial-wave dispersion relations
(as t ~ —~).

X (pq) 'Ps'(s, )
" Imf:s(h)

dh'. (3.2)
t' —t

of the &VX state. The upper & sign corresponds to the
~ sign of P for which the expansion is made. The E
indicates that we calculate the expression using the
Froissart-Gribov formula and we cut ofI' the integral
at E.

(2) (Left-hand-cut contribution to the partial-wave

(J+l)
dispersion relation) =8

ada J
I J(J+1)])I2

Imf (t) ~ const&(1 '
Imf+~/p' ~ constant I

Iml f+ '(t) —(m/&'2) f (t) j/p' —+ const Xt '

We are concerned with the behavior of Imf (h)
when I-channel resonances are put into (3.3). For
example, the I'o*(1405), Sot, and the I'o*(1520), D))t
resonances give the contribution in the limit t + —
fImf (h)]r,~()4M) —+ tth '8(Z(h—) (1405—MeV)'),

(3.5)LImf: (h)]j o+(t52p) ~ 'g 8(cC(h) —(1520 MeV)2),

where p and p' are constants. By unitarity, we have

If (h) I
~(ct ' as h

—+~,
The cancellation can be seen to occur exactly in the
same way as shown in Sec. Il. Here we concern our-
selves with the possible polynomial that must be
added. Take Jo to be 1. LNote that then our result for
S; (s,h) will be valid for h(t', where n(h') =3.] Then,

2(&)

Imf )
(h) = ImS (t,s')+I integral

24~ (u+ )'2PV

ds'

~I+m) ' 2PV
ImS (h, s')

s/+ P2+ q2

XP2 +I integral, (3.3)
2pg

ImS; (s', h)
ds

1
S;—(s,h) =—

s —s(3h/I+ m)

where c is some constant. Thus by the assumption of
analyticity, the contribution of Fo*(1520) and other
high-spin resonances will cancel in such a way that the
unitarity bound is preserved. Thus we neglect contribu-
tions from resonances above 1500 MeV in (3.3). The
approximation is very good near the K.V threshold,
since the Fo (1405) contribution is an order of magni-
tude larger than those from high-spin resonances. At
E&V threshold, the h. contribution dominates Fo*(1405)
and all other higher resonances. '

When (3.1) and (3.2) were calculated with X((1500
MeV)', (3.1)= (3.2), and we have

h Z(h) ph —3(f'—m'+2pq). The s- and I-ch
nel contributions to the left-hand cut may be obtained
by expanding S (tt, h) in terms of s- and I-channel
partial waves:

S+(tt, h)

1 )X)

=g7rW Q Lgt~+(N)P)~t'(cos8„)
(W+M)' —m' t-o

—g, +(N)Pt, '(cos8„)]+
(W —M)' —m'

xx Lg -*(I)—g~*( )1p '(c»4)), (~ &)

where IV= QN and gt~+(I) is a partial-wave amplitude.
The upper sign corresponds to that of S~(N, h). The
lower & sign corresponds to the helicity

+2

ImS; (tt', h)+ cfQ

12 " Imf;:(h')
+— dh'. (3.6)

4„ t' —t

In a manner similar to that described for S; (s,h),
we can obtain expressions for (t,+( h) sand Sq+(s,h).
From Table I, we see that the contributions of A. and
Y&~(1405) give convergent left-hand-cut integrals to
the partial-wave dispersion relations in all cases. The
unitarity bounds (see Table II) imply that the right-

TABLE II. Unitarity bounds on the partial-wave
amplitudes (as t —+~).

( f (t) ) (constxt '
i f+ {t)/p'I &constXt '"

)Lf+ '{t)—{o)/v2)f {t)5/p'( &constXt »~

of the Ef('/ state.

1
2

'Kim's results indicate that both YI*(1385) and Z couples
very weakly to the EE isospin-one channel. So, to this approxi-
mation we do not consider I= 1 EE resonances.
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hand-cut integral converges without a subtraction. Then

1
S;+(s,~) =—

1
e,+(s,t) =—

M+m) ~

ImS~+(s', t)
d$f

$ —$1

ImS;+(u', t)
du', (3.7)

V

+-
{,~+rrt) ~ I —I

Ime;+(s', t)
ds

e,—(s,t) =—

1 " Ime~+(u', t)+- dQ
7l {~+m)' Q +Q

" Im f+,+'(t')
di', (3.8)4„p"(t' —r)

Im 8,,'(s', t)
d$

M+~) & S —$

Im(R,—(u', t)
—du' —12pq cose,

{M+m,) '

" Imf+ '(t') —(m/42) Imf (t')
d&'. (3.9)

p"(~'-~)

In (3.9), we have written a dispersion relation for the
combination

rather than for the individual amplitudes. No pole
is introduced at p'=0.

The integral " Im f~+'(t')
dt',

„ p"(t' —~)

which appears in (3.8), may not be approximated by
low-energy contributions alone since the unitarity
bound, given in Table II, does not imply rapid con-
vergence. In such a case, we choose to make one sub-
traction in the partial-wave dispersion relation.

Ke now discuss the various integrals that appear
in (3.6) through (3.9). The u channel is highly inelastic,
as we have previously seen. The unphysical region from
the ~h, threshold to the EA threshold has been studied
by Kim. ' The results indicate that it is reasonable to
approximate the contribution to the cut by the I'0*
resonance. Furthermore, the YI* resonance does not
contribute appreciably to EsV scattering. Also, the A
and Z poles contribute with

g'~err /kr= 16&2.5, '~g' x-x4v/r-=O.

No $-channel resonances are included, as no positive-
strangeness ones have been 6rrnly established to date.
If one has been missed, it must couple very weakly to

the EA channel. The total cross sections for ES
scattering are constant in energy at about 20 mb (up
to 20-BeV laboratory kinetic energy of the kaon). The
background contribution in the u channel, which is
about 50 mb within the energy range of our considera-
tion, was neglected in the above narrow-resonance
approximation. Therefore, it is consistent to drop the
s-channel integral completely.

Consider the f-channel contribution. From (3.6)
through (3.9), the J=O and 1= 1 amplitudes must be
considered. We first assume that the s-wave EEcon'-
tribution is negligible compared to the J= 1 contribu-
tion. Then, realizing that the agreement of the model
with experiment still has room for improvement, we
consider the contribution of the 0-, an s-wave mx

resonance whose existence is not yet firmly established.
Ke will show that in some phase shifts a fT contribution
can improve the agreement. Also, the o. does not require
any new parameter for the calculation of the scattering
length. The p contribution is"

[Qr (&,s)]p= 61ryp(u—p(s u)/M—(m, ' t)), —
[Sg (t s)],=12s(1+2',)y,/(m, '—t).

The p does not contribute to 8,+(t,s) and Sr+(t,s),
because of symmetry considerations, and co and @
contribute to only the So (t,s) amplitude

12vry„' 12m'@
+ =[S;(~,s)],.

8$„—t 1Ãy —t

In determining y„' and y@, we must know how co and
@ couple to the XN state. Various theoretical predic-
tions from dispersion relations do not agree well with
each other. '~" There is no experimental measurement
to date. In our problem, therefore, we talk about the
e6ective contribution of the ~ and the p. Since the co

and @ contributions always appear in the same linear
combination, they can be approximated by

12m-y„' 12xyp 12xy„
+

m„&—t m, ' t ', (m„+ m, )—'-
for example, in the S (t,s) amplitude. Since y„' and
y& are not known and must be treated as parameters,
this approximation will reduce the number of pararne-
ters from two to one. This approximation is reasonable,
far away from the t-channel poles. We evaluate scatter-
ing lengths at t=0 and phase shifts at t~&0. The 0.

8 The coupling constants p, and p, are those de6ned in Ref. 2.
yp = 1.53 and p,,= 1.85, taking j.",= 120 MeV and assuming
Sakurai's universality )Ann. Phys. (N. Y.) 11, 1 (1960)j.

'Subscripts on Al(t, s) denote isospin in the t channel. It is
related to 8;(s,t) by Clebsch-Gordan coefficients and a crossing
matrix.

'0 D. Y. Kong, Rev. Mod. Phys. 39, 622 (1967)."D.Y. Kong, Phys. Rev. 138B, 156 (1965)."J.S. Ball, A. Scotti, and D. Y. Kong, Phys. Rev. 142, 1000
(1966)."G. Kopp and G. Kramer, Phys. Letters 19, 593 (1965).
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resonance contributes only to the 8+(t,s) amplitude:

Leo+(t,s)j,=121ry /(m, ' t)—.

Since we evaluate the expression far away from t= m ',
we may approximate the contribution as that of a
narrow resonance.

Similarly, we obtain
6 my„

Tr(u= (M+m)', t=0) =—
m"

6m', 6y.
(4.4)

mQ

IV. CALCULATION OF 8-%'AVE
SCATTERING LENGTH

In this section, the scattering length for A.X and
real part of the K&V scattering length are calculated
using the 8,+(s,t) and S;+(s,t) amplitudes discussed
in the previous section. The relation between the
s-channel s-wave scattering length and the T matrix
is given by the well-known formula

Tr'(s, t=0)= Ar(s, t=0)+ Br(s, t=0)
4% 8—( $f+rts) &

( m.
=4)r~ 1+—arx'

M

Also, it is trivial to write this expression in terms of
(t;+(u, t=O) and S;+(u, t=O). Using the s~ u and
I, —+ Q crossing matrices

C Cg.

and the results (3.6)—(3.9) of the previous section, we
obtain the following for physical values of Q:

To'(s= (M+m)', t=0)=-
ghpK

Mp' —(M+m)'

1 &"+"&' ImT&)(u')
dQ—

(.v,+„)~ u' —(M —m)'

18~m~, 6~&.
(4 5)

m&r
2

'
mp

2

Mh —M —m
T,'(s= (Mym)', t =0)= gh I

Ms' —(M —m)'

1 '"'+"&' ImT (u')+- dQ—
(»r,~„) u' —(M m)'—

6 my„

m '2

6m' p 6m.y+ — . (4.6)
mp mrJ

In these equations, the I'o*(1405) contribution is left
in an integral form. We will use the narrow-resonance
«rm for all except (4.3), which we evaluate at the EAr
threshold, 1440 MeV. At the E.:V threshold, F'o*(1405)
is reasonably far away, so it can be treated as a narrow
resonance. Using K.im's result' for ImTq-0+,

ReTr,*(u= (m+M)' t=O)
X

Tp'(u, t=0) =-
(~~+a) '

IrnTo'(u, t =0)

Q —QI

'-"'+"" ImTr, *(u')
du' = —(60~6)F . (4.7)

(,)r,+„)~ u' —(M+m)'
gr3y„'(u s) 97&—y, ts, (u s)—
2&m„" Mmp'

97', (1+2t(,) (u s) 6)r'r, —
+ — . (4.2)

2Mmp' ma

The integral may be written in terms of the A pole
and the I 0* contribution. Evaluating the expression
at u= (M+m)', t=O, we obtain

Mh —M —m
To'(u= (M+m)', t=0) =2 ghNX

Ms' (M+m)'—
&sr+~&' ImTo(u') 6)re+- dQ—

(pr,„„)~u' —(M+m)' m "
18m' p 6xy

+ — . (4.3)
mp m&r

2 2

The error comes from the background contribution
which we neglected. We evaluate the I'p*(1405) cou-
pling constant using (4.7). Since the Vp*(1405) is an
Soj state,

gr, ~'/4)r = 2gr, ~'-"/((Mr, *+M)' —m') =0.6.
Thus we can write the Vo* contribution to the ampli-
tudes Ao(u, t) and Bp(u, t) as

LAo(u, t)]r,'= grp" (Mr,*+M)/(Mrp~' —u),
$Bp(u, t)]p +=gr +'/(Mr *'—u)

Then in view of (4.1), (4.3)—(4.6) become numerically,
in units of fermis,

(a) 4)r(1+m/M)apx' = 12.2 —1.7—11.4+Co,
(b) 4)r(1+m/M)a)x"'= —12.2+1.7+3.8+C, ,

(c) 4)r(1+m/M) Reao~v=31. 6—60+11.4+Co,
(4.8')

(d) 4)r(1+m/M) Rea)+~'= —3.8+Co,
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where ' 7. 'V.
~o= — — -+

m" m'

We now use this value to compare the other three
equations with experiment. " The results are sum-
marized in Table III. The large error in the calculation
of ao~-v is due to cancellation of various quantities in
the first equation of (4.8).

The reason for good agreement in the EX s-wave
scattering lengths may be understood from (4.3)—(4.6)
or more easily from (4.8). We have

T,~'(u= (M+m)', t=O)= '[To~'(s-= (M+m)', t=O)
+Ti~"(s= (M+m)' t=0)]. (4.9)

In terms of scattering lengths,

u Z s' 1(o r- s+. a r x.)'.
Experimentally,

left-hand side of (4.9)
= [(—0.13&0.05)+i(0.51&0.03)] F,

right-hand side of (4.9)= (—0.13&0.05) F.
We mentioned above that the Z and the Vr*(1398) do

not couple appreciably to KX scattering. Thus the left-
hand side of (4.9) is given by the t-channel contribu-
tion only. The right-hand side is also a linear combina-
tion which is given just by the t-channel contribution.
In such a case, we have

Ti~ '(u, s) = ', ttTp~"-(s,u)+ T-ia-'(s,'u)].

The PD&I is not applicable to the imaginary part of
the amplitudes. In fact, all PDM amplitudes are real,
since the narrow-resonance approximation is used to
evaluate the integrals. Thus if we take (4.9) to be the
relationship between real parts for the scattering ampli-
tudes, the agreement is evidence that the Z and
Vi*(1385) do not couple appreciably.

TABLE III. PDM predictions of s-wave scattering length and
their experimental values. EE scattering lengths were obtained
from Goldhaber et al. (Ref. 14), and KE scattering lengths were
obtained from Kim (Ref. 1).

g KX

g KÃ

Reg KÃ

PDM prediction

0.02&0.1
—0.28&0.1
—0.85w0. 5

Experimental value

0.03&0.03
—0.29&0.02
—1.65&0.04

The theoretical error in each term is =10%%uq. Using
an experimental value7

4ir(1+m/M) Reag-' = —2.5 for (4.8(d)),
Co= 1.3~0.3.

V. CALCULATION OF KN PHASE SHIFTS

where

(IV—M)' —m'
+ L

—A igi+ (W+M') B,~,], (5.1)
16~%'

1 1

A i=— A (z)Pi(z)its, Bi B(z)P——)(—s)ds. (5.2)
2 2

The MacDowell symmetry, " used later, is f~+(H )= —f~+i (—W). Using this symmetry, we can calculate
P~~ from Si~ by interchanging W and —t/t'. Also, we
will calculate Po~ and Do3 from So~ and Po~, respectively.
Since

qf(= e'" sinb)

in the region where bt is small, we have

qft=h.

This approximation is good for 8~&30. Since we are
calculating the KiV scattering amplitude using the
narrow-resonance approximation, we expect our cal-
culation to be accurate in the region where the imagin-
ary parts of the amplitudes are small. Thus we restrict
ourselves to the region where 8~&30. Since there are no
resonances in the low-energy part of the KV chan-
nel, there are regions in which our approximation is
meaningful.

Consider the amplitudes for the I=1 EX channel.
(The amplitude for the I=O E't channel will be ob-

In this section, phase shifts for K~Y scattering are
calculated using the PDM. The EX channel is in-

elastic, and we cannot calculate the imaginary part of
the scattering lengths. As mentioned in Sec. IV, a
simple interpretation of the imaginary part of the
I=1 EÃ channel is elusive. Thus, we discuss only
EAt-channel phase shifts. Experimentally, the KX-
channel inelasticity is zero up to 0.4-BeV/c c.m. kaon
momentum. "We have calculated the phase shifts up
to this value. For some phase shif ts, however, we
restricted the calculation to the region below 0.3-BeV/c
c.m. momentum because, as will be discussed below, if
the value of the phase shift becomes too large, the
approximation

e' sin8=b

will not be satisfied.
The starting point of the calculation is the relation

between fr+(s) (the s-channel partial-wave amplitudes
for J=1&t2) and the invariant amplitudes A and B:

'4G. Goldhaber et al. , Phys. Rev. 134, B1111 (1964); in
Lawrence Radiation Laboratory Report Xo. UCRL-18322, 1968
(unpublished).

"A. T. Lea, B. R. Martin, and G. C. Oades, Phys. Rev. 165,
1770 (1968)"S. W. McDowell, Phys. Rev. 116, 774 (1959).
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tained from the final result by changing the coef-
6cients according to the isospin-crossing matrix. )'r

FpG. 2. S11 phase shift. (1) No cr contribution (&„=—1,3 F);
(2) e contribution included (y„=+4 F). The calculated phase
shifts are compared with the results of the phase-shift analysis
of Lea et al. 1 gYg2

~l 94)t) gAyK +
Mg2 —I M Y,*'—I

67ryp(1+2pp) 6ny„
(5.4)

tn 2 —lssp —'l

FrG. 3. P11 phase shift. (1) No cr contribution (y„=—1.3 F);
(2) o contribution included (y„=+4 F). The calculated phase
shifts are compared with the results of the phase-shift analysis
of Lea et al.

M Y,*'—u

(M Mp) — (M rp~+M)
A P'~(l, t) = gz„g'+ g r,~'

Mg2 —I
We let

tÃ p
2

z.=1+
2p'

'
2 —I—Mg2

2p'
3~ypMp (s—u) 6n.y.

(5.3)
M(m, ' —t) m, ' —t

s„, s, and sY,+ are defined like sp and s+, respectively.
Then we obtain

16mB"

(M+W)' —m' gz„g' g rp&'(M rp+ 1V) 3m

gpss~

Z —mpp —2s
fp+(I=1) = t~ —p')Q p )+ Q (' ') 0&+ — p p.))2P' 2p' M 2p2

3~y, (1+2',) 3~7
+P(W —M) Q (s,)—(W —M) Q, (s )—

2 2

3s.y. (W M)' —m' —
gJ,„tt'

Qp(s. ) + u (—Mg —W)Qr(sp)
p' 16m.W' 2p'

g Y 3' PpP, p Z —ssp —2$ 3~7+- '
(ll -M.. )Q (".)- ' 'P '

Q (;)-(W+M) Q, (.)
2p' M 2p2 p'

(W+M)37rPy, (1+2@,) 3m',
+ Qi(s,)+ Qi(s.), (5 5)

p' p'

where 0. P=1.=We obtain fp+(I=O) by settinga= —1

and P= —3.
The phase shifts may be obtained by evaluating

(5.5). The couplings y„and y, a.re related through the

K'V scattering length.

6m'„6y
+ =Co ——1.3~0.3 F.m'2m2

30'-

20'-

We first assumed that the a does not contribute to
KE —+.VX. The partial waves Sy], &].i, Soy
are plotted in Figs. 2—5, respectively.
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FgG. 4. S01 phase shift. (1) No a contribution (p„=—1.3 F);
(2) a contribution included {y =+4 F). The calculated phase
shifts are compared with the results of the phase-shift analysis
of Goldhaber et al.

IO'-

t

.1 .2 .3
Center-of-Mass Momentum GeV/c

"Results are compared with experimental results of G. Gold-
haber et al. , Phys. Rev. 134, B1111 (1964), for I=0 and A. Lea
et al. , (LMO) (Ref. 15) for I= i.

«G 5. Pol phase shift. (1) No o. contribution (~„=—1.3 F);
(2) 0 contribution included (y„=+4 F). The calculated phase
shifts are compared with the results of the phase-shift analysis
of Goldhaber et al.
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0.3-GeV/c c.m. momentum. Since the phase shifts are
not sensitive to the values of y„and y, (when these
are allowed to vary over a reasonable range), we can
say that the qualitative features are explained without
any arbitrary parameters.

FIG. 6. Pp3 phase shift. (1) No o. contribution (p„=—1.3 F);
(2) c contribution included (y„=+4 F). The calculated phase
shifts are compared with the results of the phase-shift analysis
of Goldhaber et al. (see Ref. 14).

20— oos
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~~Gotdhaber
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FxG. 7. Dp3 phase shift. (1) Xo o contribution (p„=—1.3 F);
(2) a contribution included (y„=+4 F). The calculated phase
shifts are compared with the results of the phase-shift analysis
of Goldhaber et al. (see Ref. 14).

The eGect of the 0. on the high-energy behavior is
investigated by choosing various values of y„and y,
such that (5.6) is satis6ed. In Fig. 4, we have plotted
the result, in which we let y„=4F, so that the high-
energy behavior of the phase shift Soi fits the experi-
mental results. This has the following eGects on the
other waves:

(a) The agreement between theory and experiment
is improved for Pop (Fig. 5).

(b) The agreement between theory and experiment
for the S~z and P~~ phase shifts is better when the 0.

does not contribute (Figs. 2 and 3, respectively).
The other phase shifts do not show any drastic

dependence on the co and 0 couplings. Thus we were not
able to determine from these considerations whether
the 0 should or should not exist. The result does not
change when we vary the mass of the 0 in the region
400-800 MeV.

Experimentally, the phase shifts are determined by
fitting experimental difI'erential cross sections. This
procedure gives a unique solution for the s waves.
Higher waves, however, have the Fermi- Yang am-
biguity. Only the solution which is consistent with the
polarization measurements'4 is shown in Figs. 2—7.

It is also of interest to calculate the Pos phase shift
to make sure that the result is consistent with the
particular solution chosen above. The formula for
the Po, phase shift may be obtained by replacing Qo
and Q& in (5.5) by Q& and Q2, respectively. The Do&

phase shift may be obtained from that of Poa by the
MacD owell symmetry.

The calculated Po3 phase shift is shown in Fig. 6.
The Do3 phase shift is shown in Fig. 7.

We see from Figs. 2—7 that the PDM explains the
qualitative features of KE scattering up to about

VI. CONCLUSION

The PDM, by the nature of its approximations, gives
real scattering amplitudes. For the channels with small
inelasticity, it successfully predicts scattering lengths
and low-energy phase shifts. For very inelastic channels,
it predicts real parts for the scattering lengths.

In our particular case, the KS phase shifts So~,
Poz, Pox, Dos, Sqx, and Pqq, the E'E s-wave scattering
lengths, and the real part of the EN s-wave scattering
lengths were calculated. Because of the lack of experi-
mental data, the couplings of co, p, and a in KE —+ NN
had to be treated as parameters. In the evaluation of
scattering lengths, we have one arbitrary parameter.
Choosing the parameter so that Rea~+~ has the value
given by experiment, we calculated Redo~, a&~, and
aoxv (Table III).

The phase shifts up to 0.3-GeV/c c.m. momentum
were calculated under various assumptions on the con-
tribution of a 0- meson. The results, shown in Figs. 2—7,
are not very sensitive to the strength of the 0. coupling.
Also the value for the fT coupling which fits one phase
shift does not improve the fit to all the other phase
shifts. Thus we conclude that the PDM, without further
rnodification or additional experimental information,
is not able to give a definite prediction on the coupling
of theo in EK —+-VX. We point out, however, that the
PDM did enable us to calculate the qualitative features
of all the phase shifts considered. Furthermore, if we
look at qualitative features only, which are not sensitive
to 0., we have only one adjustable parameter.

In the process of deriving the PDM amplitudes, we
saw that the sum rule

must be satisfied Lin terms of the PDM, since all
amplitudes are real, we really have ReTP~(u, t) on the
left-hand side of the equation j.Besides the assumptions
of the PDM, we used the fact that the isospin-one poles
(Z and F&~) do not couple strongly to the EN channel. "
The fact that the sum rule is well satisfied is evidence
supporting Rim's conclusion that the Z and F~* cou-
plings to the EN channel are small.
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