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We present the radiative corrections for a precision experiment on electron-positron scattering per-
formed by Browman, Grossetete, and Yount. It is necessary to extend the earlier work by Redhead and
Polovin by evaluating the unobserved real bremsstrahlung without infrared approximations. To accom-
plish this efhciently and accurately, the very lengthy algebra is handled by a computer. Higher-order
corrections are studied with care, and it is believed that our results are adequate for present and foreseeable
experiments of this type.

I. INTRODUCTION

A VERY precise measurement of electron-positron
scattering in the neighborhood of 180' c.m.

scattering angles has been made by Browman,
Grossetete, and Yount (BGY).' Because of the high
precision of their experiment and its particular experi-
mental arrangement, their results provide a very sensi-
tive test of radiative corrections at high energies. No
previous calculation of radiative corrections is directly
applicable to this particular experiment, but the ex-
perimental data have been compared' with an extrap-
olation of some approximate calculations made by
Meister and Yennie' for a general class of scattering
experiments. It is the purpose of the present paper to
improve those earlier calculations and extend them to
this new experiment.

The BGY experiment is essentially 180' scattering in
the c.m. system. A high-energy positron beam enters a
target and electrons of nearly the same energy are
detected. Because these electrons emerge in a very
marrow cone, no attempt is made to resolve their direc-
tion. Only their energy distribution is measured. The
top 2'%%uo of the energy spectrum is examined in detail
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and energies down to 90% of the incident energy are
measured for over-all normalization. If there were no
radiative effects, the cross section would be quite Rat
in this region. The effect of the radiative corrections is
to reduce the cross section. The physical reason for
this is quite clear: at the upper end of the spectrum there
is no energy available for real photon emission. From
the Bloch-Nordsieck argument, the cross section for
scattering without emitting photons is zero. For a
slightly smaller energy for the electron, there is some
phase space for emitting photons and the cross section
rises. %hen the energy is far below the incident energy,
the phase space for real photons is large and the cross
section is roughly the same as the uncorrected one.

For purposes of orientation, it is helpful to study this
phase-space variation by looking at the mass of the
undetected system. Let pr and pa be the initial and anal
positron's four-momenta, p2 and p4 the corresponding
electron's four-momenta, and E the total four-momen-
tum of the photons. Then

cos84 —1 —m(py P4)/pyp4—
8 "=-L2m(P. -P.)/P P.j ' .

(1.2)

For fixed p4 and angles less than 84", the mass of the
final positron-photon system is greater than ns, and it as
1950

~'= (P3+I)'= (Pi+ P2 p4)'—
=3m'+2m(K —K)—2E)E4+2P)P4 cos8
=m Ll (p& p4) /p'Ip4j

+2m(P& —P4) —2P~P4(1 —cos84), (1.1)

where tII4 is the angle of the emitted electron relative to
the incident positron. Elastic scattering is determined
by 3E'= m', giving
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sumes its maximum for 84=0

(M') —ms+2m(P t —P4) . (1.3)

In the frame in which the total momentum of the posi-
tron and the photons is zero (missing-mass frame),

Ps+@=0, (1.4)

the energy is given by

(m'+ K') ' "+Ke N—— (1.5)

Now suppose M —m«m. ThenE's«mand
~
K~ &Xp&&m

and
(1.6)

Ke call this the nonrelativistic region since the kinetic
energy of the positron is negligible and all the energy
available goes to the photons. This situation attains for
all i74 if (pr p4)—«m In t. he nonrelativistic region there
is no kinematical constraint on the photons except
that their total energy must add up to a constant.
They are also very soft and the usual infrared argu-
ments hold, permitting us to sum the contributions from
all numbers of photons. In the opposite, extreme
relativistic situation, M))m, Eq. (1.5) gives us an
additional kinematic constraint between the photons
depending on their direction of emission. However,
for a single photon, Eq. (1.5) is still relatively simple
since ~K~ =Pe.

The earliest calculations of radiative corrections to
electron-positron scattering were made by Redhead'
and Polovin4 who obtained the same result. They
calculated the correction of order a under the assump-
tion that the real photons were very soft (k&k «m)
in the laboratory frame. This is just the nonrelativistic
region. The Meister-Yennie (MY) calculation' extends
into the relativistic region, but is restricted by 684= 84'
—84 '"«84',. it also contains the approximation of
neglecting all nonlogarithmic terms. These calculations
must now be extended to the entire 84 range without
neglect of the nonlogarithmic terms. Many approxi-
mations used by MY are no longer valid, and it is
necessary to make a complete new calculation of the
hard real-photon contributions. In order to retain
some contact with the older work, we shall calculate
separately the most important contribution using the
infrared factorization.

Since the radiative corrections are large for this ex-
periment, multiple photon corrections also become
important. In the past it has generally been accepted
that these terms can be obtained with some accuracy
by the "exponentiation" of the lowest-order term.
Intuitively, this exponentiation is based on the fact
that soft photons can be emitted and absorbed inde-
pendently by the charged particles, and a kind of
Poisson distribution in the real and virtual photons

' M. L. G. Redhead, Proc. Roy. Soc. (London) A220, 219 {1953).
4R. V. Polovin, Zh. Eksperim. i Teor. Fiz. 31 449 (1956)

/English transl. : Soviet Phys. —JETP 4, 385 {1957}.

results. As indicated earlier, these arguments continue
to be valid in the nonrelativistic region (3f—m«m).
For larger values of M, exponentiation should not be
strictly valid, but may still yield a reasonable estimate.
Fortunately the radiative corrections are largest for
small M, , where exponentiation is valid. To investi-
gate the validity of the exponentiation, the following
procedure will be employed: The leading logarithmic
terms of n' will be calculated and compared with the
corresponding terms obtained by expanding the ex-
ponential of the lowest-order correction. The difference
will give us an estimate of the errors associated with
exponentiation and enable us to improve the usual
exponential approximation.

Section II contains the derivation of the radiative
correction to order o., and Sec. III discusses the higher-
order corrections. The result is summarized in Sec. IV.

II. LOWEST-ORDER RADIATIVE CORRECTIONS

The derivation given here parallels in many respects
the treatment given in MY.' However, since we wish to
eliminate the approximations made there, the main
points will be repeated briefly. The general procedure
for the calculation is the following. The integration over
the unobserved angle of the electron is converted into an
integration over the mass of the undetected system
using (1.1). For each value of Ms, the integration over
the momentum of the unobserved positron and photon
is carried out in the special Lorentz frame in which the
spatial part of (pt+ ps —p4) vanishes:

I flame: p)+p2 —p4= K+p3=0. (2.1)

The usual infrared divergence makes its appearance at
the lower limit of the kf' integration (3P m'). It is
not de.cult to circumvent this divergence by using a
photon mass, ultimately cancelling the divergence
against the virtual photon corrections. Fortunately, it
is not necessary to do this in detail since Redhead'
and Polovin4 have already calculated the radiative
corrections arising from one virtual photon plus one
very soft real photon whose energy is restricted by

k=M —~(u, —~=A &&m

(Redhead and Polovins 4) . (2.2)

The principal work is then concentrated on obtaining a
suSciently accurate evaluation of the contribution from
~1 to ~max

3Er&M&M, „(present work).

A. Kinematical Pre&binaries

(2.3)

dog

dp4

d'p3 d'k p4'dQ4

E3 p E4

X5(pt+ps —ps —p4 —k)pr(ptp4, k). (2.4a)

The cross section for scattering with emission of
one real photon is
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(The caret on a~ and p~ is used in this section to empha-
size that corrections due to virtual photons are not
included. ) It is convenient to replace the integration
over the solid angle Q4 by one over M' using (1.1).Each
value of M' then deines a special frame (taking the
azimuthal angle of p4 to be zero, for example) and (2.4a)
reduces to

and

where

p* f"
k d03 =41fp )kpkf m

p(x) = 1nLx+(x' —1)"j
(x' —1)'"

(2.8c)

(2.8d)

~p4 pS m'

kdQ
dM' — „pg(pg . .p4, k). (2.4b)

&+ED

—ln2x for x)&1

for x 1.

The various energies in the special frame are easily
expressed in terms of the laboratory energies and 3I2.
Thus we have

3E=k+E3
or

To further simplify the integral over M' in (2.6) we
evaluate the results of the angular integral with the
infrared condition k= 0 (M= m). This means

Er~E4, E4~Eg, E3 —+E3, pg p, ~mE3.

and

k = (M' —m')/2M,

Ea ——(M'+ eP)/2M,

(2.5a)

(2.5b)

With this approximation, (2.6) reduces to

Er= pi (pi+ p2 p4)/M-
= LmE, + ', (M' —m-')]/M,

E~=P2 (p~+P2 P4)/M-
=m(E, +m —E,)/M= mE3/M, —

E4= (mE~ ,' (M'——-m'))—/M

Our integral (2.4) is conveniently rewritten

(2.5c)

(2.5d)

(2.5e)

dog 2K

dp4 pl

A max2 d~2

iV2 —m'
k'd03pg. (2.6)

B.Hard Real-Photon Contributions —Infrared Estimate

"-—m'
Xln

MI2 —m'
(2.9)

(
cog j (jgp 4A( 2k IE4 ~max—

~

ln- ——1 ln . (2.10)
dp4 )g, dp4 m- k mEg iV g2 —m'

For the purpose of the BGY experiment, E~ and E4 are
always much greater than m; E3 is also at least several
times m so that the approximate form in (2.8d) for
large argument can be used. Equation (2.9) then
becomes

We want to evaluate (2.6) under the assumption that
the cross section for scattering with photon emission is
the elastic scattering cross section times an emission
factor. This means

C. Matching to Redhead's Result

27l do p—pi ———5,
PC dP4

~here
P~P P3P P28 P4y, 2

S=——— +——,.„,„.„,„.)
pi" f" p~" p4" '

+-4'kP fk kP kp)
m—(Mr' m )/2m.with

Redhead's calculation appears to have been donefor
slightly diAerent conditions than those specihed by
&&M&, namely, he restricts the photon energy in the
laboratory by condition (2.2), whereas we need (2.2)
in the rest frame of the unobserved positron. However,
since the radiative corrections are completely symmetric
under the interchange p~~ P4, p2~ P3, it turns out
that the photon phase space given by the rest frame of
p2 gives the same result as that dined by P3. We may
accordingly take over Redhead's result with the simple

(2 7b) substitution

f=pa+k= pr+p2 p4—
The basic integrals are

(2.7c)

p' - - f'
=k' dQ~ — ——k' dL———4s, (2.8a)

(k.p)' (k f)'

There are a few complications about using Redhead's
result which should be mentioned. He gives two high-
energy expressions for e+-e scattering. The erst of
these, his Eq. (5.4), is valid in the region

Ey, E4, Eg —E&)m.

k p;k-p,
(P"0

)
The second, his Eq. (5.6), is valid for

(2.8b)
Eg =EQ)ns.
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P= (Er E4)/K— (2.11)

For the HGY experiment these extra terms are corn-
pletely negligible; they are recorded here only to illus-
trate this point. If P is not small (i.e., not less than 0.1)
and the experimental accuracy is good ( 1%), it would
be necessary to completely redo the present calculations.
Redhead's result may then be expressed in the form of a
fractional correction

The first equation does not extrapolate precisely to the
value given by the second equation. The di6erences
however are very small. One such difference occurs in
the coeKcient of ink and may be understood by
noting that this coefficient contains the term p(E~/m),
whose argument can approach 1. If the approximate
form of p is used, its limiting value is ln2 rather than 1,
as it should be. This error is to be compared with the
large terms in the coefficient of ink such as ln(2E~/ns),
and we see that the fractional error is extremely small.
In any case, we can see that if E4 is only 1 MeV less than
its maximum value (giving x= 3), the error in this rather
sms, ll term is only 1/18 of itself, producing negligible
error in the cross section. Although we have not investi-
gated the terms independent of ink, in detail, the
error of the extrapolated function at the upper limit is
only of order 1.5% of the cross section. Assuming that
the error behaves in the same general manner as the
coefficient of ink, it should be completely unimpor-
tant for (E~—E4)&1 MeV. Since the cross section is
forced to zero at E4= E& by the infrared divergence, and
since experimental energy resolutions are not likely to
approach 1 MeV at higher energies, we conclude that
Redhead's equation (5.4) should be valid for all pres-
ently foreseeable experimental conditions.

The second complication in Redhead's result is that
not all the terms are simply proportional to the un-
corrected cross section. It seems convenient to extract
the terms proportional to the uncorrected cross section
(including the ones associated with the infrared diver-
gence) and arrange the remaining terms in ascending
powers of

corrections

n 2EgE4 (E3 m—)' 1 EgE4)'
b. +by&" =— ln ——i ln —ln

F3 mEgEgE4 2 mE3)

11 4EjE4 EgE4 Eg 37 3''
+—ln —+-' ln——-' ln' —— +2 2

6 m' E3 9

—ln2 —
2 ln'2, (2.13a)

Jlp p JI JIp p

P4

~k

lk P2 PI Ji JI P2 PI JE JP2

P3

'2 I 2 I 2 I

FIG. 1. Lowest-order Feynman diagrams for
electron-positron bremsstrahlung.

I «PI P2P~ p4) 2 «PI ip2ops, p4)

where terms which are negligible ((0.1%) for P(0.1
have been dropped. The infrared part of (2.13a) is
defined by

n 2E)E4 (E3—m)'
ln ——i ln—

mE, mE E3E

1 EgE4 '
—— ln . (2.13b)

2 mE3

kmax

11 4EgE4 EgE4 3
+—In —+2 ln +— ln—

JE, 4

Ey E4 37 3Ã—
~ ln—ln———+ — ln2 —

~ ln22 —~m.2P
E3 9 4

/25 E, E,—
J

—y-', ln' —+ln—+-'7r' JP' . (2.12)

n 2E1E4 i E~E4 '
ha.s.=- ln —1

J

ln —— ln
mE3 ) mE~E3E4 2 mE3

Pg

X~ «PI qp2 yp~qp4)

"P
I

X~ «PI, P2.ps.p4)
P

I

P3
4 «Plep2ep~gp4)

Pg
X

Adding Redhead's result to (2.10), we find for the
sum of the infrared and noninfrared virtual one-photon

«PI ep2 ~ PyIP4 )

FiG. 2. Grapbical representation of the products of matrix
elements for some of the Feynman diagrams in Fig. 1. A circle on
a line indicates that no propagator factor of (p2 —m') ' appears.
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D. Hard Real-Photon and Noninfrared Contributions

Having isolated the infrared part of the cross section
for single-photon emission, it is now possible to express
the remaining noninfrared real contributions to the
cross section in the form of a convergent integral

(
dg, 2g ~m.~'

k'dQ8(Pl —Pl") ) (2.14)
dP4 g Py Sl~ 3f —52

where p~l' is the infrared limit of pj extracted in the
previous subsection, as given by (2.7) and the approxi-
mations preceding (2.9). We write

3",=~-,' P iv)', 3",' =~-', P lj;,l', (2.15)
SPIIIS SP ill 8

where F is the usual Feynman amplitude and X contains
the incident Qux and other factors.

The form of lFlg for this process may be readily
computed by standard Feynman techniques. To this
order, there are eight Feynman graphs contributing to
F as shown in Fig. I. The traces which arise from the
spin sums in Eq. (2.15) may be represented pictorially
in terms of closed loop diagrams as shown in Fig. 2.
Because of the identical fermion symmetries in the cross
section, however, only seven such diagrams need be
considered, and all other traces may be expressed in
terms of these by momentum interchange.

The seven basic traces depicted in Fig. 2 may be
written in the form

Xl (Pl) P2)P3)P4) TlL(r P4+m)r„(r pg+m)7„5 Trf( r —pg+m)r„(r k r p—1+m)
X&,(-& p, +m)~, (~ k —~ p,+m)~, 5/[64m'(p k)'(p, p,)'5,-

TrLh" P +m)v. h'P +m)~.5 TrC( vp +m—)v.h'k vP +m—)
x~, (—~ p+m)~. (—~ k —~ pg+m)~, 5/C64m'pl kpg k(p, —p4)'5,

Trna P—4+m)y, (y P2 p k+m)p ('p Pg+m)V, 5 Trg( —y Pg+m)y„(y k —y Pl+m)
Xy, ( yp—+m)y. 5/(64m'p kp k(p p)'(—p. p)'5—, (2.16)

Tr[(y P—4+m)y, (y k+y P4+m)y, (y pg+m)y„7 TrL( —y pg+m)y„(y k —y pj+m)
Xy, (—y pl+m)y, 5/t64m'pl kp4 k(pl —pg)'(pg —p4)'5,

»L(v P4+—m)v. ( v Pg+m)v—.(v. k vpl+m)v—.( vpl+mb—.b k —v.pl+m)
xv (v Pg+m)~. 5/L64m'(Pl k)'(Pg P4)'(Pg+P—4)'5,

—TrL(y p4 jm)y„( ypg+m)y—„(y k —y pl+m. )y, ( /pl+—m)y, (y pg
—y k+m)

Xp, (& Pg+m)&„.5/[64m'pl kpg k(pg p4). '(pg+—p4)'5,
TrLh' P4+m)v (Y''k+ r'P4+m)r ( r'Pg+m) Y (Y'k Y''Pl+m)r. ( r Pl+m)—

Xy.(y p, +m)y„5/164m'p kp k(p p)'(p+p )—'5,

Xg(Pl, P2,P3,P4) =

X3(P»P»P»P4)

X,(pl, p„pg, p4) =

Xg(pl)p»p»pg)

X6(pl) P2) pg) P4)

X7(pl)P»P8)P4)

where conservation of momentum requires that

k= pl+pg —pg —p4.

The cross section as written in terms of these six traces contains 36 terms. However, it is possible to combine
the general traces further to produce a more compact form of the cross section. For example, it was pointed out
by Swanson' that if the original eight diagrams are paired according to identical photon propagators, then only
three combinations of X& through X7 appear in the cross section, namely,

A 1(pl)p2, p3) p4) Xl(pl) p2)p3) p4)+Xl(p3)p4) pl) p2)+ 2X2(pl) p2) pg) p4) )

A 2 (pl)p2) p3yp4) X3(pl) p2) pg) p4)+X4(pl) p2) p3) p4)+X3(p3) p4) pl) p2)+ X4(p3)p4) pl) p2) )

A 3(Pl)P2) P3)P4) Xg (Pl) P2) P3)P4) +X6(Pl) P2) P3)P4) + Xg (Pl) P3)P2)P4) + X7 (Pl)P2)P8)P4) ~

In terms of A~, A2, and A3, the cross section is then

(2.17)

2 IF I'=Al(Pl, P,P3,P4)+Al( Pg Pl P4, ——Pg)+A—l(Pl —
Pg P2 P4)+Al—(P8,

—Pl, P4, P2)— —
+2A2(Pl)P2)P3)P4)+ A2(PI) Pg) P-) P4) 8(Pl)P2)P3)P4)
—2A3(P3, —Pl, —P4, P,) —2A8( —P2, P4, Pl) —Pg) —2A8( —P4, —Pg, —P„P,). (2.18)—

The expressions A &, A2, and A3 are essentially Swanson's A, 8, and C, bearing in mind that we have named our
momenta diGerently.

The reduction of A~ through A3 to scalar products was performed by computer, ' and the results are as follows:

' S. M. Smanson, Phys. Rev. 154, 1601 (1967}.' A. C. Hearn, Comm. A. C. M. 9, 5/3 (1966}.
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+ 1(P1 P2 P3,P4)

(p, p, —2ma)(pa k'+pa k')
pa. kpa k 2(m' —pa p4)(p& pa —2m )+— — 2(—pa pap. a p4+p2'p3pa'p4)

(m' —pa p4)

(p, kpa p.—p, kp, p4)-
—m' 2wa(m wa+2pa kpa. k)+wa (m —pa p4)+2(pa kpa p2 p3'kp2'p3)

(m' —pa. p4)

[2m4pa k'pa k'(m' p—a p4)7,
~ 2(pa, pa, pa, p4)

={—'(w w, —w w )(awaa+awaa+w42+w-2) —ma[w42ws+waawa+wa(w4+wa)(pa kp4 k —pa kpa k)

wawawaw5+wjwa(pa ' kp3 k+pa kp4 k)))/[8m'p& kpa kpa kp4 k(m' pa —p4) (m' pa —pa) j, (2.19)

&3(pa, pa, pa, p4)

2 'p'kp'k
(4m' —ws')i w, +2p, k'+wsp, k+4p, kp, k —2m'p4 k+ +4m'p4 k(pa k —pa k)

l p1. k

X(2m +ws —pa k) —2m pa kpa k(6pa k+2p4 k —3ws)+2(pa'k+p4 k)[(m —ws)wa —2pa'kp4'kws]

—2(pa k'+p4 ka)(ws+2pa kp4 k+pa kws)+6mapa k'ws

X[32m'pa kpa kpa k(m' pa p—4)(m'+p3 p4)5,'

where

1=p2 k+p4 k,
z2= pl. k —p3 k = p4. k —p2 k )

w, =p, k+p, k,
~4= Pl'P4+P2'P3 )

~5 pl'p2+p3 p4)

z6 ——pl kp4. k+p2 kp3 k,
w, = pa kpa k+pa kp4 k,

ws ——2(m' pa p4)—+2(m'+ p3 p4), '

wa= 2pa'k(m' —pa'p4) 2pa k(m'+p3 —p4) . .

(2.20)

These expressions are more compact than those given
by Swanson, but may easily be shown to be equivalent.

Equations (2.16)—(2.18) indicate the wide varieties
of symmetries which exist in the complete cross section,
and various parts of it. In particular, it is easy to see
that the total cross section is invariant under the inter-
change

pl ~ p4
ol

P2~ P3

expressing symmetry under the interchange of an
initial particle (antiparticle) and final antiparticle
(particle).

It is now a relatively straightforward matter to per-
form analytically the angular integration of

i
Ii I' in the

special frame pa+k=0. By using the kinematical
relations among scalar products, it is possible to express
all angular dependent terms in terms of the standard
integrals given in Appendix A. The integration can then
be performed, and the corresponding angular integral
over iF;, ia subtracted to give a convergent integrand
for the Ma integral in Eq. (2.14). The computer was
again used to help with this reduction both as a store
for the large expressions encountered in transforming the
expressions to a form suitable for integration, and for
checking the accuracy of any hand algebra used.

%e note in passing that in integrating the cross
section in our special frame, much of the symmetry
which is expressed in Eqs. (2.17) and (2.18) is lost.
However, it is useful to recognize that the over-all
cross section is still invariant under the interchange
pa ~ —p4 in this frame.

The answer at this point contains of the order of 500
terms, and so a complete analytic integration over N'
was not performed. Since our discussion of the infrared
estimate was only accurate to order P, only those terms
up to linear in P were computed exactly. The remaining
terms were found numerically to be completely negli-
gible for the range of variables considered.

Keeping then only terms linear in P, the required
correction to the cross section may be written

g~(1)—
~max2

dM'I, (2.21)
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where

p(pg p /m') 3p f[p(p p4/m' /p p —p f/m', p» p, f.MmI=- +
pg' p4 p3 k 2p4 f.

(Pi P2 2P2—f)[p.(P4 f/M. m)/P4 f p. (p—~ P2/m. ')/P~ P23 p(P2 f/M. m) [p(P2 f/Mm) p(P—2 f/m')3
+

p3 k P2 f Pa k

2p, k 2 7p(p& f/Mm) (p~ p~+2P2 f)[p(p~ f)Mm)/p~ f p(p2—p4/m')/p2 p4j
+ +

M'P2 fp~ .f 2P~ f. P3 k

2(p~. k/M2 —1)p[(m'+Pa k)/.Mm j 7 p(pq p4/m') p(pq pg!m') 4p3 k
+ +- — + . (2.22)

2 p2 p4 pg p2 Mm'+pg k

For the range of variables considered, the approximation

p(x)—in 2m

~ 4p(pi P4/m') 3P2 f[p(pi P4/m')/Pi P4 p(P2 f/m—')/P2 fl .2P3'kI=- +
7l p] 'p4 p3. k M'p'f p,f.

1n(M'/m') p(p2 f/(Mm) [p(p, f/Mm) p(p~ f/—m')7 2(P3 k/M' . 1)p[(m—'+P3 k)/Mm j 4p3 k
+ + — —,(2.23)

P2 f P3.k m2+P3 k kI4p3 k

is valid for aII arguments which remain large over the whole integration region. Kith this approximation, the inte-
grand may then be written to order P in the form

which can be evaluated to order P using the integrals in

Appendix 3. The Anal result is then

(2.24)ba "'= (a/27r) Dn(2E3/'m)+ ', 7r' 5l-—
It is interesting to compare this result with the calcu-

lation of MY, whose value for the same quantity may be
written in the form

6& "&=(n/2 )[—sin'(2E3/m)+ . .j. (2.25)

The kinematic range of variables considered in the
two calculations is diferent. However, it is possible to
make a comparison of the leading ln' terms by looking
at the energy-dependent contribution from the lower
part of the M' integral in the present calculation. This
contribution has the form

(n/2n') ln~ (2E3/m)

which agrees with the ln' term in (2.25).
The absence of a ln-' term in our result is quite un-

expected, and gives a much smaller contribution to the
over-aH radiative corrections than extrapolation of
previous calculations would suggest. This absence is due
to an exact cancellation of the ln' contributions from
the upper and lower parts of the M' integral, which is
hard to explain by any simple physical argument, since
the mechanisms responsible for the radiation at each
end of the spectrum are so diferent.

The absence of any term linear in P in the result is
also worth noting, and is probably due to the sym-

metrics existing in the cross section under the inter-
change E~ ~ —E4.

Combining the result of this calculation with the part
of the radiative corrections given in Eq. (2.13), we find
for the complete radiative corrections to order P for
this process

n — 2EgE4 ) (E3—m) '
6;„+8„;„&'&=— ln ——1

~

ln-
7r mEg I mE)E, E4

1 E)E4) ' 11 4E&E4 E)E4
ln --

~
+—ln —+2 ln

2 mE, i 6 m2 EP

EI E3 119—-', ln'2 ——', ln' —+-,' ln—+7r' ——. (2.27)
Eg 2m 18

IIL HIGHER-ORDER RADIATIVE CORRECTIONS
%'e noted in the previous section that when M ' is

small (comparable to or only a few times m'), the radi-
ative corrections become quite large. In this situation
one cannot expect the lowest-order corrections to be
adequate. The higher-order corrections may be signif-
icant and it is necessary to include them as weIl as we
can. Fortunately, it is possible to to this reasonably
well. Ke note that the main reason the correction is large
is that the phase space for real photon emission is so
strongly limited for small 3f that the positive contri-
bution from real photons is much smaller than the
negative contribution from virtual photons. The usual
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+h . (4)) ~ e4„(1+g . (4)) (3.1)

tendency for infrared contributions to cancel is there-
fore inhibited and we are left with a large negative
contribution. In order to improve on the lowest-order
contribution, it is mainly necessary to include the
infrared contributions from higher order. In simpler
situations, it is known how to do this exactly and the
result is that the lowest-order infrared contributions
are exponentiated

ment (4& DE), we integrate (3.5) to obtain

do (AE) II'do—(~E) =(
~

F(nA)(1+6.;,)~—
dQ EEI kdfl, (

do)=e" &oe'(1+8„;,)F(nA) —
~

dQ), 4

d0'—(1+8;,+8„;,)—
dQ, )

(3.6a)

(3.6b)

We will review this analysis and see how to apply it to
the present situation.

A. Review of Exponentiation of Infrared
Part of Radiative Corrections

A treatment of the exponentiation of the radiative
corrections is contained in Ref. 7, Secs. II C and II E. In
the problem studied there was electron scattering with

energy loss e which was carried away by real photons.
This energy loss was so small that kinematical restric-
tions other than energy conservation could be ignored.
In particular, the recoil energy of the unobserved
nucleus depends on the momentum of the real photons,
but that dependence was neglected. Suppose the proba-
bility for energy loss e without radiative corrections is

(3.2)

The final expression is what would be calculated directly
to order n using an infrared cuto6. In practice, this
gives us a convenient way of identifying 8;,: Calculate
8 using a cuto6 and subtract 8;, which generally in-
cludes all the doubly logarithmic parts of 8 as well as
all terms in 1nhE. The exponential (3.6a) is then ob-
tained without doing any additional work beyond that
already contained in the calculation of 8.

B. Adaptation of Exponentiation Argument
to BGY Experiment

Consider electron-positron scattering with emission
of n photo'ns of definite momentum. The differential
cross section for the process may be written

=p (p~, p4, p4 p4 &4. .&.)
„d'p3 d'p4 d3k;

Xe~p(2 &)
~4 s l i

where n.4 arises from the integration over all angles of
the probability of emission of a single real photon. The
result of including all contributions from real and virtual
infrared photons such that the total energy carried
away is 4 is obtained by multiplying (3.2) by the factor

F(nA) expL8;, (4)], (3.3)
where

F(nA) = 1——'4r'(nA)'+
and

8;,= 2nPB+8(4) j nA ln(4/E) . — (3.4)

LThe present discussion differs from Yennie, Frautschi,
and Suura (YFS)' in that we use 8 rather than B. We
are omitting the singly logarithmic terms arising from
I;,, which really have an ultraviolet origin. ]There are
also noninfrared radiative corrections from virtual
photons which multiply (3.2) by (1+b„,), giving the
result

I' n.4 1+6;, — . 3.5

If, instead of looking at the differential cross section
in energy, we make an energy-resolution-type measure-

'D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys.
(N. Y.) 13, 379 {j.961).

X8(pi+p~-p4-p4 —Q k;). (3.7)
i=1

d'pg d'k;

The infrared virtual contributions are contained in
expt 2nB(p&, p, ,p4, p4)j, while the noninfrared virtual
contributions are contained as a power series in e in the
function p„. The complication of (3.7) over the corre-
sponding expression for elastic scattering from a po-
tential is that we include momentum as well as energy
conservation. It is necessary to integrate (3.7) over all
variables subject to the constraint (E4= const) and then
sum over all n. As in the one-photon case, the integral
over the angles of p4 can be converted into one over M'
using (1.1). This gives

-&~rnsx2

dM'
dP4 n tPl i=1 Q) i

X8(pi+ p4 pa p4 Qk, )p exp(2a—B).—(3—.8)

If we compare (3.8) with the corresponding expres-
sion in potential scattering, we see that the present kine-
matical restriction on the photons is much more compli-
cated. In the potential-scattering case, one has simply
the condition that the energy lost by the electron is
carried o6 by the photons. The momentum carried off
by the photons is compensated by the momentum
transfer to the potential, and the dependence of the
matrix element on that momentum transfer is usually
neglected. In the present situation, the combined
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nA, =—ln
m E3pi p4

licated, we introduceBecause t eseh functions are comp ica
reference functions

L o+ o()3=l

EE——ln—,(3.17a)
2~ mE3

wherep

-'-'ll -"* (3»)eif e '»* eb(f po gk, )—= — *~*e *» * e

to treat the Pp terms slightly dif-
f the rest. Before usingferently rom e

identity q ue nqd e to the b function

1= ((or+ (o )/(M —Eo).

3 17bQlp=-;f =—ln ———1
mE3

(2.13b), is the value of (3.3.17a at theKe notice that b;„2.
upper limit of 3f'.

Finally, we define

nH = 2nLA+B(o)] —2nLBo+Bo(o)];
'

e 3.13) as follows:then we can rewrite

3P—m'
q

"o

u, 2 —m2)

d' 3
eif s e

—iud a

(2n)' . E

(3.12)
Then we 6nd

do do„ d0 m- m

=e"*—
dp4 pi m~

d4x
d p3

e
E3

eif sdM'
(2)r) 'P1

d'k-
Xexp(2nB) exp e 'o'*S(k)e "*

S(ki)Po Pi(ki)

3

S(ki)Po Pi(ki)
d'k e i~'~ — +-

HI —E3 k1

)(' eaHeD

1+E— s *"'* P.(ki k.)
d'k;

ki
(3.19a)
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where (3.19b) indicates the expansion of the integral
in (3.19a) in powers of a.

If nothing has gone awry, (3.19b) should agree to
lrst order in n with the results of Sec. II. I.et us verify
this quickly. We note that the integrand of (3.19a)
contains at least one explicit power of o.. However, any
term which has an infrared singularity L (&M' —m') 'j
will have one power of 0. absorbed in the M' integration.
To 6rst order in o., we may therefore neglect H, D and
the terms with n) 2 in (3.19a). The x integration may
iDunediately be carried. out to give a 8 function. Carry-
ing out the momentum integrals in the I frame, we 6nd
a term

2aAOPp/(M' —m')

plus nonsingular terms. To order 0,,

(2~/Pi)PO (do o/——dP4) (1+br &'&) .

(3.20)

To lowest order in n, the nonsingular terms are just the
ones evaluated in Sec. II D. Carrying out the 3f'
integral, we recover (3.19b) to order a.

C. Identi5cation and Estimates of
Contributions to 5„;,(2)

It is probably feasible to evaluate the leading loga-
rithmic contributions to 8„;,&". We shall not attempt
this here except in the simplest cases. However, we

hope to obtain reasonable estimates of the errors made
in omitting 8„;,&" from an analysis of the data. The
separate contributions will now be itemized and
(4s cussed.

1.Higher-Order Corrections to Po

So far we have included the terms of order unity and
of order a (relative to the uncorrected cross section).
The term of order a(br "&) arises from the noninfrared
part of the one-virtual-photon contribution to the radi-
ative corrections, and it is given explicitly in (2.13).
Its dominant term is

(a/w)L(11/6) ln4EiE4/m']. (3.21)

'The sources of such large logarithms are rather readily
identified, and the coeKcient 11/6 is found to break
down into the following pieces: -', from vacuum polari-
zation, ~ from the large virtual-momentum region, and
1 from cross terms between the spin and convection
parts of the current in the intermediate-momentum
region. The last of these is more sensitive to the momenta
of the external lines than to the short-range details of
the interaction. We might expect it to have a counter-
part in higher order.

The terms of order o.' in Po of course equal the square
of the order a term in the amplitude plus twice the order
a' term in the amplitude. The first of these is(8&&'&)'
and the second requires the evaluation of all diagrams
in which there are two virtual photons (beyond lowest
order). To evaluate the leading logarithms in the ampli-
tude to order n' would require a massive effort. First
one would have to eliminate the infrared parts of the

amplitude; this would involve subtraction of both 6rst-
and second-order infrared contributions. Diagrams
involving two vacuum polarization bubbles or one
vacuum polarization bubble together with one vertex
or two separate vertices could of course be trivially
evaluated as they would have multiplicative four-
dimenaional momentum integrals. These trivially
calculated terms are either the square of lowest-order
terms or -', the cross terms contained in the square of
the lowest-order amplitude. We can only guess at the
nature of the result from the diagrams having eight-
dimensional momentum integrals. Intuition tells us that
they are probably quadratic in the logarithm of (3.21).
It seems reasonable that the correction to the elastic
amplitude has the form

Po" &+br"'+(5+2)(br"')'+ (3.22b)

How big is this n' correction and its uncertainty in a
typical case? If we take Ei=500 MeV and let E8/Ei
vary from 0.01 to 0.1, we Gnd that bz(" varies from
approximately 6% to approximately 7-,'%. The
term and its uncertainty vary from 0.2 to 03%.

2. Virtua/ Photon Corrections to bg&'~

Since bg&'~ is almost negligible for typical situations,
we expect the corrections to it to be completely unim-
portant. These corrections arise from the order o.
term in po in the part of the integral which is left after
(3.20) has been removed plus the order a' term in pi.
The 6rst contribution is of relative order by" & and the
second one is also estimated to be of this magnitude.
The complete result, of order 8&&" 8&"', is completely
negligible.

3. Contributions from p&

Even if these are several times their expected order
of (bo &")', they are still completely unimportant.
However, we recall that there was a fortuitous cancel-
lation in 8~ "~. Perhaps this cancellation will fail in
higher order and terms like

with rt of order 1 (actually» can vary for the di8erent
terms in the square of —,'b~&'~; we have seen that it is 1
or —,

' for the trivially calculable terms). The elastic
cross section then has the form

poa 1+bv&'&+xi(1+2»)(bv&")'+ ~ ~ . (3.22a)

If we want to include the known 0.' contributions, the
best choice of q is —,

' (this mistreats the square of the
vacuum polarization term, but that is very small
anyway). If we assume that the uncalculated terms
introduce an uncertainty of one in» (this seems fairly
generous), then we find
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may occur. Even these terms seem entirely negligible
for foreseeable experiments.

X—~~o dx — ln(x„+2 —x)
-x +2—x

1
— tx —1

lnx 1n~ —,(3.24)
x—1 Ex„—1

where x=M'/m' and x =M, '/m'. The two terms
in the brackets give large and compensating corrections
to (2.21); but because of the extra factor in (3.24), only
the second term is important here. The contribution of
(3.24) is then estimated to be

4. Corrections from Variation of Factor
[(M2 m2)/(M 2 m2) jaAO

This factor

[(M' —m')/(M, „'—m') g "0 (3.23)

was essential for the convergence of the infrared con-
tribution (3.20) at the lower limit. However, it also
modi6es the noninfrared contributions in a way which

has not yet been taken into account. We must look at
the M' dependence of the contribution from P0 and Pq

after the infrared term (3.20) has been removed. We
recall from Sec. II D that although the net contribution
5g&'& from these terms was small, there was a somewhat
fortuitous cancellation of larger contributions from the
upper and lower regions of integration.

For typical experimental parameters, the exponent
QA p is approximately 0.1. Consequently, the factor
(3.23) deviates significantly from unity only near the
lower limit. We shall now consider the contribution
obtained by inserting this factor into (2.12). In any
given situation, the resulting integral could be evalu-
ated numerically; however, for our present purposes, we
shall only evaluate the leading contribution. Selecting
only those terms in (2.23) which contribute doubly

logarithmic terms in (2.21), we find

AI' —m'
deaf ~Io.d p ln

5. Contributions from Expanding eD

Both the first and second powers of D lead to con-
tributions of order o.'. The 6rst power eliminates the
infrared singularity in the M' integration and the entire
range of M' must be studied. On the other hand, the
second power of D leaves an infrared singularity and one
power of 0. is absorbed in the M' integration. The con-
tribution from ~D' is easy to evaluate since we need to
study only the region M' m'. But in this region the
analysis is equivalent to potential scattering and we
have the result given in (3.3)

—,
' D' contribution: ,',—n'(nA0)'- (3.26)

—nAp ln (3.27)

These are probably smaller than (3.25) (depending on
the coeffrcient), and they can therefore be neglected
whenever (3.25) can. If they become important, it will

be necessary to carry out a sixfold integration of a
fairly lengthy and complicated expression. It might be
feasible to extract the leading logarithmic terms, but
it ~ould probably be better to develop numerical
methods for handling such problems.

6'. Contributions from ExPanding e a

Since H ~ 0 as M' ~ m', it is necessary only to con-
sider the 6rst power of H. To an adequate approxi-
mation, we may use

M'SgE2E3'E4 =m'Er EIE,~~ (M2+ m'),

This term is of order 1% in typical circumstances.
The contribution from the term linear in D is rather

more dificult to evaluate. The choice of e given in

(3.15) assures that the M' integration is not infrared
divergent. The nature of D is perhaps indicated by
carrying out the x integration in (3.13). Calling k2 the
momentum variable in D, we 6nd

h(f ps kg—k,—) —8—(e —k,)b(f—pg —kg).

Thus D represents a correction to the kinematics of the
emitted photons. It is not too hard to show that the
leading terms are of order

—cAo ln (3.25) EqE4/EsEq= (EqE4/mE&)2m /(m'+M )

which gives

Typical values of this expression are (using nA p= 0.1)

for E3= 5 MeV: 0.1%,
for El=50 MeV: 0.6%.

Except for high-precision experiments, this term seems
safely negligible. If it should become important, the
complete expression should be evaluated numerically
since the terms with one less logarithm might not be
completely negligible under those circumstances.

n p& p3p4 p3E,' (M' —m')'
nH =—ln ln-

P2' P3P j P4&j&4 16tn EyE3E4

4Pl ' P3P4' P3~3 ~ +~
ln —2 ln--

P2 P3P& P~jE4 2''
e M'+m'

ln' (32g)
2x' 2m 2
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p» p3—mE4,

p2 p3 mE3)

so that

p4 p3'—mE»,

p p,=mI' ,'(M' ———m'),

cv' —m' (M' —m') '

2mE3 16m'E»E3E4
nII—— ln 1—

Now we must consider the k» integratio
'

n in (3.19).
When ~' is not large (say M (23fmaw ) p'~ an im ortant
contribution to e'b '

th k integration arises from ki nearly
parallel to j» or p4. In this region

If the coefFicient is not large, these terms as are not likely
to be important.

IV. SUMMARY

Our best expression for the radiative corrections is

Jo- n 11 4E»E4 E»E4
=e"' 1+——ln —+2 ln

dp4 z 6 m'

1 E 2 2E3 119—— ln——
2 ln'2+2 ln—+m ———

2E»F4 ~
dobro—4n' ln ——1, (4.1)

mE3 dp4

b (2.13b). The approximations towhere 6;, is given y
order n should be entirely adequate so long as E3(
The a proximations to order 0, s ou2 also be ade uate
at eth l%%u level of accuracy. For more accurate experi-
men s,t the various contributions in ec.

e ofbe reconsi ere ~d d. A rough gauge of the importanc
these terms is provided by (3.25). Because o possi e
cancellations, this may even yield an overestimate of

'
h the radi-When our present result is compared with the ra i-

ative correction employed by B. B Y' which was in turn
based on an extrapolation from the results of MY2), it
is oun af d that there are significant changes at the

e inter reta-l l While these changes might affect the interpreve. i e
would nottion of the BGY experiment slightly, they would

alter the general conclusion that there is excellent agree-
ment between theory and experiment at e

The correction is obtained by multiplying this by
n&0/(M' —m') (from the ki integration) and then
integrating with respect to M'. The leading term in the
result is

0! 2'——o.:fo ln-
6x m

(3.29)

This just cancels (probably fortuitously) the contri-
bution (3.25).

A contribution of similar importance probably arises

this region, j3 tends to be parallel to p» so that uH
rapi y wiidl with the angle of 4». We shall not attem
evaluate this contribution here, but we may gues
it contains terms of the form

varies
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APPENDIX A: TABLE OF ANGULAR INTEGRALS

ete calculation of the lowest-order bremsstrahlung cross section:The following integrals are required for the complete ca cu a ion o

p'* p' p' p'k' dQ3 =4mp
Lk p;k p;j m'

(A1)

- p'=
k2 dn,

k p'-
(A2)

p' fp*f. "
k' d03 =4m-p3 kp

k. p, Mm

,p'f.k' dQ p "k=4zp3 k'
M4

(A4)
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(p. .fp, f NP"—
+—

2(mme' P' f')-— (A16)
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=4~p k2p 1—
L(p~ —P~)'(P8+P~)')

where

4pa. k'(m'+p, "p))

m'(P'+P )'(P —P~)'
Lm'(P'+P~)'(P P—~)') (A17)

4p; p(pg k
A(p;, p,;p() =2pa k 1+

(P —P~)'(P' —P ~)'
(P,+P~)', (A18)

&(p,,p, ,pi) =1+2p, k 1—
4m'p3 k

(P —P ~)'(P*—P ~)'
(P'+P~)', (A19)

and

2pg k'
&(p, —pi) =p3 k+m'—

(P —P~)'

p(x) =p(x)/x=inLx+(x' —1)'")/(x' —1)'"

a(x) = Lp(x) —1)/x,

f P&+P2 P4 P~+Pi P& i

(A20)

(A21)

(A22)

(A23)

where p;, p, , p& are some permutation of p&, p2, p4 satisfying Kq. (A23).

APPENDIX B: SCALAR INTEGRALS

The following integrals are required for the calcula-
tion of the noninfrared part of the lowest-order brems-
strahlung cross section to Grst order in P. The results
given are not exact, as approximations to order P have
been made for all logarithms and. Spence functions
encountered. It is also assumed that m«P. p(pp fjMm)

dM2 ln(2a)+1, (86)

Lc(p~ P4/m')/P~ P4 c(P2 f/m—')/P2 f)
dM2

(M' —m')

P ln'(2a) —-'~')
(85)

P2

M max~

Mmax~

dM2
P3 k-P2' f'

M2

dM2
p, .k 2Dn(2a) —1),

M4

(81)

(82)

MrnaX

P2

Lu(P2 f/Mm) u(P2 f/m'))—
dM2

(M' —m')

~ —-', Dn'(2N)+~'/3), (87)

m'

ln(M' jm')
dM ~—ln (2~)+'n'—

(M' —m')

[p(m'+p~ k)/Mm)(p k/M' —1)

(83) „I
dM'

(m'+Pg k)

I (p~ P4/m')
dM' ln'(2K),

Pl'P4

where

—-', ln'(2g) —-',m', (88)

~=P, f/m'.


