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Reggeized U(6) X U(6) X O(3) and Absorptive Correction Cuts for
0--', + ~ 0--', + Charge-Exchange Reactions*
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Reggeized U(6) XU(6}XO(3} with absorptive corrections is applied to some 0 $+-+ 0 $+ charge-ex-
change processes. The differential cross sections for ~ p ~ m n and m p —+ rt n are used to 6x the parameters
of the p and A& trajectories, respectively. With these parameters, an absolute prediction is made for the
process E p ~E n. The agreement with experiment is good. The polarization parameter P(t} and the
%'olfenstein parameters A (t) and E(t} are also presented.

1. INTRODUCTION
'
PREVIOUS authors have shown that the differential

cross-section data on high-energy two-body meson-
baryon scattering in the peripheral region can be fitted
by the exchange of a few Regge poles in the t channel.
However, it is believed that the structure in the
angular momentum plane is not limited simply to poles.
In particular, there must also be cuts present. A simple
way of introducing Regge cuts is by applying absorp-
tive corrections to the pole amplitudes. We use Regge-
ized U(6) X U(6) XO(3) to provide significant con-
straints among the Regge residues.

In Sec. 2 we present the general formalism of 0 ~+ -+
0 ~+ reactions in terms of the t-channel M-functions
and the s-channel helicity amplitudes and give an out-
line of the derivation of the Reggeized supermultiplet
amplitudes. The model and its connection with ordinary
Regge pole theory and the U(6,6) absorptive peripheral
model are presented in Sec. 3. In Sec. 4 we indicate our
parametrization of the elastic scattering data and
present a table of the parameters used. The nonlinear
parametrization of the trajectory function is given in
Sec. 5. We conclude in Sec. 6 with a brief discussion of
the results of the model as applied to the reactions:

~—p~s'g, ~—
p —+|700, E p~K"n.

2. FORMALISM

For reactions of the type 0 ~+~ 0 2+ we can write
the M-function' as

where A and 8 are the invariant amplitudes and Q is half
the sum of the initial and final meson four-momenta.
It is often more convenient to work in terms of the
invariant amplitudes A' and 8, where

El b+3/4ml2'=3+ 8,
1 t/4mP—
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where E&,b is the laboratory energy of the incoming
meson, t is the four-momentum transfer, and m1 is the
mass of the target nucleon.

The independent s-channel helicity amplitudes are
then given by

P++——(1/4xm) cos-', 8 Lm~A+ (E~w —m|2)87,

p+ ——(1/4~) sin~8 (EzA jmz(w Ea)87, —
where 8 is the s-channel center-of-mass scattering angle
and w is the center-of-mass energy.

The helicity-nonflip and helicity-flip amplitudes can
be decomposed in the helicity representation of Jacob
and Wick' to give

P++(s, f)=P (2J+1)T++s(s)di~s(8),

|P+ (s,t)=P (2J+1)T~s(s)d „s(8),

where

dyes(8) = LP~+q(cos8)+P~(cos8)7/[2(1+cos8)7"'
mls (8) =

I P&+&(cos8)—P&(cos8)7/I 2 (1—cos8)7"',

with J=l+—,'.
The application of absorptive corrections to the

Regge pole amplitudes p++ and p+ produces the
modified helicity amplitudes p'++ and p'+ . In terms
of these modified helicity amplitudes, the differential
cross section, the polarization parameter P(t), and the
Wolfenstein parameters' A(t) and R(t) can be written

d~/d&= (~/v') (I4'++ I'+ l0' I'),
P(~)=» (e' ~' *)/(lm' I'+l~' I'),
A (i) = —2 ReLy' +y'+ *7/(I4' I'P I4' I'),
&(&)= (le'~I' —le'~ I')/(I@'++ I'+ le'+-I'),

where II is the center-of-mass three-momentum.
Following Ref. 4, we adopt the U(6)X U(6)XO(3)

classification scheme which is well satisfied by the
known meson and baryon resonances. For meson-

' M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
f' L. Kolfenstein, Ann. Rev. Nucl. Sci. 6, 43 (1956).'R. Delbourgo, A. Salam, and J. Strathdee, Phys. Rev. 1?9,

1487 (1968); 172, 1727 (1968); 1Si, 1999 (1969).'Q. Shafi, Nuovo Cimento 62, 290 (1969}; J. Sultoon, J.
Phys. (to be published).
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baryon scattering, which goes by the exchange of
excitation numbering, the relevant effective Lagrangians
for the two U(6) XO(2) invariant 3-point couplings are

(a) meson-meson-meson supermultiplet vertex:

(6,6;0), , —(6,6;0), , -(6,6;.'i') „,
&(.&

=& ' 'c~-'(2P+q')C c'(2P q')—

X ho' '~a~'~L'+ho' 'p 'q'a q'a'

8 8
+&h, (+) ~ ~ -+~ -~

~fI c

8 8
+p,&&' ' ~a~ —~D C'(~)—

8g g Bg g

(b) baryon-baryon-meson supermultiplet vertex:

(36,1;0)-:~e—(56 1 0):~.—(6 6' &~)~

& &b&
= m u" & (-,'p+q)N~»cD& ( 2p+—q)

X (go~A +mgl~/~qB )@(N&(P&q) s

where m and p are the masses associated with the
(56,1;0) and (6,6; 0) multiplets, respectively. For
0—

—,'+ ~ 0-~+ charge-exchange scattering, the go and ho

couplings do not contribute.
The following decompositions for the U(6,6) fields

are used:

+(ABC& (p) (yl"'y2Ã&

= (1/6@2m)([(p+m)pbC)»e bdkv 7 („,
+cyclic perm),

~~'(u, -.N&(P) = (I/2~»)((P+& )»P(., -.x&)~'.

The covariant T matrix is

TjIB {a)~(b) )

and the fully contracted propagator for the meson
supermultiplet is

~t~&=(@&N&(P q)@&»(-P q'))
= $1/(f M'—)](tl tI )"+''

where M is the mass associated with the exchange.
To Reggeize the amplitude, we extract phase factors

(i~e ' ~) from h'+' and make the replacement

lV~e —1,
M' +sin—&r (n ——1)= —&r/LF (n) F (1—n) j.

The Bell-Mann ghost-eliminating mechanism is intro-
duced by dividing by F(n) In the h. igh-energy limit,
we obtain

T= (1+35/2&b) (1+2m/&V)

X L
—(,* m/2m) (s/2m& ) (E-jt—),

—(s/2m&b) (Ã1V) D+&b
—'(1—t/4m') (EQ LV) D+, b, ,j

X[jjl F(1—a )(1—e ' -)(s/2m&b)~='(PP)~

+p+I'(1 a+) (1+e '~~+) (s—/2m&b) ~+ &(PP)s&j,

where the + and —refer to the even- and odd-signature
trajectories respectively. "Gribov doubling" is used to
remove the M=Qt kinematic singularity. Hence, we
have

B=&b '(1+m/&b)(1 t/—4m')g»+. b;b

Xt'p hbF(1 —n )(1—e-*'"-)(s/2m&b) ='
+p+hDI'(1 n—+)(1+e ' +)(s/2 m&b) + 'j

and

A'= (1+t/4m&b)gb Lp hbF(1 n)(—1—e ' -)(s/2m&b)—

+P~h»F(1 —a+) (1+e—' ') (s/2m&b)

where the g's and h's are baryon-baryon-meson and
meson-meson-meson couplings, respectively.

Pair-mise equal-mass kinematics are assumed in this
derivation.

3. MODEL

In recent years the simple Regge pole approach to
peripheral high-energy inelastic reactions has enjoyed
some success. ' However, there are some features which
cannot be explained without the addition of ad ho@

assumptions, ' notably,

(1) In reactions where only one Regge pole can be
exchanged, the polarization is predicted to be identically
zero. s For ~ p —+m'n, only one known pole can be
exchanged, namely, the p. However, recent experi-
mental data' at high energy show that there is a posi-
tive polarization for small momentum transfers.

(2) In reactions where the &r can be exchanged, the
data indicate a strong forward peak of width tn '.
Previously, this has been explained bp complicated
conspiracy relations. However, recently it has been
shown by Le Bellac'" that conspiracies predict dips in
the forward direction for reactions such as

x.1' ~ PA, Ei& —b E*A, &r.&&' —b f"D.

These dips are not observed experimentally.
The U(6,6) peripheral absorption model has been

successful in explaining two-body and pseudo-two-body
production processes which go through 0 exchange. "

See, e.g. , review article by L. Bertocchi, in Proceedings of the
International Conference on I''lementary Particles, Ijeidelberg, 1967,
edited by H. Filthuth (North-Holland Publishing Co., Amster-
dam, 1968), p. 197.

' Some of the problems associated with the simple Regge pole
approach are discussed by R. C. Arnold, Argonne National
Laboratory, Report No. ANL/HEP 6804 (1968).

'A formulation of the Regge amplitudes in the Khuri-Kretz-
schmar framework leads to nonzero polarization for the exchange
of a single Regge pole. See Meng Ta-Chung, H. G. Schlaile; and
R. Strauss, Nucl. Phys. B?, 133 (1968).' P. Bonamy, P. Boregeaud, C. Bruneton, P. Falk-Vairant, O.
Guisan, P. Sonderegger, C. Caverzasio, J. Guilland, J. Schneider,
M. %vert, I. Mannelli, F. Sergiampietri, and L. Vincelli, Phys.
Letters 23, 501 {1966).

"M. Le Bellac, Phys. Letters 258, 524 (1967)."H. D. D. %'atson, J. H. R. Migneron, K. Moriarty, D.
Fincham, and A. P. Hunt, Nuovo Cimento 62, 127 (1969);D. G.
Fincham, A. P. Hunt, J. H. R. Migneron, and K. Moriarty,
Nucl. Phys. B13, 161 (1969).
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t~)
FIG. 1. Pole + cut diagram.

tcj

However, for nonzero spin exchange, "both the energy
and momentum transfer dependence of the model are
in disagreement with experiment. Now, the exchange
of high spin is just the area in which simple Regge-pole
approaches have been successful. ' It is well known that
for small momentum transfers an elementary and a
Reggeized pion exchange give essentially the same
results. Thus, a Reggized higher-symmetry scheme
would give all the good results of the U(6,6) peripheral
absorption model of evasive 0 exchange, but with im-

proved results for higher-spin exchange. Such a scheme
has been developed. 4

By using U(6,6) symmetry" in the ordinary absorp-
tion model, we were able to fix uniquely the Born
diagrams involving the exchange of the 35 mesons for
35X56 or 56)&56 scattering and 56 baryons for 35X56
scattering. Similarly, by using Reggeized supermultiplet
theory we are able to 6x most of the parameters for
the Born diagrams for 35X56 and 56X56 scattering.
A few parameters remain which cannot be determined
by the theory, namely, the trajectory function n(t) and
the residue p(t) associated with each trajectory. The
power of the Reggeized supermultiplet theory lies in the
fact that once these parameters have been determined
for, say, the p trajectory by a fit to the data for, say,
m p~ x'n, the p trajectory is then 6xed for all the
above mentioned processes. However, the problems of
the simple Regge-pole approach' remain.

TABLE I. Absorption coefficients.

Now, it has been shown by a number of authors7 '4

that these difhculties can be overcome by absorptive
corrections to the Reggeized Born diagram. In this paper
we use a Reggeized supermultiplet theory' to reduce
the number of free parameters, and absorptive correc-
tions to avoid ad A,ot." additions to simple Regge pole
theory.

We now describe in general the procedure for cal-
culating Regge cuts which have been parametrized as
absorptive corrections to the two-body scattering
amplitude. We make a partial-wave analysis of the
s-channel helicity amplitudes @q„(s,t). If tr and P denote
the difference of helicities in the 6nal and initial states,
respectively. , the partial-wave expansion is

and the partial-wave amplitudes are given by

+1

Tg„(s)=- yg„(s,t)d, s (e)d(cose) .
2 -1

The modiied production amplitude is approximated
bv the traditional Watson formula"

T xp s 2 (5xv Tx's +Tax' ~A' )

where T'~(s) is the pole partial-wave amplitude modi-
Ged bv absorptive corrections, S" is the 5-matrix

Channel Plsb v 1 (Geg ') c1 c2 TABLE II. Parameters of the p and A2 trajectories.

5.9
9.8

11.2
13.3
18.2
5.0
7.1
9.5

12.3

0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26

0.79
0.74
0.73
0.72
0.71
0.74
0.70
0.67
0.65

0.111
0,087
0.084
0.079
0.067

Clp

Trajectory

(GeV/c)~
p (GeV/c) '
No. of data points
X

—0.871
1.415
0.632
1.953

86
554.7

—0.936
1.420
0.607
3.300

50
127.4

~ D. G. E'incham J, H. R. Migneron, and K. J. Moriarty,
Nuovo Cimeuto 57Jt, 588 (1968); F. D. Gsuit, B. J. Hsrtiey,
J. H. R, Migneron, and K. J. M. Moriarty, Nuovo Cimento 62,
269 (1969), and references therein.

"A. Salam, R. Delbourgo and J. Strathdee, Proc. Roy. Soc.
A284, 146 (1965); M, A. Beg and A. Pais, Phys. Rev. Letters 14,
267 (1965); B. Sakita and K. C. Wali, ibid. 14, 404 (1965); B.
Sakita and K. C. Wali, Phys. Rev. 139, B1355 {1965).

'4 R. C. Arnold, Phys. Rev. 140B, 1022 (1965);R. C. Arnold and
M. L. Blackmon, ibid. 1?6, 2082 {1968);M. I. Blackmon and
G. R. Goldstein, ibid 1?9, 1480 (1969); F. S. Henyey, G. L.
Kane, J. Pumplin, and M. Ross Phys. Rev. Letters 21, 946
(1968); F. Schrempp, Nuci. Phys. S6, 487 (1968);J.N. J. White,
Phys. Letters 27$, 92 (1968); M. L. Blackmon, Phys. Rev. 178,
2385 (1969); M. L. Blackmon, G. Kramer, and K. Schilling,
ibid. 183, 1452 (1969).

» H. H. D. Watson, Phys. Letters 17, 72 (1965);H. D. D. Wat-
son, Ph.D. thesis, Imperial College, London, 1965 (unpublished).
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Fzo. 2. Plot of n(t} against t for
the p trajectory (— ) and the
A & trajectory (————). Parameters
from Table II.
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element for elastic scattering, and T~ is the pole where p is the phase-space factor, we obtain
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F FIG. 3. Contributions from pole
(———-},cut (—.—), and pole+cut
( ) to the difFerential cross sec-
tion for ~ p ~ x'n. Data from A. V.
Stirling, P. Sondregger, J. Kirz, P.
Falk-Vairant, 0. Guisain, C. Brune-
ton, P. Borgeaud, M. Yvert, J. P.
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lard, Phys. Rev. Letters 14, 763
(1965); Phys. Letters 20, 75 (1966);
M. A. %ahlig and I. Mannelli, Phys.
Rev. 168, 155 (1968).
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I »I ~ 00 ' ' rThis is shove diagrammatically in 'g.in Fi . I., vrhere the
first term corresponds to (a), the second term to b,
and the third term to (c). If we assume that the elastic

h
'

the 6nal state as in the initialscattering is the same in e
state, and that it is pure nonQip, we have

(s)=~~» (s)+»pT»" (s)~i (s).

Having ca cu a el l t d the partial-wave amplitu es
Pq»s(s), we resum the partial-wave expansion to o-
tain the modified helicity amplitudes

p ~Tt h ot II.1 Gcv/e

.50

0

2 0.00
qV), »(s,t) =g (27+1)T'i„(s)d.s (8).

J'

The amplitudes g'&,»(s, t) are to be compared with
experiment.

IO
- .50-

&4h

0
IO

1.501. 00
-

I .OU
0.00

S.9 Gcv/c

Fro. 5. Contributions from po el ———— cut {——} and
pole+cut { , t the polarization for ~ p —+ x n. Data romo e
Ref. 9.
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~ S.9 Gcv/clob

Pleb 411&1 Gcv/c
«In 10
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E
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bg
10

.50
13.3 Gcv/e

IK

0
CL

I8.1 G@v/c

-3
IO

—.50-4
IO

I.50I.00
-I ~ 00

0.00 .50
t [(G V/e)']

-S
10 0.00 I.50I. 00.50

- t [(G0V/c)1]

Fro. 6. Polarization for ~ p~x n at 5.9 ( )
and 11.2 GeV//c (- ——-}.Data from Ref. 9.

FIG. 4. Differential cross section for x p ~ x e.
Data from A. V. Stirling eE al. (see Ref. 3}.
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I.00 tion, "we And that

a .5o
I

7l lt at l3.3 QaVlc

Using the optical theorem, we 6nd cq from

cy= P 0'goy/21I2

and v is determined from the observed exponential slope
of (d~/a' t),&,,&;, Th.e quantity c2 is given by the relation

Re@++(l= 0)/Img++ (t = 0) = —c2/c~.

II.50 I. 00
- t flGaVic)']

Ffc. 7. A {t}for ~ p ~ x n: pole (- ——-), cut (——),
and pole+cut ( ).

"5 oo I.50

4. ELASTIC SCATTERING

We employ a complex Gaussian form .of r the nonAip
elastic scattering amplitude

.'i++~ ——1—(cq+gc )e & +'&~"'&',

The ratio of the real part to the imaginary part of the
amp ituamplitude at 3=0 for vr P elastic scattering is taken
from Ref. 17.

Since there are no data on the ratio of real to imagi-
nary parts of the X p elastic scattering amplitude, we
take c2=0, i.e., a purely real Gaussian. The absorption
coeKcients are shown in Table I.

Since there are no data for the hnal-state elastic
scattering, we assume that they are the same as in t e

a
Io

where v is the radius of the interaction, and c~ and c2

are related to the opacity of the target particle. We set
S+ ~=0, since the elastic scattering is dominated for

ampl' d Using the impact-parameter representa-

10

Tl p ~tl n at l3 ~ 3 GcV/c

I.00

I

I

l

I

.50 l

p ~ m4g at 13, 3 GcV/c

g IO
gl
E

cv

C
0v
C' IO

g

IO

R 0.00-

.50 I.00 I.50

-.50

-t [(O Via) ]
FIG. 9. Contnbutions from pole (- ———), cut (——.), an

ole+cut ( ) to the di6erential cross section for ~ p ~ rI'n.po e cu
The theoretical curve has been multiplied yb ~ the branching ratio
(q ~ 2y). Data from O. Guisan, J. Kirz, P. Sonderegger, A.
Stirling, P. Borgeaud, C. Bruneton, and P. Falk-Vairant, Ph&s.
1 etters 18, 200 (1965}.

- I ~ 00
0.00 .50 I.00

"t I(GIV/c) ]
FIG. 8. E(t) for ~ p ~ x n: pole (- ——-), cut {——),

and pole+cut ( ).

I ~ 50
"P. T. Matthews, Brandeis Summer School Report, o.ol. l.

1963, (unpublished).
ables"S J I. d baum in Proceedings of the Third Coral Ga esin en

Conference on Symmetry Principles at Hzgh Energy, e i y
Kursunoglu, A. Perlmutter, and I. Sakmar (W. M. Freeman and
Co., San Francisco, 1966).
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initial state. In any case, it would be surprising if the
parameters were radically diferent.

l.00 ~ ~ I I

S. TRAJECTORY

There are indications both from potential scattering
and from perturbation theory that the Regge trajectory
n(t) is nonlinear, at least in the scattering region.

It is known" that for scattering from "reasonable"
potentials, e.g. , a Yukawa potential, the resultant
Regge trajectory n(t) is such that

where E is a positive integer. The leading trajectory
behaves as

n(t) -+ —f. as

.50

X0
I

~ 0.00

0
IL

T% p ~ g» h ot IS.3 G»Vic

-I
10

—.50

TT P ~'tI h

2
10

I 00 50 I.00 I.50

2
10

-2
10

E
LJ

CV

C'
.9

10
Ql

X
b)~

10

- C [~Vip']

FIG. 11.Polarization for m p ~ g n: pole (-———),
cut (—.—.), and pole+cut ( ).

In Chap. 12 of Ref. 18 the typical highly nonlinear
variation of n(t) is shown for various trajectories.

In the relativistic domain, perturbation theory"
shows that the typical trajectory obtained by summing
Feynman diagrams is of the form

where K„(t)~ 0 as t~ —~. Again for the leading
trajectory n(t) -+ —1 as t —+ —~.

1.00

4
10

/
, /

A .50

7% p ~g»% et IS.S Gcv/c

-5
IO 0.00 .50

-I [IG»vic12]

1.00 1. 50 0.00
0.00 ~ 50 1.00 1.50

Fro. 10.DifFerential cross section for ~ p ~ g'n. The theoretical
curve has been multiplied by the branching ratio (y —+2p).
Data from Guisan et al. (see Ref. 9).

'8 R. G. newton, The Co&nplex j-P/ane, ' Complex Angular
Momentum in Non-Relativisti Quantum Theory (W. A. Benjamin,
Inc. , ¹wYork, 1964).

-I IO. Vic)2)

Fro. 12. A(t) for x P ~ q'n: pole (——--), cut (——),
and pole+cut ( ).

» R,. J. Eden, P. V. LandshofF, D. I. Olive, and J. C. Polking-
horne, The A nalytic 5-Matrix (Cambridge University Press,
New York, 1966).
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Owen et a$.~"have recently carried ou
calculation in which the

out an interesting
ic t ey fitted the parametric form

da jdi~s""' '

to the x p elastic scatterin data frg
ar region, and found that o. t te
tl

In view of these facts, we have p
negative by the relation

a()) =no+uie"'

Ke see that this gives

a(/) -+ ao as

as suggested above. In the eri her
~

p 'p gio

Since for the odd-si-signature trajectorv this is a wrong

, using t e ell-Mann
obtain a zero in th 8

ann mechanism we
in p amplitudes for thein e ip and novi

a is point. For the
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e amp itudes.

&. DISCUSSION AND RESUI.SULTS

For mass-splitting in U 6( )XU(6)XO(3), we took

g he 0 nonet, ande c', the avera e of t
c, t e average of the -', + octet.

l
IO

& p ~K 1L at 9.5 Gev/c

K(/)—(Go+&1)+ (ct1Q'2)l )

which colorresponds to the standard linear
ti f th R -" t te rajectory.

From Table II we see that in t " ' '
ne a in the scattering region

Io(&) I
&~.

Thus the onlnly nonsense point which occurs is

n(t) =0.
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4t
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I.OO IO
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p ~g IL at l3.3 GcV(c

~ 50

3
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R 0.00-
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0. 00 I.50~ 50 I. 00
- t [(Gcv/c) ]

Fro. 14. Contributitions from pole {-———
) to the different' Icu ren ia cross section for E X'

rye . 8 autti, G. Finocchi
, D. W b d 1 C. H West, P. Zanell

obbi, M. Pepin, and E. Pobbi . ', . olgar, Phys. Letters 23

-.50

There is an abundance of ex crimep en a ata on the
e reactions:

- I.00 '

0.00 .50 I.00 I.50

(Scv(c)2 j

FIG. 18.R(t) for~ p —+g'n: pole (- ———(- ———), cut (——)
cut ).
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function n(t) for each of these trajectories from a x'
fit of the pole+cut prediction to the experimental
diQ'erential cross-section data, and then predict the
experimental results for the reaction Z p ~E'n, which

proceeds via both p- and A2- trajectory exchange.
Parametrizing the trajectories as discussed in Sec. 5

and taking the residues to be constants, we have four
free parameters for each trajectory. We fitted these
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FIG. 15. Differential cross section for K—
p ~K'n.

Data from P. Astbury et al. (see Ref. 14).

using MrNUrr (CERN Program Library No: D506).
We took the branching ratio g' —+ 2y to be 0.381. The
results of this minimization procedure are shown in
Table II.

It is generally accepted that for those trajectories
where several resonances are known, the trajectory for
positive t is linear. Since our trajectory parameters
were determined from the scattering data, that is, t
negative, we feel that it is a reasonable procedure to

represent n(t) for t positive by extrapolating the tangent
at t=0. A Chew-Frautschi plot is presented in Fig. 2.
The expected position of the p-Regge recurrence, the

g meson (3 ), is also indicated. The p and A 2 trajectories
thus determined pass surprisingly close to the physical
p and A2 mesons. We note that, although no such
constraint was imposed in the data fitting, the p and
A2 trajectories are almost exchange degenerate.

Consider first the reaction ~ p~ vr'n In Fig.. 3 we
show the contributions to the momentum transfer
distributions from the pole, the cut, and the pole+cut.
We see that the cut has the effect of producing the
"turnover" nea, r the forward direction, and filling in
the nonsense zero caused by the wrong-signature point
n(t) =0, and moving the minimuin in to form the dip
near t~ 0 6(GeV/—c)'..

Figure 4 illustrates the energy dependence of the
momentum-transfer distribution. The decrease in nor-
malization of the experimental data with increasing
energy and the t dependence are very well represented.

Having fixed the parameters from the data on the
diGerential cross section, we predicted the polarization
for this reaction. In Fig. 5 we show the contributions
from the pole, the cut, and the pole+cut. The polariza-
tion from the pole alone is, of course, identically zero.
In Fig. 6 we show the energy variation of the polariza-
tion. We note that the predicted polarization has the
correct features, namely, it is positive for small t, of
about the correct magnitude, and decreases with in-
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t.o t.he reactions

PP ~ tlH P'Pl ~ 1lP,

which are dominated by 7r exchange at small momentum
transfers"" The results will be published shortly.

~' J. H. R. Migneron and K. Moriarty, Phys. Rev. Letters 18,
978 (1967).

~ B. J. Hartley, J. D. Jenkins, R. W. Moore, and K. J. M.
Moriarty (to be published).
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Lagrangian Foi~s of the Dynamical Theory of Currents*
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Simple Lagrangian formulations of Sugawara models are given, which directly exhibit the "gauge-com-
ponent" nature of the currents. It is also shown that there is no corresponding theory for tensor currents.

I. INTRODUCTION

HE dynamical theory of currents' bypasses the
usual Lagrangian mechanism of local field theory

in favor of a framework involving the physical currents
directly. The dynamics governing the currents j& is
determined by the stress tensor T&" as a function of j&

and by the equal-time commutation relations (ETC)
among the j&. Thus, only the Heisenberg equations B„j
—=~Tj,fT'„d'r] are assigned, with no corresponding
Euler-Lagrange equations, which is why the ETC must
be separately given. Consistency is no longer checked
between Heisenberg and Lagrange equations, but rather
between the ETC and the Poincare algebra require-
ments on T&". For example, the Schwinger terms in

Ljo,j,j ETC give rise to the required T '8;b(r) terms in

the $T",T"j ETC.
This attractive scheme has been exhaustively ana-

lyzed for stress tensors quadratic' in currents carrying
SU„XSU„symmetry; it has been shown to be a
particular limit of the corresponding massive Yang-
Mills field theories' and also to be equivalent to a
Lagrangian theory of spin-zero fields, 4 ' which furnish
representations of the algebra. In Sec. II, we shall give
directly a transparent I.agrangian form in terms of the

~ KVork supported in part by the U. S. Air Force, OAR, under
OSR Grant No. 368-67.

' H. Sugawara, Phys. Rev. 170, 1659 (1968);C. M. Sommerheld,
ibid. 176, 2019 (1968).' For discussion of more general T&", see S. Deser and J. Rawls,
following paper, Phys. Rev. 187, 1935 (1969).' K. Bardakci, Y. Frishman, and M. B. Halpern, Phys. Rev.
170, 1353 {1968).' K. Bardakci and M. B.Halpern, Phys. Rev. 182, 1542 {1968).' S. Coleman, D. Gross, and R. Jackiw, Phys. Rev. 180, 1355
{1969).

currents themselves, which illuminates the basis for the
earlier derivations and the close relation between the
currents and the gauge or "longitudinal" parts of
massive Yang-Mills fields.

Section III deals with possible generalization to
higher-spin currents: In view of the close relation of
vector currents to gauge components, it might be
thought that symmetric tensor currents would corre-
spond to gauge parts of that massive spin-2 field, and,

by appropriate extension, of the full gravitational field.
However, we show that for a variety of reasons there is

no (nontrivial) "dynamical theory of tensor currents. "

II. LAGRANGIAN FORM OF SUGAWARA THEORY

AVe exhibit a particularly simple Lagrangian form of
the Sugawara model, which preserves the form of T&".

The resulting Euler-Lagrange equations will be the same
as the Heisenberg equations in the Sugawara theory,
while the current ETC will follow from the canonical
commutation relations dictated by the action principle.

Consider first, for simplicity, the Abelian case of a
single current V&, with

T~"= V~V"——,'q~" V.V,
where, as throughout, all required symmetrization is
understood, and the usual over-all constant C is set to
unity. This stress tensor is the variation of an "action"

Ig —
2 d'x( g)'"g""V V———


