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Reggeized U (6) XU (6) XO(3) with absorptive corrections is applied to some 0~3*— 0~}* charge-ex-
change processes. The differential cross sections for #~p — 7% and #~p — 7% are used to fix the parameters
of the p and A4, trajectories, respectively. With these parameters, an absolute prediction is made for the
process K—p — K. The agreement with experiment is good. The polarization parameter P(f) and the
Wolfenstein parameters 4 (f) and R(f) are also presented.

1. INTRODUCTION

REVIOUS authors have shown that the differential
cross-section data on high-energy two-body meson-
baryon scattering in the peripheral region can be fitted
by the exchange of a few Regge poles in the ¢ channel.
However, it is believed that the structure in the
angular momentum plane is not limited simply to poles.
In particular, there must also be cuts present. A simple
way of introducing Regge cuts is by applying absorp-
tive corrections to the pole amplitudes. We use Regge-
ized U(6)XU(6)XO0(3) to provide significant con-
straints among the Regge residues.

In Sec. 2 we present the general formalism of 03+ —
0—3+ reactions in terms of the i{-channel M -functions
and the s-channel helicity amplitudes and give an out-
line of the derivation of the Reggeized supermultiplet
amplitudes. The model and its connection with ordinary
Regge pole theory and the U(6,6) absorptive peripheral
model are presented in Sec. 3. In Sec. 4 we indicate our
parametrization of the elastic scattering data and
present a table of the parameters used. The nonlinear
parametrization of the trajectory function is given in
Sec. 5. We conclude in Sec. 6 with a brief discussion of
the results of the model as applied to the reactions:

mp—an, mp—nn, K p— Kon.
2. FORMALISM

For reactions of the type 0~3+— 0—3+ we can write
the M-function! as
M=A+0QB,

where 4 and B are the invariant amplitudes and Q is half
the sum of the initial and final meson four-momenta.
It is often more convenient to work in terms of the
invariant amplitudes 4’ and B, where

Eyap+t/4m,y
—— B
1 —t/4m12

A=A+
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! See any standard textbook, e.g., R. J. Eden, High Energy
Collisions of Elementary Particles (Cambridge University Press,
New York, 1967).
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where Ei is the laboratory energy of the incoming
meson, ¢ is the four-momentum transfer, and m, is the
mass of the target nucleon.

The independent s-channel helicity amplitudes are
then given by

¢+= (1/4mw) cosyb [mid+ (Exw—m2)B],
¢y = (1/47w) sink [ErA+mi(w— Ey)B],

where 0 is the s-channel center-of-mass scattering angle
and w is the center-of-mass energy.

The helicity-nonflip and helicity-flip amplitudes can
be decomposed in the helicity representation of Jacob
and Wick? to give

b4+ (5,2) =§ QI+DT7 (5)dy’ (6),

b+ (s,0) =§ I+)T 7 ()d-47 (6),
where

dy” (6) =[Pri1(cos8)+ Pi(cost) J/[2(14cosh) ]2,

d_337 (6) =[P11(cos8) — Py(cos8) /[ 2(1—cosh) ]V/2,
with J=1[+41.

The application of absorptive corrections to the
Regge pole amplitudes ¢,; and ¢,_ produces the
modified helicity amplitudes ¢, and ¢’,_. In terms
of these modified helicity amplitudes, the differential
cross section, the polarization parameter P(f), and the
Wolfenstein parameters® 4(f) and R(f) can be written

do/dt=(r/¢*)(|¢'++ >+ |¢'1—]?),
PO)=21Im(¢' 119"/ (|¢"++ >+ ¢ —]2),
A)=—2Re[¢" 148"+ ¥/ (¢4 [*+ [0/ [?),
R(O)=(¢"++12= ¢4/ (| ¢/ s+ >+ |¢'-]2),
where ¢ is the center-of-mass three-momentum.

Following Ref. 4, we adopt the U(6)X U(6)X0(3)
classification scheme which is well satisfied by the
known meson and baryon resonances.® For meson-

*M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).

3 L. Wolfenstein, Ann. Rev. Nucl. Sci. 6, 43 (1956).

*R. Delbourgo, A. Salam, and J. Strathdee, Phys. Rev. 179,
1487 (1968); 172, 1727 (1968); 187, 1999 (1969).

Q. Shafi, Nuovo Cimento 62, 290 (1969); J. Sultoon, J.
Phys. (to be published).
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baryon scattering, which goes by the exchange of

excitation number N, the relevant effective Lagrangians

for the two U(6)X0(2) invariant 3-point couplings are
(a) meson-meson-meson supermultiplet vertex:

(676) O)QHQ’ - (6’6) 0)%?—‘1’ - (6,6, ‘\7)—17 ’
Ly =w" 042 (3p+¢)2cP(GP—¢)

X[ho(“)én% pA+he Tug ¢ ¢

l¢] a
4opt )
9’ AP q’c?

I¢] B a >:| ( )
—dp Py (—2, ¢);
aq/AD aqch b 3

(b) baryon-baryon-meson supermultiplet vertex:
(56,1; 0)—3ptq— (56,15 0)3p14— (6,6; V),
Ly =m Y@ UD (3 p+q)upen) (—3p+9)

X (g64B+mg19/dg*)® ) (p,q)
where m and u are the masses associated with the
(56,1;0) and (6,6;0) multiplets, respectively. For
03+ — 03+ charge-exchange scattering, the go and ko
couplings do not contribute.

The following decompositions for the U(6,6) fields
are used:

+uh (+)<5Bc

+uh (_)<6BC

U(ABC) (P) (pyre B2N)
= (1/6\/?1}1/){[(p+m)')’5C:]a5€ap,,11\'c.,d(“l...“m)
—+cyclic perm},
D42 gy (0) = (1/2VZU)L (D) V5P gy } 4%

The covariant T matrix is
Tup=LwLw,

and the fully contracted propagator for the meson
supermultiplet is
A= @ (0,92 (=, 7))
=[1/(t—M*1(q-q)"*,
where M is the mass associated with the exchange.
To Reggeize the amplitude, we extract phase factors
(12=e**N) from ‘¥ and make the replacement
N—a—1,
{—M?—sinr(a—1)=—7/[T(@T(1—a)].
The Gell-Mann ghost-eliminating mechanism is intro-
duced by dividing by T'(e). In the high-energy limit,
we obtain
T=(+M/2u)(142m/M) B
X[—G—M/2m)(s/2mu) (NN) r
— (s/2mu) NN)p+p1(1—t/4m2) (NQ'N) py2r/3]
X[B-T(1—a-)(1—e i) (s/2mp)*"(PP)r
BT (1—ay) (1 7%) (s/ 2ms) -1 (PP) ],
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where the + and — refer to the even- and odd-signature
trajectories respectively. ‘“Gribov doubling” is used to
remove the M =4/t kinematic singularity. Hence, we
have

B=u'(14m/u)(1—t/4m*)gp 1253
X[B_hrT (1—a)(1—e~ ) (s/2mp) >
+B4hpT (1 —ay) (14-e™a*) (s/2mu) 2+ ]

and

A= (1+t/4mp)gr[B-hrT (1—a_) (1— e~ 2-) (s/ 2mp) *-
+BihpT (1—ay) (1+em o) (s/2mu) =+ ],

where the g’s and A’s are baryon-baryon-meson and
meson-meson-meson couplings, respectively.

Pair-wise equal-mass kinematics are assumed in this
derivation.

3. MODEL

In recent years the simple Regge pole approach to
peripheral high-energy inelastic reactions has enjoyed
some success.® However, there are some features which
cannot be explained without the addition of ad hoc
assumptions,’ notably,

(1) In reactions where only one Regge pole can be
exchanged, the polarization is predicted to be identically
zero.® For m~p— =1, only one known pole can be
exchanged, namely, the p. However, recent experi-
mental data® at high energy show that there is a posi-
tive polarization for small momentum transfers.

(2) In reactions where the = can be exchanged, the
data indicate a strong forward peak of width ~m.,”
Previously, this has been explained by complicated
conspiracy relations. However, recently it has been
shown by Le Bellac? that conspiracies predict dips in
the forward direction for reactions such as

N —pA, KN — K*A, nN— flA.

These dips are not observed experimentally.

The U(6,6) peripheral absorption model has been
successful in explaining two-body and pseudo-two-body
production processes which go through 0~ exchange.!

¢ See, e.g., review article by L. Bertocchi, in Proceedings of the
International Conference on Elementary Particles, Heidelberg, 1967,
edited by H. Filthuth (North-Holland Publishing Co., Amster-
dam, 1968), p. 197.

7 Some of the problems associated with the simple Regge pole
approach are discussed by R. C. Arnold, Argonne National
Laboratory, Report No. ANL/HEP 6804 (1968).

8 A formulation of the Regge amplitudes in the Khuri-Kretz-
schmar framework leads to nonzero polarization for the exchange
of a single Regge pole. See Meng Ta-Chung, H. G. Schlaile; and
R. Strauss, Nucl. Phys. B7, 133 (1968).

¢ P. Bonamy, P. Boregeaud, C. Bruneton, P. Falk-Vairant, O.
Guisan, P. Sonderegger, C. Caverzasio, J. Guilland, J. Schneider,
M. Yvert, I. Mannelli, F. Sergiampietri, and L. Vincelli, Phys.
Letters 23, 501 (1966).

10 M. Le Bellac, Phys. Letters 25B, 524 (1967).

1H., D. D. Watson, J. H. R. Migneron, K. Moriarty, D.
Fincham, and A. P. Hunt, Nuovo Cimento 62, 127 (1969); D. G.
Fincham, A. P. Hunt, J. H. R. Migneron, and K. Moriarty,
Nucl. Phys. B13, 161 (1969).
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0-3+—>0-1+

(b) (c)

FiG. 1. Pole 4 cut diagram.

However, for nonzero spin exchange,' both the energy
and momentum transfer dependence of the model are
in disagreement with experiment. Now, the exchange
of high spin is just the area in which simple Regge-pole
approaches have been successful.® It is well known that
for small momentum transfers an elementary and a
Reggeized pion exchange give essentially the same
results. Thus, a Reggized higher-symmetry scheme
would give all the good results of the U(6,6) peripheral
absorption model of evasive 0~ exchange, but with im-
proved results for higher-spin exchange. Such a scheme
has been developed.*

By using U(6,6) svmmetry'® in the ordinary absorp-
tion model, we were able to fix uniquely the Born
diagrams involving the exchange of the 35 mesons for
35X 56 or 56X 56 scattering and 56 baryons for 35X 56
scattering. Similarly, by using Reggeized supermultiplet
theory we are able to fix most of the parameters for
the Born diagrams for 35X 56 and 56X 56 scattering.
A few parameters remain which cannot be determined
by the theory, namely, the trajectory function «(¢) and
the residue B(f) associated with each trajectory. The
power of the Reggeized supermultiplet theory lies in the
fact that once these parameters have been determined
for, say, the p trajectory by a fit to the data for, say,
7~ p— 7', the p trajectory is then fixed for all the
above mentioned processes. However, the problems of
the simple Regge-pole approach’ remain.

TasLE I. Absorption coefficients.

Now, it has been shown by a number of authors”*
that these difficulties can be overcome by absorptive
corrections to the Reggeized Born diagram. In this paper
we use a Reggeized supermultiplet theory* to reduce
the number of free parameters, and absorptive correc-
tions to avoid ad hoc additions to simple Regge pole
theory.

We now describe in general the procedure for cal-
culating Regge cuts which have been parametrized as
absorptive corrections to the two-body scattering
amplitude. We make a partial-wave analysis of the
s-channel helicity amplitudes ¢x.(s,?). If @ and 8 denote
the difference of helicities in the final and initial states,
respectively, the partial-wave expansion is

bu(s,) =§ (27 +1)T7 (s)dag” (6)

and the partial-wave amplitudes are given by

+1

dru(5,0)dag” (0)d (cosh) .

-1

1
TMJ(S)=E

The modified production amplitude is approximated
by the traditional Watson formula!®

T’ =33 (S Taw? +Ton /Syt ,
v

where 777 (s) is the pole partial-wave amplitude modi-
fied by absorptive corrections, S°¥ is the S-matrix

Channel Dlab v (GeV-Y) a P TasLE II. Parameters of the p and 4, trajectories.
= 5.9 0.26 0.79 0.111 .

ik 98 0.26 0.74 0.087 Trajectory p As
11.2 0.26 0.73 0.084 — —
133 026 0.72 0.079 - WL Fwhes
18.2 0.26 0.71 0.067 as (GeV/o)2 0.632 0.607

K-p 5.0 0.26 0.74 B (GeV/e)t 1.953 3.300
7.1 0.26 0.70 No. of data points 86 50
9.5 0.26 0.67 x? 554.7 127.4
12.3 0.26 0.65

2D. G. Fincham, J. H. R. Migneron, and K. J. Moriarty,
Nuovo Cimento 57A, 588 (1968); F. D. Gault, B. J. Hartley,
J. H. R. Migneron, and K. J. M. Moriarty, Nuovo Cimento 62,
269 (1969), and references therein.

13 A. Salam, R. Delbourgo and J. Strathdee, Proc. Roy. Soc.
A284, 146 (1965); M. A. Bég and A. Pais, Phys. Rev. Letters 14,
267 (1965); B. Sakita and K. C. Wali, ibid. 14, 404 (1965); B.
Sakita and K. C. Wali, Phys. Rev. 139, B1355 (1965).

14 R. C. Arnold, Phys. Rev. 140B, 1022 (1965) ; R. C. Arnold and
M. L. Blackmon, #bid. 176, 2082 (1968); M. L. Blackmon and
G. R. Goldstein, ibid 179, 1480 (1969); F. S. Henyey, G. L.
Kane, J. Pumplin, and M. Ross, Phys. Rev. Letters 21, 946
(1968) ; F. Schrempp, Nucl. Phys. 36, 487 (1968); J. N. J. White,
Phys. Letters 27B, 92 (1968); M. L. Blackmon, Phys. Rev. 178,
2385 (1969); M. L. Blackmon, G. Kramer, and K. Schilling,
ibid. 183, 1452 (1969).

15 H. H. D. Watson, Phys. Letters 17, 72 (1965) ; H. D. D. Wat-
son, Ph.D. thesis, Imperial College, London, 1965 (unpublished).
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7.0 v T T v v v v v =

5.0 4 p

Real «(9 F16. 2. Plot of a(¢) against ¢ for
the p trajectory ( ) and the
A, trajectory (- — — -). Parameters
from Table II.
-2.0 L R 2 N . L L
-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
t [(Gev/er]
element for elastic scattering, and 77 is the pole where p is the phase-space factor, we obtain
partial-wave amplitude. Writing Tha’ (5)=Tx.? (5)4ip 3 [Tone (5) T (5)
)\I
Sel =14-2ipTe! + T (8) T (5)].
10 T v T T T v T T T T T T
i T"p — T°n at 13,3 GeVie ]

F Fic. 3. Contributions from pole
(----), cut (—-—), and pole+cut

3 ( ) to the differential cross sec-

do . tion for #~p — m%. Data from A. V.
dt 1 Stirling, P. Sondregger, J. Kirz, P.
[mb/lGevrc)2) Falk-Vairant, O. Guisain, C. Brune-

) ton, P. Borgeaud, M. Yvert, J. P.
Guillaud, C. Caverzasio, and B. Amb-
lard, Phys. Rev. Letters 14, 763
(1965); Phys. Letters 20, 75 (1966);
M. A. Wahlig and I. Mannelli, Phys.
Rev. 168, 155 (1968).
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This is shown diagrammatically in Fig. 1., where the
first term corresponds to (a), the second term to (b),
and the third term to (c). If we assume that the elastic
scattering is the same in the final state as in the initial
state, and that it is pure nonflip, we have

T')“J (S) = T)\“"(S)-i—z’l'pT)\)\eU (S) TMJ(S) .

Having calculated the partial-wave amplitudes
T',.7(s), we resum the partial-wave expansion to ob-
tain the modified helicity amplitudes

¢ (s,0) =>;. @T+D)T'\I (5)das” (6) -

The amplitudes ¢'y.(s,f) are to be compared with
experiment.

10 - r
L - 3
T p —=T°n 1
q
4
°
10 -
]
5.9 GeV/c
0
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1
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o] ¥
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£
o
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vlo .,

S

18.2 GeVic

-3
10

T
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———
Lias

-4
10 -

10 . e
0.00 .50 1.00

-t llGev/c)?)

1.50

F1c. 4. Differential cross section for = — x%.
Data from A. V. Stirling ef al. (see Ref. 3).
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F16. 5. Contributions from pole (----), cut (—-—-), and
pole+cut ( ) to the polarization for #~p — #%. Data from
Ref. 9.
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Fi16. 6. Polarization for #~p — % at 5.9 (:
and 11.2 GeV/¢ (- - --). Data from Ref. 9.
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0-99 %0 * .;o |.'oo 1.50
-t liGevic)?)
Fi6. 7. A(f) for x~p — nn: pole (----), cut (—:—-),
and pole+-cut ( ).

4. ELASTIC SCATTERING

We employ a complex Gaussian form for the nonflip
elastic scattering amplitude

ST =1—(c1t1c2)e I TV

where v is the radius of the interaction, and ¢; and ¢
are related to the opacity of the target particle. We set
S;.-7=0, since the elastic scattering is dominated for
small momentum transfer by the non-helicity-flip
amplitude. Using the impact-parameter representa-

1.00 R T ™ T T T T
\ TCTp —= T°n at 13,3 GeV/e

4

.50 -

1

R 0.00 1

-.50 4
- oo 1 1

0.00 .50 1.00 .50

-t [(Gevic)?]

F16. 8. R(t) for #=p — nn: pole (----), cut (—-—),
and pole+cut ( ).
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tion,!® we find that
&+ (5,) = ("% 20%) (ic1—cy) .
Using the optical theorem, we find ¢; from
c1= V20101 2

and v is determined from the observed exponential slope
of (do/dt)erastic- The quantity ¢, is given by the relation

Regy (1=0)/Img, (t=0)= —c2/c1.

The ratio of the real part to the imaginary part of the
amplitude at {=0 for =—p elastic scattering is taken
from Ref. 17.

Since there are no data on the ratio of real to imagi-
nary parts of the K—p elastic scattering amplitude, we
take ¢;=0, i.e., a purely real Gaussian. The absorption
coefficients are shown in Table I.

Since there are no data for the final-state elastic
scattering, we assume that they are the same as in the

]
Tp —=n’n at 13.3 GeVic 7]

Lav

o
n

X branching ratio(n*=2y) Cmb/(Gev/c)'1
=y

do
dt
|

»

s

=S
0.00 .50 t.00 1.50

-1 [ev1o?]

F16. 9. Contributions from pole (----), cut (—-—-), and
pole-+cut ( ) to the differential cross section for 7=p — n%n.
The theoretical curve has been multiplied by the branching ratio
(7" — 2y). Data from O. Guisan, J. Kirz, P. Sonderegger, A. V.
Stirling, P. Borgeaud, C. Bruneton, and P. Falk-Vairant, Phys.

Letters 18, 200 (1965).

16 P, T. Matthews, Brandeis Summer School Report, Vol. I.,
1963, (unpublished).

178§, J. Lindenbaum, in Proceedings of the Third Coral Gables
Conference on Symmetry Principles at High Energy, edited by B.
Kursunoglu, A. Perlmutter, and I. Sakmar (W. M. Freeman and
Co., San Francisco, 1966).
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initial state. In any case, it would be surprising if the
parameters were radically different.

5. TRAJECTORY

There are indications both from potential scattering
and from perturbation theory that the Regge trajectory
a(t) is nonlinear, at least in the scattering region.

It is known!® that for scattering from ‘“reasonable”
potentials, e.g., a Yukawa potential, the resultant
Regge trajectory a(f) is such that

a(t)—> —3IN—-1, asi— —«,
where V is a positive integer. The leading trajectory
behaves as

al) > —1 as (— — oo,

10 T T

* “‘p-v\"n

-2 9.8 GeV/c

13.3 GeVic

9 x branching ratio(r*2y) Cmbi(Gev/c)*)

18.2 GeV/c F

-3
10 A

0.00 .50 1.00 .50
-t [(GeVrc)?]

F16. 10. Differential cross section for #~p — 7%. The theoretical
curve has been multiplied by the branching ratio (40— 2v).
Data from Guisan et al. (see Ref. 9).

"R. G. Newton, The Complex j-Plane; Complex Angular
Momentum in Non-Relativistic Quantum Theory (W. A. Benjamin,
Inc., New York, 1964).

ABSORPTIVE CORRECTION CUTS

FOR 0-3+—0-3%+ 1927

1.00 —————————————————————

l T"p —n°n at 13.3 GeV/c

.50 -

POLARIZATION

-.s0 } .
—1-99 5% 50 700 50
-t [h‘vlt)’]

Fi1G. 11. Polarization for 7=p — 7% : pole (-—--),
cut (—-—-), and pole+-cut (

In Chap. 12 of Ref. 18 the typical highly nonlinear
variation of a(f) is shown for various trajectories.

In the relativistic domain, perturbation theory?*®
shows that the typical trajectory obtained by summing
Feynman diagrams is of the form

a)=—N+3 K. (),

n=1

where K ,(f)—> 0 as {— —o. Again for the leading
trajectory a(f) > —1ast— — .

1.00
// TN p —=2°N at 13.3 GeVic
A .50 L/ 4
4
4
o.oo A 1 " A A 1
0.00 .50 1.00 1.50

-t [evia?]

F1G. 12. A(#) for #~p — n°n: pole (----), cut (—-—-),
and pole+-cut ( ).

¥ R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polking-
horne, The Analytic S-Matrix (Cambridge University Press,
New York, 1966).
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Owen et al.?® have recently carried out an interesting
calculation in which they fitted the parametric form

do/dt~s2a (=2

to the =—p elastic scattering data from the forward to
the backward region, and found that «(f) tends to
approximately —1 as {— — .

In view of these facts, we have parametrized our
trajectory for f negative by the relation

a(t) =aotae*.
We see that this gives
[— —x

a(t) > ay as

as suggested above. In the peripheral region our tra-
jectory becomes

a(t)y~(avta)+ (et

which corresponds to the standard linear parametriza-
tion of the Regge trajectory.
From Table II we see that in the scattering region

la()|<1.
Thus the only nonsense point which occurs is
a(t)=0.
1.00 ————————— ——————
\‘ - ; 13.3 GeV/
\ TX"p =N R at 13.3 GeV/c

-1-9%.00 0 - 700 1.50
-t [Gevie)?]
Fic. 13. R(?) for #=p — n°n: pole (- - --), cut (—-—-),
and pole+cut ( ).

2D, P. Owen, F. C. Peterson, J. Orear, A. L. Read, D. G.
Ryan, D. H. White, A. Ashmore, C. J. S. Damerell, W. R. Frisken
and R. Rubenstein, Phys. Rev. 181, 1794 (1969).

?
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Since for the odd-signature trajectory this is a wrong-
signature point, using the Gell-Mann mechanism we
obtain a zero in the flip and nonflip amplitudes for the
pole graph at this point. For the even-signature tra-
jectory, this is a right-signature point, and no such
zero occurs in the amplitudes.

6. DISCUSSION AND RESULTS

For mass-splitting in U(6)X U(6)X0(3), we took
u=0.417 GeV/¢% the average of the 0~ nonet, and
m=1.150 GeV/c? the average of the 3+ octet.

10 T T

r K =K°n at 9.5 GeV/c 1

-
10

[we/ Gevia?]

-2

10 e
-3

10 4

: 3
-4

10 L 1
0.00 .50 1.00 1.50
-t [Gevia?]
F16. 14. Contributions from pole (----), cut (—-—-), and
pole+-cut ( ) to the differential cross section for K—p — K%.

Data from P. Astbury, G. Brautti, G. Finocchiaro, A. Michelini,
K. Terwilliger, D. Websdale, C. H. West, P. Zanella, W. Beusch,
W. Fisher, B. Gobbi, M. Pepin, and E. Polgar, Phys. Letters 23,
396 (1966).

There is an abundance of experimental data on the
charge-exchange reactions:

T p— 'n,
7~p— 1'% (1°— 2y mode),

at a sufficiently high energy for us to hope that in this
region the asymptotic Regge form is a good approxi-
mation to the two-body scattering amplitude. These
two reactions are important in that for each, only one
trajectory has the appropriate quantum numbers to
be exchanged, namely, the p and A, trajectories, re-
spectively. We fix the residue 8(f) and the trajectory
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function a(f) for each of these trajectories from a X2
fit of the pole+tcut prediction to the experimental
differential cross-section data, and then predict the
experimental results for the reaction K—p — Ko, which
proceeds via both p- and A .- trajectory exchange.
Parametrizing the trajectories as discussed in Sec. 5
and taking the residues to be constants, we have four
free parameters for each trajectory. We fitted these

K p~=Kn
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F1c. 15. Differential cross section for K—p — K.
Data from P. Astbury et al. (see Ref. 14).

using MINUIT (CERN Program Library No: D506).
We took the branching ratio n°— 2y to be 0.381. The
results of this minimization procedure are shown in
Table II.

It is generally accepted that for those trajectories
where several resonances are known, the trajectory for
positive ¢ is linear. Since our trajectory parameters
were determined from the scattering data, that is, ¢
negative, we feel that it is a reasonable procedure to
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F1G. 16. Polarization for K—p — K% : pole (----),
cut (—-—-), and pole+-cut ( ).

represent a(#) for ¢ positive by extrapolating the tangent
at t=0. A Chew-Frautschi plot is presented in Fig. 2.
The expected position of the p-Regge recurrence, the
gmeson (37), is also indicated. The p and A4, trajectories
thus determined pass surprisingly close to the physical
p and A. mesons. We note that, although no such
constraint was imposed in the data fitting, the p and
A, trajectories are almost exchange degenerate.

Consider first the reaction #~p— #%. In Fig. 3 we
show the contributions to the momentum transfer
distributions from the pole, the cut, and the pole+cut.
We see that the cut has the effect of producing the
“turnover” near the forward direction, and filling in
the nonsense zero caused by the wrong-signature point
a(/)=0, and moving the minimum in to form the dip
near i~—0.6 (GeV/c)2

Figure 4 illustrates the energy dependence of the
momentum-transfer distribution. The decrease in nor-
malization of the experimental data with increasing
energy and the ¢ dependence are very well represented.

Having fixed the parameters from the data on the
differential cross section, we predicted the polarization
for this reaction. In Fig. 5 we show the contributions
from the pole, the cut, and the pole+cut. The polariza-
tion from the pole alone is, of course, identically zero.
In Fig. 6 we show the energy variation of the polariza-
tion. We note that the predicted polarization has the
correct features, namely, it is positive for small ¢, of
about the correct magnitude, and decreases with in-
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Fic. 17. A (1) for K—p — K : pole (--—--), cut (-——-—-),
and pole+-cut ( ).

creasing energy. We obtain about —909, polarization
near ¢t=—0.55 (GeV/c)2 The data do appear to indicate
a downward trend, but clearly data at larger momentum
transfers are required to see whether this effect is
present experimentally.

In Figs. 7 and 8 we present the predictions for the
Wolfenstein parameters 4 and R, respectively.

We carried out a similar analysis of the reaction
7~p— n'n. The results are shown in Figs. 9-13. We
note that, since a(#)=0 is a right-signature point for
the A,-trajectory, there is no nonsense zero in the
differential cross section, as shown in Fig. 9. The

1.00 T T T

\ K™p = KR at 9.5 GeVic

.50

R 0.00

-350

-1.00 L - A
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F1G. 18. R(¢) for K~p — Kn: pole (--~--),
cut (—-—-), and pole+cut ( ).
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effect of the cut is to produce a sharper decrease in the
momentum-transfer distribution, and to decrease the
normalization, giving a distribution with a turnover
near the forward direction. The predictions for the
Wolfenstein parameters P, 4, and R for m~p — 1 are
presented in Figs. 11, 12, and 13, respectively.

Having determined the parameters for the p and 4.
trajectories, we proceeded to predict the experimental
results for the reaction K—p— K. Figure 14 shows
the p+4, contributions to the momentum transfer
distribution from the pole, the cut, and the pole+-cut.
The correct ¢ dependence is reasonably well reproduced.
Figure 15 shows the energy dependence of the differen-
tial cross section. Considering that there are no addi-
tional adjustable parameters for this process, the mo-
mentum transfer distributions are in good agreement
with the experimental data. Figs. 16, 17, and 18 show,
respectively, the predictions for the parameters P, A,
and R.

Rather than use the impact-parameter representa-
tion, we employed an exact partial-wave summation
using 30 partial waves calculated with a 48-point
Gaussian quadrature. As a check on the accuracy,
some calculations were repeated with a 96-point
Gaussian and 50 partial waves. The results were found
not to change significantly.

This work differs from that of other authors in
several respects.

A significant difference is in the numerical procedures
employed :

(i) By using an exact partial-wave series rather than
attempting an analytic integration of the Regge ampli-
tudes in the absorptive eikonal formulation, we can
retain the exact form of the Regge amplitudes; e.g.,
we do not have to drop trignometric functions or T’
functions, which are an essential part of the physics.

(ii) This work is part of a program to explain all
two-body hadronic interactions using Regge pole theory
and higher-symmetry schemes. Certain parameters can-
not be determined by the higher-symmetry scheme
alone. Since these will be fixed in extending calcula-
tions to other processes, a minimization procedure was
used to obtain the best values.

The U(6)X U(6)X0(3) symmetry fixes the ratio of
the helicity-flip amplitude to the helicity-nonflip ampli-
tude. By doing this we obtained an absolute prediction
for the polarization.

Unlike other authors, we have not used linear tra-
jectories but the parametrization discussed in Sec. 5,
nor have we assumed exchange degeneracy although,
as discussed ahove, the results clearly indicate its
applicability.

Calculations have now been successfully extended
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to the reactions

pp—nfi, pn—unp,
which are dominated by 7 exchange at small momentum
transfers.?t'2 The results will be published shortly-.

2t J. H. R. Migneron and K. Moriarty, Phys. Rev. Letters 18,
978 (1967).

2B, J., Hartley, J. D. Jenkins, R. W. Moore, and K. J. M.
Moriarty (to be published).
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Simple Lagrangian formulations of Sugawara models are given, which directly exhibit the “gauge-com-
ponent” nature of the currents. It is also shown that there is no corresponding theory for tensor currents.

I. INTRODUCTION

HE dynamical theory of currents! bypasses the
usual Lagrangian mechanism of local field theory
in favor of a framework involving the physical currents
directly. The dynamics governing the currents j* is
determined by the stress tensor T#” as a function of j*
and by the equal-time commutation relations (ETC)
among the 7#. Thus, only the Heisenberg equations 8, je
=i[ ja S T%d% ] are assigned, with no corresponding
Euler-Lagrange equations, which is why the ETC must
be separately given. Consistency is no longer checked
between Heisenberg and Lagrange equations, but rather
between the ETC and the Poincaré algebra require-
ments on 7#. For example, the Schwinger terms in
[jo,7i] ETC give rise to the required 7°%9;8(r) terms in
the [79,7%9] ETC.

This attractive scheme has been exhaustively ana-
lyzed for stress tensors quadratic? in currents carrying
SU,XSU, symmetry; it has been shown to be a
particular limit of the corresponding massive Yang-
Mills field theories® and also to be equivalent to a
Lagrangian theory of spin-zero fields,*® which furnish
representations of the algebra. In Sec. II, we shall give
directly a transparent Lagrangian form in terms of the

* Work supported in part by the U. S. Air Force, OAR, under
OSR Grant No. 368-67.

! H. Sugawara, Phys. Rev. 170, 1659 (1968); C. M. Sommerfield,
ibid. 176, 2019 (1968).

2 For discussion of more general 7+, see S. Deser and J. Rawls,
following paper, Phys. Rev. 187, 1935 (1969).

3 K. Bardakci, Y. Frishman, and M. B. Halpern, Phys. Rev.
170, 1353 (1968).

+ K. Bardakci and M. B. Halpern, Phys. Rev. 182, 1542 (1968).
( 8 S.)Coleman, D. Gross, and R. Jackiw, Phys. Rev. 180, 1355
1969).

currents themselves, which illuminates the basis for the
earlier derivations and the close relation between the
currents and the gauge or “longitudinal” parts of
massive Yang-Mills fields.

Section III deals with possible generalization to
higher-spin currents: In view of the close relation of
vector currents to gauge components, it might be
thought that symmetric tensor currents would corre-
spond to gauge parts of that massive spin-2 field, and,
by appropriate extension, of the full gravitational field.
However, we show that for a variety of reasons there is
no (nontrivial) “dynamical theory of tensor currents.”

II. LAGRANGIAN FORM OF SUGAWARA THEORY

We exhibit a particularly simple Lagrangian form of
the Sugawara model, which preserves the form of 7.
The resulting Euler-Lagrange equations will be the same
as the Heisenberg equations in the Sugawara theory,
while the current ETC will follow from the canonical
commutation relations dictated by the action principle.

Consider first, for simplicity, the Abelian case of a
single current V# with

Tw=VeV —ig»V, Ve, (2.1)
where, as throughout, all required symmetrization is
understood, and the usual over-all constant C is set to
unity. This stress tensor is the variation of an “action”

IL=-1 /d“x(—g)‘“g“"[’“V,, (2.2)



