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The empirical pseudopotential method is discussed and applied to a calculation of the spin-
exchange cross section in collisions of Na and Cs atoms. The difference between potential
energy curves for the lowest singlet and triplet states of the Na-Cs system is calculated by
the Heitler-London method, using a Hamiltonian in which the effects of tightly bound electrons
are replaced by a pseudopotential. Wave functions for the free atoms are found by numerical
integration using the pseudopotential, and agree well with the exact valence-electron func-
tions at large distances. The scattering phase shifts are calculated in the WKB approxima-
tion, and the cross section computed from them is averaged over a Boltzmann distribution
of relative velocities. At a temperature of 500'K, the averaged reduced spin-exchange cross
section is 1.5 && 10 cm .

I. INTRODUCTION

Knowledge of interatomic forces is of great im-
portance for many problems in astronomy, physics,
and chemistry. If the interacting atoms contain
only a few electrons, reasonably accurate calcu-
lations from first principles are possible. In the
case of heavy atoms, some simplifications must
be introduced. The objective of the present work
is to apply the pseudopotential method, which has
been extensively used in solid-state physics to the
calculation of the interactions of heavy atoms.
Substantial simplifications result. The method is
then applied to the interaction of Na and Cs atoms,
and, in particular, to the calculation of the spin-
exchange cross section.

The general concept of the pseudopotential meth-
od can be explained qualitatively with reference
to an example; to be specific, consider Na. Fre-
quently, one thinks of Na as an one electron atom
even though it contains 11 electrons. The idea of

an one-electron system is reasonably legitimate,
since under usual circumstances the electrons in
the closed 1s, 2s, and 2P shells are inert. How-
ever, their presence greatly complicates calcula-
tions, because the wave function of the active, Ss
electron must be orthogonal to the wave functions
of electrons in closed shells, and consequently
must vary rapidly near a nucleus. It becomes
necessary to include core wave functions in many
calculations in which only the valence electrons
are of real interest. In the atomic interaction
problem, one must include the interaction between
the valence electrons on one atom and the core
electrons on the other. It is greatly desirable to
simplify such calculations by removing the core
electrons from the problem. This is accomplished
by the pseudopotential.

To see how this is possible, we note that the
effect of the core electrons on the valence elec-
tron is repulsive. In Na, the energy of the low-
est state of the valence electron is -0.378 Ry,
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compared to the value of -1.0 Ry which would be
obtained in the Coulomb field of a single positive
charge. The repulsion may be attributed to the
requirement of orthogonality, which introduces
additional kinetic energy into the wave function.

The pseudopotential which we employ consists
of the ordinary potential of a single positive charge
(-2/r) plus a short-range repulsive potential which,
for convenience, may be taken to be of the Yukawa
form

V (r) = 2/r+-(Qe )/r
p
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This potential was introduced by Hellman who
considered the molecules K, and KH. ' It has been
applied to the calculation of the ground-state en-
ergies of complex atoms, '~ ' to other molecular
problems by Preuss~ and by Szasz and McGinn, '
and to problems in solid-state physics. ' ' Other
forms of pseudopotentials exist, and will be dis-
cussed in Sec. II.

The parameters Q and P of the repulsive part
of the potential are determined by requiring that
the energies of the lowest two states in the poten-
tial Vp agree with the lowest two valence-electron
states in the free atom (3s and 3P in the case of
Na). The actual wave function of a valence elec-
tron in the atom outside the core of closed shells
is determined (apart from normalization) by its
energy and the fact that the potential is Coulombic
in this region. Consequently, the wave function
produced by Vp (which we will call the pseudo wave
function) will agree with the true wave function in
this region, except for normalization. However,
the normalization will not be badly off, since the
volume of the core of closed shells is small com-
pared to the volume over which the valence wave
function extends. Inside the core, the pseudo wave
function will differ from the true valence-electron
wave function, since, in the case of the lowest
valence state, the pseudo wave function will be
nodeless. The good agreement between the pseudo
wave function and (a reasonable approximation to)
the true valence wave function for Na is shown in
Fig. 1.' Beyond the large maximum, the difference
amounts to a nearly constant factor of 0. 97, a
small variation being due to polarization.

The pseudopotential procedure is adopted to the
atomic interaction problem in the following
way. '& '~ ' Consider two alkali-metal atoms A and
B, separated by a distance R. The coordinates
of the two valence electrons are r, and r, . In the
present approximation, the Hamiltonian is, in the
usual notation,

-O.IS

FIG. 1. Radial part P of the pseudo wave function of
a valence electron in the Na atom obtained through the

use of the pseudopotential is given as a function of
radius m atomic units. Included for comparison is a
reasonable approximation to the true valence-electron
wave function (Ref. 9).

Here, T, and T, are kinetic energies of the valence
electrons. The term W~(s)(R) is supposed to
represent the short-range interaction of the cores
of closed shells. Since we will be concerned with
the interaction at distances large enough so that
the cores do not touch, W~(s) will be ignored
from this point. The resulting Hamiltonian is then
available for use in calculating potential-energy
curves for the interacting atoms.

II. FORMAL THEORY OF THE PSEUDOPOTENTIAL

+ (r)=4 (r)+Q a @ (r) .
n n cnc c (2. I)

The sum includes all core states. The function
Qn is the pseudo wave function which we desire.
It is expected to be a smooth function (no radial
nodes) near the nucleus. The coefficients ane
are determined by the condition that C„be orthog-
onal to all core states:

Although the pseudopotential method has been in
existence for a number of years, we have found
that many workers in atomic collisions are un-
familiar with it. Therefore in this section, we
review briefly the formal justification for the
pseudopotential method, following the original
paper of Phillips and Kleinman. "

Let the "true" wave function for a valence elec-
tron in atomic state n be 4n(r) The wav. efunctions
for core states are denoted by Ce(r). We attempt
to represent C~ in the form

H=T +T +V (r )+V (r ) +V (r )2 p 1A p 28 p 2A

yV (rl )+e /rl2+e /R+IV~R (R) . (I.2)
2 2 (s)

(@,@ )=o ~c' n

This gives a„=—(4e, pn), so that we have

(2. 2)
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(2. 3)

An equation for Q can be derived by substituting
(2. 3) into the Schrodinger equation

H4 =E y
n n n

It is assumed that 4 is an eigenfunction of the
same Hamiltonian as +n, and that the energy of +c
is Ec. We write the Hamiltonian as H= T+ V, where
V is the actual potential, and obtain an equation
for P of the form

(T+V )y =E y (2. 4a)

where V Q = VP -Q (E —E )(+,Q )4 . (2. 4b)pnnccnc'nc

V = -2/x+ Qe /x
p

which is the expression used in Sec. I. However,
it is more desirable to determine Q and P from
experimental data than to approximate Eq. (2. 4b),
and this procedure was, in fact, followed here.

When the pseudopotential procedure is used in
calculations of atomic interactions, it is conve-
nient to represent the pseudopotential of the system
as the sum of pseudopotentials located on the in-
dividual atoms. This will be possible since the

Vp is the pseudopotential. It is evident from the
form of (2. 4b) that the pseudopotential is an en-
ergy-dependent nonlocal operator, and that
(2. 4a) is an integrodifferential equation whose so-
lution must be determined self-consistently. Con-
sideration of the algebraic signs involved in (2. 4b)
shows that the second term will oppose the first
for an attractive V; in other words, thatthepseudo-
potential will tend to be weaker than the true po-
tential.

This expression for the pseudopotential is rather
awkward, and it is desirable to replace it by an ap-
proximation which is local and energy-independent. "
To see how this may be done, we note that usually
the energy difference Ec —En will be reasonably
large (of the order of several rydbergs), so that,
if our interest is in states in a small range of
energies, the variation of Ec—En can be neglected,
and the term can be replaced by an average. For
the dependence on coordinates, we divide (2. 4b)
by P„(x). It is then convenient to approximate the
quantity 4e(r)/Qz(x) by a simple function, such as
e ) ~/x. This form is suggested if we use Sla.ter
orbitals to approximate Ce/Q~.

The result of these arguments is that it should
be possible to approximate the nonlocal energy-de-
pendent pseudopotential Vp by Vp( ), where

core functions 4c will be strongly localized on
their individual atoms. Use of the pseudopotential
procedure includes the effects of the necessary
orthogonality of molecular wave functions for va-
lence states to the core functions on each atom.

It should be noted that the pseudopotential we
have used is not unique. Abarenkov and Heine, '2

Ashcroft, "and Zapol et a/. "have considered
several different forms, which may be discontinu-
ous and contain a nonlocal and energy-dependent
part. Gombas has proposed a different type of
pseudopotential which is expressed in terms of the
electron density, "and which has recently been
applied by Baylis" to alkali-metal-noble-gas inter-
actions. Our expression has the advantage of sim-
plicity (with respect to Gombas), continuity (with
respect to Abarenkov and Heine), and a simple re-
lation to the basic derivation. It does have the
disadvantage of being strong and rapidly varying
in the core region, which means that care must
be taken in numerical work, as we shall see.

Szasz and McGinn" have computed pseudopoten-
tials from the Phillips-Kleinman expression
(2. 4b) for all the alkali metals except Cs, and for
a number of other atoms and ions. Their results
have been applied to diatomic molecules: Li„Na„
LiH, NaH, and KH. Their calculation is based on
the use of Hartree-Fock wave functions for the free
atom, and the pseudopotential is evaluated at the
free-atom energy. Pseudo wave functions were
determined whose energies are in good agreement
with ordinary Hartree-Fock calculations. We be-
lieve that the procedure used in the present paper
has one significant advantage in comparison with
the work of Szasz and McGinn for the purpose of
calculating the interaction of atoms at large
distances: This is that our wave function agrees
closely with the asymptotic exact Coulomb wave
function at large distances. Since the wave func-
tion of Szasz and McGinn has an energy which is
close to the Hartree-Fock energy, rather than to
the experimental value, their wave function may
not be as satisfactory at large distances. It is
to be noted that the specific application made here,
spin-exchange scattering in the Na-Cs system, is
sensitive to the atomic interaction at large dis-
tances only.

Two disadvantages associated with this form of
pseudopotential deserve comment: (a) Explicit
polarization effects are not included. (b) The
Phillips-Kleinman pseudopotential depends on the
particular state considered, and diff ers signifi-
cantly between the 3s and 3p states inNafor small
values of x. The pseudopotential used here is the
same for all states. In Na, these effects do not
seem to be serious, because a single potential
has been found which yields correct values for
both the 3s and 3p states; but in Cs, the differ-
ence between s and p pseudopotentials appears
to be important, because no single potential of
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the form (1.1), fitting both 6s and 6p states,
could be obtained.

III. DETERMINATION OF THE PSEUDOPOTENTIAI.

The pseudopotential parameters are determined
by requiring that the energy of the lowest two
states in the pseudopotential agree with values
obtained from atomic spectroscopy. In the case
of Na, the 3s and 3P levels are involved; in the
case of Cs, the 6s and 6P levels are involved. In
the original work of Hellmann, this task was to
be accomplished by a variational calculation using
simple wave functions whose radial parts are
proportional to e ~& for the s state, and to re
for the p state. This procedure has been continued
by most of the authors who have used this pseudo-
potential. However, the single simple function of
this type is a very poor approximation to the so-
lution of the Schrodinger equation with the pseudo-
potential. The simple function does not allow the
electron to avoid the strongly repulsive core, as
is found to occur when the Schrodinger equation
is solved. Consequently, the parameters of the
repulsive potential, which are reported in the lit-
erature from simple variational calculations, are
quite inaccurate; basically, the repulsive part of
the pseudopotential is too soft.

%'e performed our calculation by numerically
integrating the radial Schrddinger equation for
the states of interest. The energy value is pre-
scribed in advance. For a given state, our pro-
cedure was to vary the parameters Q and P of tbe
repulsive potential until an eigenstate was obtained
for the given energy. Since two parameters are
involved the solution is not unique, and one
obtains a curve Q, (P), for example, for which so-
lutions are obtained. The process is repeated
for the other state, yielding another curve Q, (P).
The intersection of the curves identifies a point
at which both states are fitted by the same poten-
tial, thus specifying the parameters. The pro-
cess will not work if nonlocal effects are so
strong in the atom that a single potential cannot
be found which reproduces both states precisely.

For Na, an intersection of the two Q(P) curves
was found without difficulty. In Cs, no intersec-
tion was found, so that parameters were chosen
somewhat arbitrarily from the Q(P) curve for the
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FIG. 2. Pseudopotential for Na. The dotted curve
represents our results. The "Hellman" curve is that
obtained in Ref. 1. The "Szasz and McGinn" curve is
that obtained in Ref. 17, using the Phillips-Kleinman
formula (2.4b) .
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e=(4v)-"'Z o.p (g., r) .

Z=
(3. 1)

The X~ are defined by"Z

6s state. This difficulty is not unexpected for a
heavy atom. In this case, the error in the 6P
energy is 0. 016 Ry or 8. 8%. The pseudopotential
parameters finally adopted are listed in Table I.
In the case of Na, the results are in good agree-
ment with those of Ref. 8. The pseudopotential
for Na is shown graphically in Fig. 2, where it
is compared with other pseudopotentials which
have been employed elsewhere. The wave func-
tion for Na was already shown in Fig. 1.

For convenience in performing the molecular
calculation to be described in Sec. IV, the cal-
culated s-state wave functions were fitted by a
linear combination of Slater-type orbitals. This
allows the use of existing molecular integral pro-
grams. In each case, we write

TABLE I. Pseudopotential parameters for Na and Cs. The calculated and actual energies for the 3s and 3p states
in sodium and the 6s and 6p states in Cs are given. All quantities are in atomic units with energies in rydbergs.

Atom

Na

Cs

20.43

25.00

2.0475

1.4239

1()
—0.3777

—0.2862

Ee~t')
—0.377726

—0.286181

(p)

—0.2231

—0.1972

—0.223102

—0.181072
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TABLE II. Slater-orbital parameters and energies (in rydbergs) for Na and Cs. See Eqs. (3.1) and (3.2) for
definition of the parameters.

ni

Na Cs

0.48778

1.60674

1.75614

0.65373

4.57142

0.162795

-0.942629

0.801495

0.926946

0.003845

0.12008

0.75668

3.21463

0.53765

2.28540

0.000096

-0.470277

0.053886

1.257517

0.132458

Energy —0.377625 Energy —0.286169

and are thus individually normalized so that

fX '(g., r)r'dr = 1 (3.3)

The coefficients n&, fz, and ; are given in Table
II. The expectation value of the Hamiltonian for
the analytic wave function is also given in Table
II. Comparison with the values quoted in Table
I indicates that the wave functions are reasonably
accurate.

IV. CALCULATION OF POTENTIAL ENERGY CURVES

The calculation of interatomic forces has re-
cently been reviewed by Hirschfelder and Meath. "
In the present case we are interested in the
interaction between Na and Cs atoms at mod-
erately large distances where there is no overlap
of the wave functions of core electrons, and the
pseudopotential approach should be valid. More-
over, we are interested in spin-exchange scatter-
ing which depends in the semiclassical approxima-
tion only on the difference in potentials between
singlet and triplet states. To the extent that the
van der Waals interaction is the same in both
singlet and triplet states, its effect may be ig-
nored, and we make this approximation here.
Furthermore, since the atomic states involved
are s states, the angular-dependent part of the
van der Waals force will not contribute. There-
fore, we propose to calculate the difference in
potentials in the Heitler-London approximation
using the pseudopotential wave functions described
in Sec. III.

Herring and Flicker have shown that the Heitler-
London approximation is incorrect at very large
interatomic separations, where it predicts erro-
neously that the triplet state should lie below the

singlet state in H, ." They have obtained an exact
asymptotic expression for the difference between
singlet and triplet states in H, . Their result is
proportional to R ~2e 2R. However, other terms
in the series have not been evaluated. At moder-
ately large distances the leading term in the exact
series obtained by Herring and Flicker is in good
agreement with the results of the standard Heitler-
London calculation, and, in view of the lack of
knowledge of higher terms in the exact asymptotic
series, it is not possible to ascertain the accuracy
of the Heitler-London method. The region of in-
terest in the problem of spin-exchange scattering
in the Na-Cs system is that of moderately large
distances (where the Heitler-London calculation
should be accurate), and it is employed here.

We have made a Heitler-London calculation of
the energy differences between singlet and triplet
states in the Na-Cs system using the wave func-
tions given by Eg. (3. 1), the coefficients being
those of Table II. This calculation followed stan-
dard methods, and thus need not be described in
detail here. The energies of the states, and their
differences are shown in Fig. 3. The singlet
state shows a shallow minimum at x = 8. 3ap whose
depth is 0. 008 Ry (0. 109 eV. ) The triplet state
has no minimum in the Heitler-London approxi-
mation; however, if a van der Waals attraction
of the form EVD~ = —d/R' is added, a minimum
is found. The van der Waals constant c has been
deduced from scattering measurements to have
the value c= 3. 014 x10+' Ry' a '. The minimum
in the triplet-state energy occurs at R =15.8a„
and has a depth of 1.Ox10 ' Ry (0. 0013 eV). It
is not possible to determine the effect of van der
Waals interactions on the minimum in the singlet
state, since the simple expression is not valid at
that distance.

Calculations of Szasz and Mcoinn" for alkali-
metal diatomic molecules, using the Heitler-Lon-

don method, employed atomic wave functions which
were single Slater orbitals with an exponent which
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was varied. They obtained about . 3 of the ob-
served dissociation energies, and equilibrium sep-
arations that were about 25/q larger than the exper-
imental results. The present results might be
expected to be somewhat better at large distances,
because the atomic wave functions are more accu-
rate; however, the adequacy near the singlet min-
imum is more questionable.

Dalgarno and Rudge" have derived a simple for-
mula for energy difference between singlet and

triplet states at large atomic separations, which

they have applied to alkali-metal atom pairs. Their
formula is

,08-

.06-

.04-
CO
C9
K
w 02
Ci

lL

0,0

w -02

-.04—

E (R) —E (R) =2mS(R)(f&( ,'R)4'(&-) (4. 1) -.08-

where S is the overlap integral, Q is the wave
function for the valence electron bound to one atom,
and 0 refers to the other atom. These functions
are approximated in Dalgarno and Budge's paper
by the leading term in the asymptotic series for a
Coulomb potential. Since a number of assumptions
are involved in their treatment, it should be noted
that for H„ the Dalgarno-Rudge formula consis-
tently underestimates the energy difference between
these states by 20 to 30% at moderatelylarge atomic
distances, not only with respect to the Heitler-
London results, but also with regard to the asymp-
totic formula of Herring and Flicker and the varia-
tional calculations of Kolos and Wolniewicz. " Con-
sequently, its use in the spin-exchange calculations
is open to some question, although it appears from
this work that the error in the cross section is not
large. We have evaluated (4. 1) using four-term
asymptotic Coulomb wave functions for Na and Cs,
and fied, in the case of this system also, that the
Dalgarno-Rudge formula gives a smaller energy
difference than is yielded by our Heitler-London
calculation- by about 10 to 20/0 in the range of dis-
tances important in the spin-exchange problem.
However, if errors of.this magnitude can be toler-
ated, the Dalgarno-Rudge formula is quite conve-
nient, since overlap integrals are much easier to
compute than two-electron Coulomb and exchange
integrals. The result of the Dalgarno-Rudge com-
putation is shown in Fig. 3, where it is compared
with our result.

The present results do not agree well with indi-
cations from experimental scattering measurements
that the minimum in the triplet state potential en-
ergy curve occurs in the vicinity of 9 a. u. "~24

The present experimental results are summarized
in Table III. The origin of the discrepancy in the
triplet state is not certain. The Heitler-London
calculation should be accurate at this distance.
Furthermore, it seems unlikely that this discrep-
ancy is due to the possible inadequacy of the re-
pulsive part of the atomic pseudopotentials, since
the distances involved are quite large corn@ared to

-.08—

I I I I I I

S.O 6,0 7.0 8,0 9.0 10.0 11.0 19..0
R (ao)

FIG. 3. Heitler-London singlet and triplet potential-
energy curves and their differences for Na-Cs. Use of
the pseudopotential was made in setting up the inter-
action Hamiltonian. Included is also the result of the
Dalgarno-Budge formalism (Ref. 21) with four-term
asymptotic Coulomb wave functions.

TABLE III. Position of minimum and binding energies
for singlet and triplet states of the Na-Cs system.

m

S

(a.u. )

S

m

(ao)

m

T
(a.u. )

y'
m

(ap)

Neum ann

and Pauly
5.07 x 10 4.91 1.25 x 10 9.3

Pritchard
et al. 1.96 x 10 8,55

Present
work

Dalgarno
and Rudge

8 0 x 10 8 28 1 0 x 10 15 8

0.98 x 10 15.8

aReference 24.
Reference 23.
Reference 21.

the core radius. The difficulties are more prob-
ably connected with the van der Waals forces. . In
this connection, it is interesting to note that Baylis
finds, in a study of interactionsbetweenalkali-
metal and rare-gas atoms, that the long-range
force deviates from the simple form proportional
to R ' at rather large distances, owing to the im-
portance of high-order induced multipole terms. "
However, to the extent that such effects are the
same in the singlet and triplet states, the spin-ex-
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change calculation is not affected. where the substitutions

V. SPIN-EXCHANGE CROSS SECTIONS FOR Na-Cs R/P=f, z=oP

2 s
Q =, g (2l+1) sin (q -q& ),' l=o

(5. 1)

where k is the wave number of relative motion,
and q~~ and g~ are the singlet and. triplet phase
shifts. In heavy-particle collisions, the number
of phase shifts contributing to the cross section is
large, and we employ the semiclassical approxi-
mation, which consists of replacing the summation
in (5. 1) by an integral over impact parameters
p, where )'2p =l + 1/2, and then using the JWKB
approximation" to evaluate the phase shifts. The
expression for the reduced cross section then be-
comes

Q =2s d sin' —I )d))dd
1

ex J v
0 " Ef(R) —Es(R)

where fQ) = i 2 ~R2)).n
p

1 P

(5. 2)

(5. 3)

and v is the relative velocity of the colliding atoms.
Detailed calculations show that the semiclassical
approximation is satisfactory in the case of H-H
collisions. ""

For Et and Ez, we will use our results from
Sec. IV. The region of interest is that of fairly
large interatomic separations, and in this region
the difference between the triplet and singlet po-
tential energies is very satisfactorily given by the
analytic expression

We shall consider the scattering of Naatoms from
Cs atoms and in particular the process in which the
spin of the Na atom (the spin of its valence electron)
is altered. A quantum formulation of the problem
was given by Dalgarno" for H-H collisions, and
attempts to improve approximate calculations
within this formulation followed. ""The quantal
formulation was subsequently extended to include
other mpre cpmplex systems, '~ including mpst
alkali-metal pairs.

A reduced spin-exchange cross section was de-
fined by Dalgarno and Rudge to be"

have been made. Equation (5. 5) can be expressed
in terms of modified Bessel functions. The alge-
bra, though a little lengthy, is straightforward
and gives the result

f(z) =A(z/o, )'[22 (&2+ 6%4+ 15%2+ 10')] . (5. 6)

Let 6(z) = (1/v) f(z); then the use of (5. 6) in (5. 2)
gives for the cross section

Q =-, z sin'6(z)dzex (5. 7)

We evaluate (5. 7) in the following way: First we
calculate f(z) or, for a given value of initial rela-
tive velocity v, (1/v) f(z). For not too large val-
ues of z, 5(z) is very large, and sin'5(z) oscillates
rapidly. For large values of z, 6(z) goes uniform-
ly to zero as z-~ and so does sin26(z). We break
up the integral (5. 7) into two parts:

277 ~p 2
OO

i) =, ) 's sin'S(s)ds s g s sin'S(s)ds).ex Qo 0 Z p
(5. 6)

zp is chosen by actually looking at the function
sin26(z), and it is that value, where for z & z,
xsin26(z) oscillates rapidlybetween values of zero
and one, so that we can replace it by its average value
of &. The second term is integrated numerically
by actually calculating the modified Bessel func-
tions entering 6(z) through (5. 6). ;.i all cases, the
zp chosen was a little smaller than the value of z
for which sin26(z) ceases to oscillate. This occurs
when the phase 5 first attains the value of -&p.

Values of zp ranged between 15a, and 12a„slowly
decreasing with increasing relative velocity. It
is, therefore, the region of interatomic separations
of about 12a, and greater that are significant in the
problem, and here the analytic fit to Et —E given
by (5. 4) is very good.

It is convenient to characterize the relative ve-
locity by an effective temperature T, defined
through

E (R)-E (R) =AR'e
S (5. 4) 2pv =KT

with A = 0 007925 Qp: 1 0983

6 zt
f (z) -A

(f2 1))d2
0

(5. 5)

This expression is an empirical fit rather than an
asymptotic expansion of the integrals. We insert
(5. 4) and (5. 2) and obtain

where p, is the reduced mass of the colliding pair,
and K is Boltzmann's constant. In Fig. 4, we show
the behavior of the phase shift 5 and sin25 as a
function of z for a speed corresponding to a tem-
perature of 500 'K.

Firsov" has suggested the following approxima-
tion to Qex given by (5. 2):

(5.9)
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7.00-

TABLE IV. Spin-exchange cross section for Na-Cs
collisions as a function of relative velocity.

6.00- Relative velocity
('K) (10 cm/sec)

Spin-exchange cross section
(10 '4 cm')

5.00-

4.00-

3.00-

2.00-

1,00—

0.00
14.50 15.00 15.50 16.00 16.00 17,00 17.50 18.00 18.50 19.00

FIG. 4. Behavior of the phase 6 and sin 0 as functions
of &(= Qpp where p is the impact parameter) for a rel-
ative velocity of 6.5 && 10 cm/sec (500 ' K) .
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where p is that value of p for which

(5. 10)
where lny =0. 57722 is Euler's constant.

In Fig. 5, we plot Jeff as a function of the tem-
perature e of the system.

This approximation ha.s been extensively used to
avoid numerical integrations. It is interesting to
check the accuracy of this method. In the present
case, Firsov's approximation predicts a cross
section of 1.46&&10 "cm', for a relativevelocity
of 6. 51x10' cm/sec. This is lower, by less than

3/o, than what is obtained by solving (5. I) exactly.
The spin-exchange cross sections calculated for
collisions of Na and Cs through Eq. (5. I) are giv-
en in Table IV.

Using (5. 8) as the defining equation for T, we
can then obtain the following approximate analytic
expression for Q versus T:ex

V. CONCLUSION

The empirical pseudopotential method furnishes
a practical means of calculating potential-energy
curves for the interaction of heavy atoms at mod-
erate distances. This procedure has been applied
here to the interaction of Na and Cs atoms. The
present work differs from previous applications
of this procedure principally in that the pseudo-
potential parameters are determined from free-
atom energy levels by numerical integration of the
Schrodinger equation with the pseudopotential,

Q = a-b lnT
ex (5. 11)

5R(v) = (p/2~08)'"e (5. 12)

where 8 is the temperature of the system. We
calculate an effective cross section Jeff defined
by

q = f5II(v)Q (v)d'v

with T measured in degrees Kelvin. The constants
a and b were found to be a = 2. 106 b = 0. 100 in units
of 10 '4 cm'

Now, the normalized Maxwellian distribution of
the relative velocities of the colliding particles is

,8
~a

z
Q 185-

th
l.55-

l.45-

1.35-

525-
th

A
I.I 5—

100
I

500
I

IOOO

TEMPERATURE ( K)

I

5000 10000

Q = a —b [2- In(4y/8) j (5. i4)

The calculation is straightforward and yields FIG. 5. Thermal average of spin-exchange cross
section for Na-Cs as a function of system temperature
0.
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rather than through an oversimplified variational
technique. The potential-energy curves, here
calculated for the lowest singlet and triplet states
of the Na-Cs system in the Heitler-London approx-
imation, were applied to the determination of the

spin-exchange cross section. The result is a
slowly decreasing function of relative speed, whose
value at a speed corresponding to 500'K is approx-
imately 1.5x10 "cm'.
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