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We generalize our previous work on the asymptotic behavior of solutions to the Bethe-Salpeter equation
to include spin and nonplanar kernels. Our aim is to develop simple heuristic methods for studying the
asymptotic behavior of infinite sums of complicated Feynman diagrams. In the simplest case of 7fE scat-
tering, we still obtain Regge asymptotic behavior with explicit formulas for the trajectory functions for
a certain class of planar kernels. However, in higher-spin cases like EX scattering, the heuristically deter-
mined trajectory functions are given by divergent integrals. A modified procedure is developed for this
situation, which leads to an asymptotic behavior that is not of the Regge form. We also treat the nonplanar
X kernel and show how our method leads to the Gribov-Pomeranchuk essential singularity.

I. INTRODUCTION

'N a previous paper, ' to be referred to as I, we intro-
' ~ duced new techniques to study the asymptotic
behavior of solutions to Bethe-Salpeter (B-S) equations.
Our methods were more heuristic and intuitive than
rigorous, but correspondingly more simple and direct
than the standard approaches. ' We were able to
establish Regge behavior for the amplitude defined by
an arbitrary planar kernel in P' theory in an approxi-
mation equivalent to summing the leading high-energy
term in each order. Our results agreed with the previous
calculations in the few places where the direct sum-
mation had been carried out.

The purpose of the present paper is to indicate how
our techniques can be extended to more complicated
cases involving spin and nonplanar kernels. In such
cases it is prohibitively difFicult to carry out directly
the summation of even the leading terms in each order
with the usual methods. ' If further progress along these
lines is to be made, therefore, it seems necessary that
new methods be introduced. We shall accordingly
sacrifice the rigor of the usual approach in favor of our
heuristic procedures in the hope that our results will
provide at least some indication of the correct asymp-
totic behavior.

As in I, the reliability of our approach can at present
be determined only by comparing our conclusions with

*Supported in part by the United States Air Force, under
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'R. Brandt and M. Feinroth, Phys. Rev. 176, 1985 (1968).
We adopt here the notations and conventions of this paper.

2 For a summary, see R. J. Eden et a/. , The Analytic S-Matrix;
(Cambridge University Press, Cambridge, 1966). See also I.

3 For partial (inconclusive) attempts to study the vector-spinor
theory $6rst studied in connection with Re geization by M.
Gell-Mann et al. , Phys. Rev. 1338, 145 (1964) in this way, see
J. Polkinghorne, J. Math. Phys. 5, 1491 {1964);H. Cheng and
T. T. Wu, Phys. Rev. 140, 8465 (1965); and J. V. Greenman,
J. Math. Phys. 7, 1782 (1966), and 8, 26 (1967). More recently,
H. Cheng and T. T. Wu t Phys. Rev. Letters 22, 666 {1969);
Phys. Rev. 182, 1852 (1969)g have similarly studied high-energy
elastic scattering in quantum electrodynamics and found "after
16 months and more than 2000 pages of calculations" complete
results only through eighth order.
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FIG. 1. Kinematics of the
general 8-S amplitude.

the known results of the standard procedures. In this
paper we shall, therefore, consider cases that have
already been treated by the standard methods. We
shall thus obtain few new results but will however, be
able essentially to reproduce older results with far
greater ease.

We hope that our methods, and extensions and cor-
rections of them, can be used to develop an intuition
concerning the asymptotic behavior of infinite sums of
complicated Feynman diagrams. Ke feel that our suc-
cess indicates the usefulness of our approach, and
therefore we suggest that our methods be used to treat
other scattering processes of physical interest.

In Sec. II we briefly discuss the B-S equation corre-
sponding to particles with arbitrary spin and indicate
the application of our procedure. We stress the changes
brought about by the presence of spin. In Secs. III—V
we treat processes giving rise to progressively more
complicated asymptotic behaviors. Section III deals
with ~X scattering with scalar exchange in the ladder
approximation. The spin e6ects in this case do not alter
the fact that the asymptotic behavior is of the Regge
form. Extensions to more general kernels are briefly
discussed. In Sec. IV we show how higher-spin sects
do alter the form of our asymptotic integral equations.
The solutions of the new equations do not, in general,
exhibit Regge asymptotic behavior. This is illustrated
with reference to .'VX scattering with x exchange in the
ladder approximation. In Sec. V we return to the scatter-
ing of spinless particles, but now consider the eSect of a
nonplanar kernel —the X. By suitably taking into ac-
count the presence of the left-hand cut, we derive an
asymptotic integral equation and illustrate how its
solution corresponds to an essential singularity in the
J plane. Concluding remarks are given in Sec. VI.
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II. SPIN

In order to illustrate some general features of the
B-S equation for particles with spin, we consider the
scattering of particles with arbitrary spin. Ke will

treat the spin complications rather formally in this
section. The details in the cases of m~V and XXscattering
will be given in Secs. III—VI.

%e consider the elastic scattering of particles a and
b in the t channel, allowing the particles to have arbi-
trary spin. 4 The oR-shell amplitude may be written as

jf.. ,.~ (Pi Pi Pi Pi) —=.4u. , u ~ (P*) (2 I)

where the initial state is composed of particle a with
momentum Pi and a set of Lorentz (and/or spinor)
indices (tii} together with particle b of momentum Pi
and indices {t43}.Similarly, the final state has particle
a with Pi and (F43}, and particle b with P4 and (t44}.
The kinematics are shown in I'ig. 1. The high-energy
limit we are interested in is s ~~ for hxed t'.

The 8-S equation for this amplitude is (see Fig. 2)

(s)
k~

p P2 4
B k, k&

kp

FIG. 2. 8-S equation.

suitable propagators for a and b, respectively, and

B„,„,,„,„,(P;) is a kernel whose properties will be dis-
cussed later. As in I, we use the variables

kg=k —pg, kg=k, kg ——k —p3, k4 ——pg+p —k,
(2 5)

p =P", s=(Pi —P3)', t=(Pi+Pi)'

Before we take the high-energy limit, we must reduce
(2.2) to a system of equations for invariant amplitudes.
Therefore, we introduce the following decompositions:

~u3ui, uiul(Pi) =Z 4j(sit.l pi)0uiu4, uiui'(PilP3lp4) 3 (2 4a)

-I uiu4, ului(pi) Bu3u4 ulu3(pi), d k
(23r)4

~u4 ui (k4) I u3 ul (k&)
XQ -:l „„,, „,„, (PK,P4; ki, k4)

XB„,„;,„,„,(kg, k4, Pi,pi), (2.2)

where (k' —m, ') 'Eu„(k) a,nd (k' —mi, ') 'Pu„3(k) are

u3u4 u3ul(Pi) =2 j(» p3) uiul, »l.''(P»PKiP4) ~ ( ~ )

The 0*'s are a complete set of independent tensor and/or
spinor covariants formed from the vectors pi, Pi, and P4
together with the appropriate y matrices if one of the
particles is a fermion. After substituting (2.4a) and
(2.4b) in (2.2), we obtain the following set of equations
for the invariant amplitudes:

:1,(s,t; p;) =B,(s,t; p;)—
(23r) 4

Cj/ i(s t& p3( K )B3i(Kl3, t; Ki, K4,p»p 2)Ff 4(K33t 3 p'i, p4, K&3K4)
d4k Q—

kl (Kg m +if)(K4 m3 +34)
(2.5)

The coupling coe%cients C, I, ~ are determined by

u3u4, u3'u4' ( slP33P4) .4.3 '( 4) .3» ( i)»», »»'(Pi, 3, 4) =E ji (, ; p, ') u3u4, »»'(P»P3, P4)+, ( )
f ~'l 2

where the sum over (t4'} goes over all primed Lorentz indices. The omitted terms on the right-hand side of (2.6)
are covariants involving k„, which either vanish by symmetric integration in (2.5) or are already effectively
included. It is a straightforward, though tedious, procedure to calculate the Ciii s from (2.6). We shall illustrate
this in Sec. III for the case of m-cV scattering with scalar exchange.

We are now ready to take the high-energy limit of the B-S equation(s) (2.5). As in I, we change measures from
d4k to

The Jacobian is given by

where

and

J=e(D)/4D"-',

D = s'A(K3, K4, t)+E(s,t; K;,p—,)

A(x, y,s) =x'+y'+s' —2xy —2xs —2ys.

(2.7)

(2.8)

' Ke introduce cutouts into the propagators for these particles wherever they are needed.
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F(s,/; », ,p,) is linear in s and is given explicitly in I. Equation (2.5) then becomes

s 4 8(D) C));i(s&t j p)&»))B),(»1)/&»»»4)pl&P2)A l(»»tj p)&)p4)»p)»4)

A, (s,t; p;) =B,(s,t; p;)— IId, 2 — ' ' '
. (2.10)

4(2)r)4 &'=) D'" i) (»2 m +sf) (»4 m +st)

To proceed further, we depart from the general case. Since we are trying to extend the heuristic method of I,
we are only interested in an equation that reproduces the correct leading asymptotic behavior in each order of
iteration. In the examples we have looked at so far, it is always possible to choose a linear combination of the
amplitudes (called 3) so that there is a single asymptotic integral equation for that amplitude. Furthermore, in

these examples, the new coupling coefFicients C; have the property that, at high s, they are independent of s, Ky K3,

and the external masses, i.e.,
lim C, (s,t; p;,»;) =C, (»s,»4, /). (2.11)

The 8-S equation then becomes

A(s, /; p;) =B(s,/; p~)—
4(2)r) 4

8(D) C&(»2&»4)/)B))(»i&t j»»»4)pi&p2)A (»&)&/& p3&p4&»»»4)
d»,

Dl j2 g (»2 —m +sf)(»4 mg +sr)
(2.12)

The high-energy limit now proceeds just as in Sec. 5
of I. We assume that the kernel is given by a 6nite sum
of two-particle irreducible planar Feynman diagrams.
For suKciently small external masses, the B),(s,t; p;)
will satisfy dispersion relations in s with only right-hand
cuts:

B,(s,t; p;) = o).(a,t; p;)
da-—

s —a —lc
(2.13)

We neglect possible complex singularities when the
masses are varied. Furthermore, we assume that the
asymptotic behavior of the BI,'s is given by

B),(s,t; p;) b„(/)s ))~(ins) )'»— (2 14)

A(s, t) =b(t)s '(1ns)'+Q K),(t)b), (/)s «

8

X d» (lns/'»)»»« 'A (»,t), (2.15)

for integer pi)0 and integer qq)1. Using (2.13) and
(2.14) in (2.12), we obtain in the high-energy limit (see
I, Sec. 5)

a unique solution of the Regge form. The leading tra-
jectory is given by

where
a(/) = —q+R(/),

R(/) =9!Z K.(/)b. (/) 7"'""
(2.17)

(2.18)

III. ~N SCATTERING

This is in almost complete analogy with the scalar
case treated in I. The important difference is that the
functions K),(t) defined by (2.16) may not exist. In the
scalar case when C),(»,»4, /) = 1, there is never any prob-
lem. However, if C(i ~», »/4) grows too fast for large».
and»4, then (2.16) will diverge, and the heuristic method
of I breaks down. In the case of xE scattering with
scalar exchange, we shall see that the integral corre-
sponding to (2.16) does converge and the heuristic
method gives Regge asymptotic behavior. In the case
of if' scattering with pion exchange, however, the
integral (2.16) diverges, and a modified analysis is
required. The result in that case is that the asymptotic
behavior is not of the Regge form. The general modified
analysis will be discussed in Sec. V.

where, formally,

8 8
Kg(t) = "lim"

()/i —1)!4 8m, ' 8mb'

d»sd»gC&, (»»»4, /) 8L —D(»g, »4, /) —
&/7

(»s m.'+ t t) (»4 m$'+—ss) P /s. (»»»4—)t)7'"—
(2.16)

We now consider x V scattering with the exchange of
a scalar particle (0). Ke neglect isospin and restrict
ourselves to the ladder approximation for the 8-S
equation. 'Q~e shall discuss generalizations of the kernel
at the end of the section. This process has been investi-
gated in the multiperipheral model by Amati, Stang-
hellini, and Wilson, ' and our treatment of the kine-
matics will be similar to theirs.

The scattering amplitude may be written

In (2.15) we have set &I=min(&I~) and p=max(p), ).
Since we are only interested in the leading asymptotic
behavior in each order, we can restrict the sum over k
in (2.15) to those values of k for which Pk

——P and &Iq
——

&/.

Equation (2.15) is then a simple Volterra equation with

Tk), i)(ps))12j pl&&21) Ni)(p2)A (p2&g2& pl)&21)NX)(pl) ) (3~ 1)

where )Is (qi) is the initial (final) pion momentum, and
pi (p2) and 4 (X.) are the initial (final) nucleon mo-

"D. Amati, A. Stanghellini, and K. Wilson, Nuovo Cimento
28, 635 {1963).
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mentum and helicity. The B-S equation in the ladder
approximation is

gG igG
+

s —1 (22r) 4

A 2 2 k2 k4) y k2+m)

4 (P4q2 j Pbqi)

(P,q, , (
X t'k—,(3.2)

(k2' —1+34)(k4' —1+24)(k, ' 1—+33)

A (P2tq2j P1)q1) = Q A j(Sqtj Pl)P2)Oj(PiqP3qq2) ) (3.3)

where g and G are the m ~o. and 'IITXa coupling constants,
respectively; for convenience we have set the masses
equal to 1. The equation is shown graphically in Fig. 3.
The amplitude is then expanded as follows:

ql-~-- -~ q&t~ A

P, = ~ = P2

g k

e

FIG. 3.8-S equation for n-N scattering in the ladder approximation.

C,a =
1+43+tt V+t:"(t—2)

i +n —P
A 0
0 CX

K ) —1

K) 1

0 (3.8)

terms on the left of (3.6) that are linear in r will vanish
in the integral (3.5) by symmetric integration and may
therefore be dropped. The C,~'s can then be found in
terms of n, P, and y and are given by

where

Oi(pi, pi, qi) = 1,
O (p22,p q2)2= r q2,

o3(Pi P2 qi) = h Pi "m)—,
o4(p»p2 qi) =r q2( r q2 m) . —

(3.4)
n= (1/2S)(2«3 —K2 —K4 —2+t)+O(S 2),

P = (1/2t)(K2 K4+t)+O—(S '),
~=(1/2t)(K , K, +t)+. —O(s '). —

(3.9)

Finally, n, P, and p can be expressed in terms of s, t,
p;, and K;. For large s the result is

The p s are the external masses, and we have taken the
final particles on shell. Putting the expansion (3.3)
into (3.2), we obtain the set of scalar equations

gG igG
A,'(s&tj pip2) = —8,'1 + d'k

s —1 (2m.)4

4 Ct«(S,tj p;,K,)A«(K3)t j K2 K4)

(3.5)
3=1 (k,' —1+2«) (k4' —1+33)(ki' —1+23)

where the coupling coefFicients C;~ are defined by

O«(t«, pi, q2)(q k2+m)

Since we are looking for an asymptotic solution to the
set of equations (2.5), we substitute the asymptotic
form of the C, i given by (2.8) and (2.9) into (2.5).
Note that we are dropping terms like K3/s compared to
1 even though K3 becomes comparable to s in the inte-
gration region. The justification for this is that we are
restricting ourselves to a weak-coupling solution and
can check in our final equations that terms like K3/s
will not contribute to the leading asymptotic behavior
in any order of iteration.

The set of equations (2.5) can now be reduced to two
sets of coupled equations by taking the following linear
combination s:

C,«(s, t; p;, K~)O;(pi, p2, q2) . (3.6)

To find the C;~'s, we follow Ref. 5 and write the mo-
mentum integration variable as

A 1——A 1+(t"'—1)A 2,

Ai Ai (t'"+——1)A-, ,
A 3 =A 3+(t't2 1)A 4, —
A 4 ——A, —(ti "+1)A 4.

(3.10)

~2 =&P1+PP2+&$2+~» ) (3 't)

where the vector r is orthogonal to Pi, P2, and q2. Those
Changing va, riables to the «; via the Jacobian (2.8),
our equations become

(II*«~)tt(D)gG igG
A 1(s,t; pi, p2) = — +

s —1 4(22r) 4 (Ki —1)(K2—1)(K4—1)D 1

X{(1+(4t)—'~2(«2 —«4+t) jA 1(«3,t; «2,«4)+ LK2 —1jA 3(«3,t „K2,«,)},
(II4 dK;)8(D)$2«3 K2 42«+t]22(K3&t j K2~«4)

(«1 —1)(K2—1)(K4 1)D"
A 3(s,t; pi, p2) =-

8 (2vr) 4s

(II' «*)l)(D)gG igG
A2(&, t; pi, p2) = — +

s —1 4(2w)4

igG
Ã4(3, t; pi, p2) =—

8(2w)4s (Ki —1)(K2—1)(«4—1)D'"

(Ki —1)(K2 —1)(K4 —1)D'"
X{f1 —(4t)—' '(«2 —«4+t) jA 2(««, t; «2,«4)+LK2 —1jA 4(«3,t; «2,«4) },

(II*d ')e(D)L2 — — —2+tj& (,t;, )

(3.1 1)
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an otherwise arbitrary "planar kernal, " i.e.,Because of the factor s ' in the equations for A3 and

A4, these amplitudes will be asymptotically nonleading
with respect to Aj and A3 in each order of iteration.
Therefore, in the approximation of keeping only the
leading term to each order of iteration, we set A 3

——A 4 =0
in (3.11). We then have two uncoupled equations for
A& and A2, which diRer from the scalar B-S equation
only by the factors [1&(4t) 't'(Ki —«4+t)). As promised
in Sec. II, this factor is independent of ai and a3, and
we can therefore apply the method of I to obtain the
asymptotic equations

B(ps, &Ii, pi, qi) =Bi(s,t; pi, pg),

B;(s,t; pi, pi) =0, i=2 4—
(3.19)

~(~,t; pi, pi)
(/Q (3.20)Bi(s,t; p4pp) =

S—8—SE-

Bi(s,t; pi, pq) ~ bi(t)[(lns) i'/s'], as s ~~ . (3.21)

gG gGK+(t) *

2+(s, t) = ———
s s

where

The calculation of the coupling coe%cients proceeds
exactly as above, and one again obtains decoupled

(K,t), (3 12) equations similar to (3.11). The asymptotic behavior
is now given by

A -s~+('& A ~s~- (3.22)

K+(t) =lim
& ' 32m3

dKidKi8[ A(Ks, Ki—,t) rt][1a—(4t) '&'( , K—«,+t)]—

(Ki —1+is)(Ki 1+—ie)[—A(Kg, K,)t)]'"

where

and
o, (t) = —q+[p!b,(t)G'(t)]'t & +', (3.23)

G+(t) =— — — K+(t), (3.24)
(&t

—1)! &tm' Bti'

(3.13)

and we have set A+=Hi and A =22. The function
defined in (3.13) can easily be seen to be finite, and so the
method of I is indeed applicable. The unique solutions
to (3.12) are

where

A+(s, t) = —gGs '&",

o+(t) = 1+gGK+(t)—.

(3.14)

(3.15)

These trajectories agree with the result of Ref. 5 for
the weak-coupling limit of the multiperipheral model.
Actually, for the equal-mass case we have considered,
the term involving (Ki —K4) in the numerator of (3.13)
vanishes in the limit p =0. We reinstate unequal masses
p, and m for the pion and nucleon and obtain

K+(t) = (gG/16~') (mF, (t)a-', (gt)
X[Fi(t)+Fi(t)]}, (3.16)

where

[(m —ti)i —t)»i+[(myri)i —t]i&i
Fi(t) =2 ln

2(mti) ' "
{[(m —p)' —t][(m+ti)' —t]) '" (3.17)

F,(t) = (1/t) [ln(ti/m)+(m' —ti')Fi(t)]. (3.18)

Note that the trajectories n+(t) coincide at t =0, become
complex conjugates of each other for 1&0, and satisfy
the Gribov' condition &s+(Qt) =&K

—
( gt). —

We may easily generalize these results to the case
where the kernel contains only the covariant Oi but is

6 V. N. Gribov, Proceedings of the 1962 International Confer-
ence on High-Energy Physics, CERN, p. 547 (unpublished).

with K+(t) given by (3.16).
This analysis can also be carried out when the kernel

contains only the covariant Bi(s,t; pi, pi). Unfortunately,
an arbitrary planar Feynman diagram contains all
four covariants (3.4), and then one must use the
4X4X4 object C, i&(s, t; p;,K;). We have not attempted
to solve this general case, but it would seem reasonable
that, given a specific set of 8 s, one could find some
linear combination of the A s that decouple the integral
equations. Our analysis could then be applied to give
the appropriate Regge trajectories.

IV. HIGHER SPIN

In this section we shall consider planar kernels for
which (2.16) is divergent. Then (2.15) must be replaced
by the result of a more careful analysis of Eq. (2.12).
The resultant equation will not imply Regge asymptotic
behavior in general, but will give rise to fixed cuts,
etc. , in the complex J plane. After briefly considering
the general case and presenting some simple examples,
we apply our heuristic techniques to EX scattering.

We consider Eq. (2.15), where, for simplicity, we
include only one term in the sum. We include a regulari-
zation factor [A/(K+A)]'t' inside the K integration in
(2.16) to render the integral finite. Then for large A we
will have a behavior of the form

K(t)-I.(t)A"(inc) ', (4.1)

where &I'&0. In this case we expect (2.15) to be replaced
by

r'1(s, t) =h(t)s &(lns)"+X(t)s&' &(lns)&'

8 s
dK ln — K& 'A(K, t). (4.2)

K
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I(s)= o(a) 1
da -- dao(a)

$+8 S o

for suitable functions o(a). Thus, the effect of a divergent
integral fj&" da o (a) on the formal high-s behavior

da o(a)

of I(s) leads to the repla, cement

The solution to this equation will no), in general, be of
the Regge form.

We expect the integral equation (4.2) to result when

the "trajectory function" E(t) has the behavior (4.1)
for the reason that was the basis of the heuristic analysis
of I. There we saw that

g )n (2 ) 2!n2s)n
A(s) =- g

s n=o (2n —1)!!
(4.4)

The solution (4.4) can be expressed in terms of the error
function, which has the series expansion'

2&~»t+&

erf(z)= e *' g.=o (2n+1)!!
Ke find

A(s) =gs '+g.'V)r'"s ' lns exp(tV' ln's) erf(X lns) . (4.6)

Use of the property'
erf(z) ~ 1

(far Z ~no in
i argZi &-4')r) giVeS the aSymptOtiC behaViOr

which will be of use to us in our discussion of AX scat-
tering. The corresponding (exact) Neumann series is

da o (a) ~ da o(a) . A (s) :g r)(+rr)s ' lns. exp(.Y2 ln's). (4.7)

In I this procedure was applied to the (divergent) »2

integration, but not to the (»2, »4) integration, since that
was already convergent. In the present situation,
however, the (»2, »4) integration can be divergent, and
then the above procedure applied to this integration
leads to the result (4.2).

As a simple illustration, we consider the equation

A(s)=g2+g2s '(lns)" d» A(K).

Keeping only the leading term in each iteration, the
Neumann series becomes

Again, this behavior does not correspond to a Regge
pole in the complex J plane.

Let us now consider XX scattering in the ladder
approximation with pion exchange. Swift and Lee'
have shown that the leading high-energy behavior in
this theory is given by a fixed cut. They worked with the
"fusion. " amplitudes'2 {U;} and found that the B-S
equations for the partial-wave amplitudes {U;J},as
a consequence of parity and "spin exchange" invariance,
completely decoupled in the high-energy (J~ 0) limit
in the approximation of keeping only the most singular
terms {U; „s}in each order n. They then summed these
terms and found that U, J=—P„L',,„Jhad a 6xed cut in
J leading to large-s behavior of the form

g2 Q [g2(ins)r] gn2LI g2(lns)rj —)

n=o

A (s) : (lns) "

S

A(s) =1+ d» A(K).

The Neumann series is

oc S'—=e'
~=o g I

This behavior is again not of the Regge form.
As a final example, we consider the equation

A (s) =gs '+2E2s 'lns—-d» A (K), (4.3)

and we obtain an asymptotic behavior that does not
correspond to a pole in the complex J plane.

Another interesting example is

(lns) 2t2so. (4 g)

As an illustration of how similar results can be ob-
tained in our formalism, we consider an s-space analog of
typical Swift-Lee partial-wave equation. In terms of the
~ variables, we find

' See, e.g., M. Abramowitz and I.A. Stegun, Handbook of Mathe-
matica/ Functions (Dover Publications, Inc. , New York, 1965), p.
297.

g Reference 7, p. 298.
9 A. R. Swift and B. W. Lee, Phys. Rev. 131, 1857 (1963).
"These amplitudes were introduced by M. Gourdin, Nuovo

Cimento 7, 338 (1958).Their relation to the usual helicity ampli-
tudes fM. Goldberger et al. , Phys. Rev. 120, 2250 (1960)j is given
in Ref. 9.

—
g 'Eg

A(s, t; p),p2) = +
s —1 4(2)r)4

A (»2)t) »2, »4) B(D) (»2 —»4)'
($K t' . (4.9)

(»2 1)(K2 1)(»4 —1) D't' 4t

The factor (»2 »4)2/4t corresponds to —the C, in Eq.
(2.12) and represents the effect of spin. The appropriate
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Fir.. 4. X-diagram.

trajectory function (2.16) is thus formally

K(t) =
32vr3

(IKsd((48( —5) K2 —K4

(((g —1)(((4 —1)(—6)"- 4t
(4.10)

6=x' —2ty+t',

so that (4.10) becomes

K(t) = (Ix x'
(4~)9

&0

dy(y+x —2) '

To investigate the properties of (4.10), we change
integration variables to

X=Kg —K4) $=K2+K4 ~

suggestive. We feel, nevertheless, that the simplicity
and intuitive appeal of our approach make it a possibly
useful method for the study of more complicated singu-
larities in the complex J plane.

V. NONPLANAR KERNAL

As a final final applica. tion of our methods, we consider
the B-S equation with the nonplanar X kernel (see
Fig. 4). The solution to this equation has already been
shown" to have an essential singularity in the complex
J plane at J= —j.—the so-called Gribov-Pomeranchuk"
singularity. These rigorous calculations involved a
rather complicated J-plane analysis. We shall show how
the same result emerges in our formalism in a much
simpler, but heuristic, way. We shall also obtain an
integral equation for the residue functions of the Regge
trajectories tending to J= —1.

The integral equation in question is

A(s, t; p, ,p~) =X(s,t; pi, p2, 1,1)

where
X(y —x—2) '( —x'+2ty —t') '", (4 11)

y, = (t2+x')/2t

z CfK2(IK4

dK3 2 (K3&tt K2(((4)
4(2x)' .(((,—1)(((,—1)

For large x, the y integral is easily seen to behave as
x ', so that (4.11) is logarithmically divergent. Thus,

in accordance with our general remarks above, we expect
(4.9) to have precisely the form (4.3) in the high-energy
limit. A more detailed argument that (4.3) follows from
(4.9) can be given along the lines of the heuristic analysis
of I. The calculation is, however, tedious, and we omit
it here.

Since the solution (4.6) of (4.3) does not correspond
to a Regge pole, the above anslysis constitutes a heuris-
tic but simple argument for the existence of more compli-
cated J-plane singularities in the ladder approximation
to EE scattering. Our expression (4.7) is rather dif-
ferent from the Swift-Lee —type result (4.8), but this
is expected, since our starting equations are not the
same. Furthermore, our approximation schemes are
quite distinct. Swift and l,ee summed the most singular
partial-wave amplitudes U„~ in each order and then
transformed the sum U~ back to s space to obtain their
high-energy approximation U(s), whereas our approxi-
mation amounted to summing directly the leading
high-energy behaviors in s space. In fact, one easily
sees from the Swift-Lee expressions for U„ that the
sum of their leading high-energy behavior U„(s) (the
Sommerfeld-Watson transform of their U s's) must be
an analytic function of lns and hence cannot be of the
form (4.8) "

We need not emphasize the lack of rigor in the dis-
cussions of this section, which renders our results only

"A typical Swift-Lee expression fcf. Eq. (22) of Ref. 9j is
U„~~Jl ™(2n—3)!i(e—2)!n!,and this corresponds in s space to
asymptotic behaviors ~s '(lns)'" '/(e —2)!n!(2e—1), which sum
to an analytic function of lns.

8(D)
X d&t X(((y, t i py, p2(((g, ((4)

&
(5.1)

Dl/2

and we write the dispersion relation

X(s,t; p, (() =
~ 4

0.(s', t; p, (()
cps +Is —s —ze

sL a(s', t; p, (()(Is', (5.2)
s —$+z6

F(t; p, (()—= (Is' a(s', I; p, (()— ds' (r(s', t; p,((), (5.4)

with

C=QK3 +pK3+p ) (5.5)

a=0(1), P =0(s), y= s'A(Ks, K4—,t)+0(s). (5.6)

As discussed in I, it is the difference in the signs of the
ie's in the two terms in (5.2) that is responsible for the
occurrence of the difference in (5.4). This means that

12 I'. Kaschluhn and %'. Zoellner, Xuovo Cimento 34, 1618
(1964); A. D. Contogouris, ibid. 36, 250 (1965)."V. N. Gribov and I. Ya. Pomeranchuk, Phys. Letters 2,
239 (1962).

where p~ (p&,p,), and ((~ (((~,((2). As shown in I, the
K~ integral can be done exactly and gives, in the large-s
limit,

8(D) 8(C)
dKy X(((y,t; p, (() (7(I'(I( p,((), (5.3)

D 1 /2

where
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the large-s behavior

X J(t)(ln's/s')

which is governed by the sum

(5.7)

homogeneous integral equation (5.11) for the residue
functions. This equation may be of use in understanding
some properties of the Gribov-Pomeranchuk singularity.

VI. CONCLUDING REMARKS

dS 0+ dS 0=0 (5.g)

is not relevant in (5.1) and invalidates the heuristic
approach of I ~

Nevertheless, we can proceed by applying the heuris-
tic analysis to the equation obtained by using the correct
result (5.3) in (5.1). In view of (5.6), we obtain

ln's j.
~(~,t; p) =J(t) +

s' 64m's

d»2d»4f (t; p,«)e( —6)

(»2 —1)(»4 —1)(—6) '" d»« 4(K«, t;.«) . (o.9)

The new features here are (i) the mass dependence of
the asymptotic amplitude A—a consequence of the
relevancy of the mass-dependent function (5.4) rather
than the mass-independent function (5.7) in (5.9); and
(ii) the difference of a factor s between the Born term
and the remainder in (5.9)—a consequence of the fact
that "pinch" contributions give the leading high-energy
terms.

We substitute the function

A(st; p) =s &'&.
f, (t; p) (5.10)

in (5.9) and, assuming that &K(t))—1, obtain the asymp-
totic homogeneous integral equation

f(t p)=
64m'(n+ 1)

d»2d»p (t; p, «) 0(—6')
X , f(t K) (511)

(»2 1)(»4—1) (—6)'"

In the usual way, this equation now leads to the accumu-
lation of an infinite number of trajectories at &K(t) = —1
and, therefore, to the existence of an essential singularity
in the J plane at J= —1. This is because (5.11) is
essentially a homogeneous Fredholm integral equation
with a nonseparable symmetric kernel and hence" pos-
seses a countable infinity of eigenvlaues L64~'(&K„+1)p',
sr =1, 2, 3, , with an accumulation point at infinity,
i.e., for ~&K—1. For each eigenvalue n„(t), Eq. (5.11)
determines the corresponding f„(t;p), which is simply
related to the residue function of the Regge pole in the
J plane.

Our heuristic momentum-space analysis is thus seen
to suggest the same results as the rigorous J-plane
calculations. We have, in addition, obtained the simple

AVe have tried to extend our work on asymptotic
solutions to 8-S equations to include spin and nonplanar
kernels. We have seen in the simplest generalization to
scalar-spinor scattering that spin is not an essential
complication. We simply obtain a set of equations that
must first be decoupled before the Regge trajectories
can be obtained. However, in the case of fermion-
ferinion scattering (and presumably all higher-spin
problems), the heuristically determined trajectory
functions are given by divergent integrals, and one is
led to integral equations which imply asymptotic
behaviors corresponding to more complicated singulari-
ties in the J plane. Similarly, when the kernel is given
by the nonplanar X graph, the heuristic method again
breaks down, and one obtains a homogeneous integral
equation for which the Regge trajectories n„(t) (with an
accumulation point at n= —1) are the eigenvalues and
the Regge residue functions are essentially the
eigenfunctions.

These different effects have analogs in the standard
asymptotic analysis of individual Feynman graphs. In
the case of x-lY scattering with scalar exchange, the
asymptotic behavior of the (n+1)-rung ladder diagram
is still given by the end point contribution correspond-
ing to contraction of each of the rungs. The asymptotic
ladder diagrams therefore sum up to give Regge
behavior just as in the scalar case. In situations with
higher spin, the asymptotic behavior is governed by the
so-called "displacement contributions" and "singularity
contributions. ""These effects are still generalized end-
point —type contributions in the Feynman parameter
integration, and the contributions of the different
ladders still add up coherently to give an asymptotic
behavior corresponding to fixed cuts, etc. In the case of
the nonplanar X kernel, the asymptotic behavior of the
iterations is governed by "pinch" contributions. The
individual iterations still behave like s '(ln)", but the
coeKcients are so uncorrelated that an infinite number
of Regge terms Lwith &K= —1+O(g2)$ is needed to
produce this series. This gives rise to the essential
singularity at J= —1.

Our methods in this paper have certainly not been
rigorous, but we hope they may be used to gain an
intuition about the complicated effects that result from
summing infinite sets of diagrams. One of the most
interesting questions to which these methods may have
some application is that of the Reggeization of the

"See, e.g. , R, Courant and D. Hilbert, Methods of Mathe-
matical Physics {Wiley-Interscience, Inc. , New York, 1953),
Vol. 1, Chap. III.

"P. G. Federbush and M. T. Grisaru, Ann. Phys. (N. Y.) 22,
299 {1963);J. C. Polkinghorne, J. Math. Phys. 5, 1491 (1964).
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nucleon in vector-spinor theory. ' Here the presence of

spin and nonplanar graphs, together with radiative
corrections and renormalization, all play important
roles in showing that the nucleon lies on a Regge
trajectory through sixth order of perturbation theory.
Attempts to extend this result to higher orders have met

with great di%culty, ' and perhaps our methods will

prove more useful here than the usual techniques.
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Pion-Nucleon Charge-Exchange Scattering and the Crossover
Phenomenon with M=O t and M= 1 p' Trajectories*
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A Regge-pole model with (&=0) p and (M=1} p' trajectories is used to fit the mE charge-exchange
differential cross-section and polarization data. The model automatically predicts the crossover phenomenon
around t= —0.2 GeV' in ~Ã elastic scattering without assuming any zeros in the nonHip p residue. Thus
it avoids difFiculties of such zeros due to factorization. The parameters of the p and p' are consistent with
the nucleon electromagnetic form factors and predict the mass of p' to be around 1.1 GeV.

I. INTRODUCTION
' 'N high-energy m.X, EE, and i'd% elastic scatter-
s ~ ing, it is found that the cross-section difference do-

/dt(AB~ AB) da/dt(AB A—B) cha, nges —sign' around
f= fo —0.2 GeV' (here A means the antiparticle of A).
This "crossover" phenomenon in the previous Regge-
pole models had been attributed to the presence of a
zero at t= to in the helicity-nonflip residue functions of
the p- and the co-exchange amplitudes. "- 4 There are two
objections to such a zero: (l) Factoriza. tion would imply
such a zero to be present in the co residue functions for
all channels, 4' which contradicts the yP ~ ~'P data'r;
(2) factorization also implies (assuming simple zeros)
that the pm.~ residue vanishes at to. Since the same pm@

residue appears in both ~~It residues, this in turn would

imply that in, addition to helicity nonAip, the helicity-
Rip m-.X residue is also zero at to. This is in contradiction
with the experimental mX charge-exchange data. Alter-

* Work supported iri part by the Atomic Energy Commission,
under Contract No. AEC AT(11-1)34P107A.

t Present address: Department of Physics, Indiana University,
Bloomington, Ind. 47401.

' K. J. Foley et 4., Phys. Rev. Letters 10, 376 (1963).
2 B. R. Desai, Phys. Rev. 142, 1255 (1966).' R. J.N. Phillips and W. Rarita, Phys. Rev. 139, 81336 (1965).

W. Rarita, R. J.Riddell, Jr., C. B.Chiu, and R. J.N. Phillips,
Phys. Rev. 165, 1615 (1968).

~ W. Rarita and V. L. Teplitz, Phys. Rev. Let ters 12, 206 (1964).
6R. Alvarez et al. , Phys. Rev. Letters 12, 707 (1964); M.

Braunschweig et a/. , Phys. Letters 22, 705 (1966); G. C. Solon
et al. , Phys. Rev. Letters 18, 926 (1967).' V. Barger and L. Durand III, Phys. Rev. Letters 19, 1295
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TABI.E I. Summary of results.

Parameters

A p {GeV mb'")
Bp (GeV '}
C, (Gev-i mb»2)

D (Gev ')

—5.34
3,92

—5.50
1.81

0.60+0.83t

A, . (Gev-i mbi~2}

Bp (GeV ')
Cp (GeV 'mb'")
Dp (GeV ')
ofps

250 7

0.92
—967

0.43
0.32+0.64t

g' comparison

der/Ck

Data points
p(do/dt)
Data points
Total
No. of points
No. of parameters

This work

84.4
70
6.8

12
91.2
82
12

Ref. 8

97.4
57
3.6

12
101
69
11.

Crossover point
EE, (GeV) t(GeV')

3 —0.19
7 —0.21

11 —0.22
15 —0.23

Residue at the p pole
Calculated Ref. 2

0.64 0.87
4.0 3.98

nongip

Alp

native explanations to avoid the difhculty of a zero have
been suggested. '

Ke propose that the relevant ~V data can be ex-
plained in terms of the (usual) M= 0 Regge trajectory
together with a conspiring M= j. p' trajectory with
otherwise the san:e quantum numbers as the p tra-


