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Nonuniqueness of the Spin —,' Equation~
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4 e show that the Dirac equation is not the only first-order differential equation that is form-invariant
under Lprentz transfprmations, irreducible, and derivable from a Lagrangian, and whose solutions cor-
resppnd to mass m and spin ~. It is, however, the only such equation, except fpr spin 0 and 1, for which

po is diagpnalizable.

I. INTRODUCTION

INCE Dirac's discovery' in 1928 of the equation
that now bears his name, many particles with spin

—,
' have been found experimentally. It would be aesthet-
ically pleasing to have only one equation, namely
Dirac's, capable of describing these particles. If one
makes sufhciently stringent assumptions, this is cer-
tainly true. Thus, Naimark' has shown that the Dirac
equation is the only finite-dimensional equation of the
form

(P„Pv—m)f = 0

Ke are concerned with finding equations of the form

(P„P~—m)/=0

that are form-invariant under Lorentz transformations,
irreducible, and derivable from a Lagrangian, and
whose solutions transform according to mass-m spin--',

representations under the inhomogeneous Lorentz
group. We shall nom discuss each of these requirements
in turn.

Form invariance of (1) demands that if P transforms
under Lorentz transformations according to

P(x) ~P'(x') =D(A)$(A x'),

then the p's satisfy

(2)D(X) 'P D(X) =-X"P"

In terms of generators this reads

(3)[pP 3IIPa] gFepP —gPPps

so t.hat
P"=[/', M"'j, 4=1, 2, 3. (4)

Bhabha' "' found the most general solution of Eq. (3).
This brings us to the question of irreducibility. To dis-
cuss this requires more details of Bhabha's solutions.

The solutions obtained by Bhabha are expressible in
terms of certain matrices I and e& and a number of
arbitrary constants. The u and nt' are related to the
decomposition of the representation S' X)'" of SU(2)
into S"~'" and are thus closely related to Clebsch-
Gordan coefficients. The solutions are nonzero only if
the representation D(A) in Eq. (2) is such that, for every
irreducible representation D&&'~& in D(A), there also
occurs at least one irreducible D"' "such that

~ j—j'
~

= ~k —k'~ =-', . We say that two such representations
are linked. If the irreducible representations occurring
in D(A) can be split into independently linked sets of
representations with no cross linkage between the sets,
then the resultant p's are reducible. Otherwise they are
irreducible.

The condition that Eq. (1) be derivable from a
Lagrangian is equivalent to requiring that a Hermitian-
izing n&atrix g exist such t,hat

II. GENERAL THEORY

Once we drop the requirement that Po be diagonaliz-
able, the equation resulting may be studied in the frame-
work of higher-spin equations. As we shall see, this
results in a hierarchy of spin-~ equations. The general
theory of such higher-spin equations was discussed in
a previous paper. ' The main features of that paper will
be repeated herc without proof.
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with a diagonalizable Po matrix for which the charge
density is definite. As me will show later on, the require-
ment of definiteness of the charge density may be
dropped, so that to obtain uniqueness of the Dirac
equation for spin -', requires only that po be diagonal-
izable. Unfortunately, there seems to be no compelling
reason for making this assumption. In fact, if one
requires that Po be diagonalizable, one not only makes
the Dirac equation unique for spin ~, but one also
excludes all equations of the form (1) for all other
spins, except spin 0 and spin 1. So it seems that this
requirement is too strong. Ke have not succeeded in
finding a weaker requirement. that ~ould make the
Dirac equation unique.

In Sec. II, we give an outline of the general theory
required, as mell as a proof of the uniqueness of the
Dirac equation in case Po is diagonalizable. In Sec. III,
we work out in detail the next simplest case of a spin--,'
equation and give an explicit representation of the
matrices p„and the Hermitianizing matrix q In Sec. IV. ,
we list speculations regarding the use of these equations.
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Using the results of (3), it will follow that, for the
theories here described, there is always one and only
one such matrix p. The form of g is again explicitly
given in (3).

The condition for mass 222 (Kiein-Gordon condition)
requires that the minimal equation for Po be of the form

Equation (6) implies that the matrix P() may be put in
the following Jordan form:

1 0 0
P()= 0 —1 0

.0 0 E.

(|t 2 1)P m —0

The condition is also sufhcient. Umezawa and Visconti
have shown that n =2s—1, where s is the maximum spin
contained in the field P. From (6) it follows that P() has
eigenvalues 0, &1.The physical solutions of (1) corre-
spond to the ~f eigenvalues. The projection operator
onto the space of physical solutions of (1) in the rest
frame is Po' '. Therefore, one can write the condition
for spin ~ as

J2P 2a—1 1 (1+1)P2e-1 (7)

and the C, ~ are arbitrary coeScients. For /=k or
l'=k', we have

((k—l k+l)*Idol (k,k) &

=C. (-1)"+-'(j)1/2(j+1)1/2b„. (Sd)

All other required components can be obtained from

and

(k I
I p() I

k', I'& = (—1)22+2(k', l' I/)/0I k, l& (Se)

(k ll&2lk'1'&= —«»I&oil', k'& (Sf)

The indices (k,l) here refer to the indices in D(2/)
labeling the irreducible representations.

where J' is the square of the generators of rotations.
For the ensuing calculations, it is convenient to work

in a basis in which J is diagonal. The components of P()
are then given by the following equations:

((k,f).l~. l
(k-!,l+!))

=C«(k+ j l)'/'(j+l+—1 k)' "6,,', —(8a)

((V).l~.l(k —l, f—l) )
( 1)2+/+j(k+f+ j)1/2

X (k+1+j+1)'/2l)" (Sb)

((k, k+-,'), I/(4I(k+-', , k),)=c„(—1)( )+'(j+2')bjj, (sc)

where l~k and l'Wk',

(j)= integral part of j,
Ik —ll & j'& Ik+ll

where 1 is a unit matrix and S is a nilpotent matrix of
order 22=2s —1. If p() is diagonalizable, then 22(1 so
that 2s—f&f or s&1. Thus, the maximum allowed

spin is 1. This limits us to the representations D('",
D(&'), D(& &', D(' ", and their conjugates. For these
representations, however, the only possible equations of
the form (1) with a Hermitianizing matrix 2/ are the
Dirac and Dugan-Kemmer equations. Thus we have
proved our claim.

In general, of course, if we drop this requirement, all
other irreducible representations are permitted.

B. General Case

In this case, we have chosen as the representation D
in Eq. (2), any one of the following:

D(k) (P LD(j+1/2, j/2)(f)D(j/2, j+1/2)7

k=0, 1, 2, (10)

The procedure to be followed is as follows: Using the
relations (8), an explicit representation P()(k) of P()

corresponding to the representation D(k) is written
down. The matrix P()2 then appears in block diagonal
form, with the variousblocks labeledby the values of J'.

Thus the blocks are labeled by k+ ~, k —
~ k —

+z

—,', ~, —,'. %e now 6x the constants C, & in the blocks as
follows: Starting with k+~, we make the successive
blocks, except the spin-2 block, nilpotent. Finally, the
spin--, block is made to satisfy the minimal equation of
the whole matrix. This ensures that both Eqs. (6)
and (7) are satisfied and guarantees that we have a
mass-m spin--,' representation of the inhomogeneous
Lorentz group.

In applying the above procedure, one is doing in
reverse what is usually done in higher-spin theories.
There, one introduces lower spins and makes their
corresponding submatrices nilpotent. Here we introduce
higher spins and make their corresponding matrices
nilpotent.

A. Diagonalizable Ilo

We shall now show that the requirement that /(4 be
diagonalizable, uniquely picks out the Dirac equation.

' H. Umezawa and A. Visconti, Nucl. Phys. 1, 348 (1956).

III. EXAMPLE

The case k =0 for Eq. (10) yields the Dirac equation.
The next simplest case is k=1. In that case D(1) is
equivalent to D" &'D( &)(BD(i O'Q)D'&'. As stated
above, we work in a basis with J' diagonal. Then J' has
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the form
—:(-;+1)

0 —,
' (-', +1)

0 0

0
0

-', (-', +1)

and in block form Po is given by

2 (k+1)
0 $($+1)
0 0

0 2Cg 0
&3Ci 0 —C2

C3 0 AC4

0
0

2 (2+1)

0 VSC, 0
2C2 0 0
0 —C2 AC g

4C22 0 0
0 C2'+3CgC4 v3C4(C3 —C g)

0 %BC,(C3—C2) Cg'+3CgC4

C32+3CgC4 0 v3C4(C3 —C2)
0 4C' 0

&3Cg(C,—C2) 0 C. 2'-+3CgC4

(13)

Therefore, we require C2=0 and that 3'=3 as minimal equation, where

3CgC4 43C4C3

&3C)C3 C32+3CgC4
(14)

This yields the following solutions:

(1) C4 ——0, C3'=1, Cq arbitrary; (3) Cg ——0, CgC4=-', ,

(2) Cg ——0, C3 ——1, C4 arbitrary; (4) Ca=0, C4 ——0, Cq arbitrary.

Solutions 3 and 4 are excluded since they do not make 3'=3 a minimal equation. Solutions 1 and 2 lead to
equivalent matrices so that we have only one solution. Also, in case 1, C&QO and in case 2, C4WO, since then again
~'= 4 is not a minimal equation. The ~ sign associated with C3 is also of no relevance, since it can be absorbed
in C~ or C4 as the case may be.

We now present an explicit representation of the four p matrices just derived. These are not obtaine«sing (4);
instead, it was more convenient to use the actual definition in terms of spinors. The matrices are

0 0
&2C 0
—C 0
0 C
0 —v2C
0 0

—1

0

0
—1

0
—C
0

v2C"

0
0

0
()

—AC
()

C
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0
0

-—c
0
0

0
0
c
0
0

—Kc

0
—1

—1
0

1
0

—+2c
0
0
0
C
0

0
—c
0
0
0

v2c

&2.ic
0
0

0
0

0
0
ic
0
0

v2~c

z

0

'l

0

—v2~C
0
()
()

—iC
0

0
—K

0
()

0
—&2ic

0
—&2C
—c

()
()
()

0
0
0

—c
—&2C

0

0
1

0
—1



1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

0

0
—1

0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0

We also have q=g) =g '.

IV. CONCLUSIONS

Once the requirement that P& be diagonalizable is

dropped, we can construct a whole hierarchy of spin--,'
equations. This makes it clear that it is also possible to
construct a hierarchy of higher-spin equations. In fact,
one simply starts with one of the representations given
in (3) that describes a higher-spin equation and one
stacks on top of this the higher spins. These are then
eliminated by requiring their corresponding submatrices
or blocks belonging to P~' to be nilpotent. Thus, the
physical principles spelled out before for an equation
of the form

since all of these equations have a different number of
spinor components, interactions between two different
types of such spin-2 particles cannot be of the Yukawa
type and are likely to be of the current. -current type.
This automatically leads to a conservation law implying
that the type of spin--,' particle involved is conserved.
It is tempting to speculate that this may have some-
thing to do with the fact that the p-neutrino differs
from the electron-neutrino and that muons and elec-
trons are described by diRerent spin-2 fields. At
present, however, there seems to be no justification for
this. A first test would be to calculate the g factor for a
particle described by one of these other spin--', fields.

namely, form-invariance, irreducibility, Lagrangian,
and pure spin and mass, do not suKce to determine such
an equation uniquely.

In the case of spin ~, all of the resultant equations,
except Dirac's, lead to a nonrenormalizable electro-
dynamics and, therefore, in the presence of interactions
are not equivalent to the Dirac equation. Furthermore,
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