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Angle and Phase Coordinates in Quantum Mechanics
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A general approach to the description of an angle and phase is given on the basis of the kq representation.
It is shown that an angular coordinate in quantum mechanics has to be treated as a quasicoordinate in
order to avoid inconsistencies. The kq representation leads to a consistent de6nition of the angular-momen-
tum-angle degree of freedom. Using the correspondence between classical and quantum mechanics for the
phase of a harmonic oscillator, operators are delned that form a new quantum-mechanical representation.
This representation clari6es the concept of the phase and sheds light on the general understanding of rota-
tions in quantum mechanics.

I. INTRODUCTION

HK very important concepts of angle and phase
operators have been a great challenge to under-

standing the fundamentals of quantum mechanics. In
recent years these concepts attracted much attention in
connection with coherent states in laser physics, super-
conductivity, and superfluidity, and also in connection
with the energy time uncertainty relation. The main
difIiculty in treating the angle and phase coordinates is
connected with their representation by a linear oper-
ator. ' Any observable that is a function of angle and
phase must by the very nature of angle and phase be
periodic with the period 2x. The difFiculty arises in con-
nection with the necessity of having a linear operator
which is at the same time periodic. The recently intro-
duced kq representation2 turns out to be very useful for
treating an angular coordinate in quantum mechanics. '
The reason for this is that the kq representation uses the
concept of quasicoordinates, i.e., coordinates defined
within some constant. Originally this representation
was defined by using x and p so that x is measurable
within the constant a, and p within the constant
27r/a (here, k = I).Most naturally, the kq representation
can be applied to an angular coordinate because the
latter is defined within a constant 27'. The treatment of
the angle and phase in this paper will be based on the
kq representation.

In recent publications, ' 4 ' the concepts of angle and
phase have been to a great extent clarified. In particular,
it was shown4 that the well-accepted description of the
phase by a Hermitian operator is inconsistent, and it
was suggested that the phase operator be defined in an
indirect way by using Hermitian cosine and sine
operators. The same operators were also used in more
recent publications. "
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s P. Carruthers and M. M. Nieto, Rev. Mod. Phys. 40, 411

(1968).

II. AN ANGLE IN REGULAR SPACE

An angle n in the xy plane can be defined as follows:

cosn =x/(x'+y') '"
sinu=y/(x'+y )'~'

(&)

(2)

In this paper, alternative expressions for the cosine
and sine operators are given which, in addition to de-
fining the phase operator of a harmonic oscillator, also
lead to a very interesting connection between rotations
in the xp plane and rotations in regular space. The
cosine and sine operators $C(y) and S(p)) are obtained
in this paper by a proper symmetrization of the corre-
sponding classical expressions. The properly symme-
trized C(p) and S(y) operators define a new quantum-
mechanical representation which gives a consistent
description of the angle in the xp plane and the phase
of a harmonic oscillator. The eigenfunctions of the
operators C(y) and S(q) in the representation of a
harmonic oscillator turn out to be the normalized
Legendre polynomials. This result is of great interest
and sheds light on the general understanding of rota-
tions in quantum mechanics.

In Sec. II, a consistent definition of the angular-
momentum —angle degree of freedom is given. Section
III deals with an angular coordinate in the xp plane
(phase plane) and the phase of a harmonic oscillator.
As in Sec. II, the treatment starts with a classical de-
scription of the problem, and the operators are obtained
by symmetrizing the corresponding classical expressions.
In Sec. III, the main section of the paper, the new
quantum-mechanical representation (the phase repre-
sentation) is defined. In Sec. IV a discussion of rotations
in quantum mechanics is given in light of the phase
representation. A connection is established between
rotations in regular space and in the phase plane. It is
shown that l, the quantity that defines the eigenvalues
of the square of the angular momentum, l2=l(L+I),
can be given the meaning of a generator of infinitesimal
rotations in the phase plane, sp, . Section V is a general
discussion of the results of this paper. The Appendix
gives a detailed analysis of the previous solution4 ' for
the phase of a harmonic oscillator.
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In (4), p, and p„are the x and y components of the
linear momentum. In order to see the inconsistency con-
nected with (3), let us write the matrix elements of
both sides of (3) in eigenstates of L, :

(m —m')(m(n)m') = ib„~ .— (5)

Here m amd m' are eigenvalues of L,. Relation (5)
cannot possibly be true' for m =m', if the matrix element
(m~n~m') is well defined: The left-hand side of (5)
equals zero for m=m', while the right-hand side is
different from zero. This contradiction follows from the
assumption that a has finite matrix elements between
eigenstates of L. and from the assumption of relation (3).

Another inconsistency connected with a as a linear
multiplication operator is the following: The eigen-
functions of L, in the n representation, f (n), are periodic
in e. When the operator o. is applied to them, one gets
nf (n), which is not periodic. This means that n is not
well defined because it removes the functions ij (n)
from the space in which they are defined.

The above inconsistencies are avoided if one defines
n by means of the operators (1) and (2). It remains to
show that these operators form a complete set. This
can be proved by using the kq representation. ' Origi-
nally, this representation was defined for the coordinate
x and the momentum p:

where

T(a) =e'"

T(b) =e'*',

It has been shown' that T(a) and T(b) form a complete
set of commuting operators. The operators T(a) and
T(b) can be defined for any pair of conjugate coordi-
nates; for the angular-momentum —angle coordinates

The formulas (1) and (2) can be used in both classical
and quantum mechanics, and by measuring cosa and
sinn one can define n (within a multiple of 2x). In
classical mechanics, this forms a complete definition of
the angle o,. In quantum mechanics one would have to
show that the operators (1) and (2) form a complete
systeni of commuting operators. This latter is needed
in order to specify by means of the eigenvalues of cosn
and sinn a complete set of eigenfunctions. In the con-
ventional definition of the angle in quantum mechanics,
n is defined as a multiplication operator. This enables
one to use n for specifying a complete set of states. It
leads, however, to a number of inconsistencies. One
of them is connected with the commutation relation
between o. and the s component l, of the angular
momentum. '

„ug= —i,
where

(4)

they will be
2' (2 x) —e2+a g

T(1)=e'~, (10)

where cosn and sinn are given by (1) and (2), respec-
tively. The eigenvalues of e' define, therefore, the
eigenvalues of cosa and sino. and vice versa. From here
it is clear that the angle e is completely and consistently
defined by the eigenvalues either of e' or of coso. and
sina. According to Ref. 2, the eigenvalues of e' are
e' ', where n' varies from 0 to 2~. The eigenfunction of
e' corresponding to the eigenvalue e' ' is'

1f ~ (u) =Q b(u —u' —2irn) =—g e'& '&". (12)
n 2' n

The functions (12) form a complete and orthonorrnal set

*(u)P (n)du=+"b(u' —n"—2xn) . (13)

'D. Bohm, Quantlm Theory (Prentice-Hall, Inc. , Englewood
Cliffs, N. J., 1951).' P. A. M. Dirac, The PrinciP/es of QgantNw Mechanics (Oxford
University Press, New York, 1958).

where a was put equal to 2x and b equal to i. This
choice of a and b satisfies relation (8) and is in agree-
ment with o, 's definition within a multiple of 2x. As in
the case of x and p, the operators (9) and (10) form a
complete set of commuting operators. The proof of this
statement can be carried out in the same way as for the
operators (6) and (7). One only has to replace p by L.
and x by n, and notice that p and l, are differential
operators (p = —iB/Bx, L, = —iB/Bn) when operating on
functions of x and o., correspondingly. The differential
character of L. follows from its definition (4).7 The
operators (9) and (10) form, therefore, a complete set
of commuting operators. The additional requirement of
periodicity of the wave function as functions of n makes
the eigenvalues of L, integers, and the operator (9) be-
comes a unit operator. One is, therefore, left with the
operator (10) iohich by itsetf forms a comptete set 'The.
operator (10) de/ines, therefore, a quantum mech-anicaL

representation The .operator (10) also satisfies the very
important feature that should be required from any
operator that is used for defining the angle o. The
operator (10) is periodic in n. It is because of this
feature that the kq representation is so suitable for the
definition of an angular coordinate. Being built on
quasicoordinates, this representation takes care of the
periodic nature of the angle n in a straightforward way.

The connection between the operator (10) and the
operators (1) and (2) is very simple. The operator e'
is a unitary operator and is a sum of two commuting
Hermitian operators:

e' =cosn+i sinu,
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This completes the construction of a quantum-nie-
chanical representation based on the operator e' in (10).

A number of remarks can be made on the commuta-
tion relation for the angular-momentum —angle coordi-
nates. As was already pointed out, the usual relation
[relation (3)] is contradictory and cannot be used.
From relations (1), (2), and (4) it follows that

bt =e~a

b=e '~

(21)

(22)

For future reference, let us write down the results of
this section in the language of "second quantization. "
It is possible to define operators bt and b that in some
sense resemble properties of the creation and annihila-

tion operators

[l„cosu]=i sinu,

„sinn = —i cosa. ,

[sinu, cosu] =0

(14)

(15)

(16)

The operator (21) is the same as in (10). It can be
easily checked that

(23)

Since cosn and sino. define the angle n, their uncertain-
ties will define the uncertainty in n. The commutation
relations (14) and (15) have already been suggested' 5

as a means of avoiding the inconsistencies contained in
relation (3). The uncertainty relations that follow from

(14) and (15) are'

Al, h (cosu) & —', (sinu),

LU, E(sinu) & 2 (cosu).

(17)

(18)

For states that are well localized around no, namely,
(sinu) =sinuo, (cosu) = cosu0, 6 (cosu) = sinuohu, and
D(sinu) = cosupAu, i'elations (17) and (18) lead to the
conventional uncertainty relation'

hl, ho. & -'. (19)

It is to be noticed that in none of the relations [rela-
tions (1), (2), and (10)—(15)]defining the angle u, does u
itself appear. In all these relations, the angle appears
through either e' or cosa. and sinn. The same is also
true about the eigenfunctions of /, :

(u) &Ann/g (2x)

Ke see therefore that the kq representation leads to a
consistent definition of the angular coordinate: It leads
to an operator [operator (10)] that forms a complete
system of commuting operators, it is periodic in 0.,
and its eigenfunctions (12) form a complete set of func-
tions. These requirements should be satisaed by any
operator used for defining the angle n in quantum
mechanics.

It is important to point out that the definition of
the angle u [relations (1) and (2)] holds in both
classical and quantum mechanics. As will be seen later,
this is connected with the fact that relations (1) and (2)
do not contain noncommuting operators [this is not
true for the definition of the phase angle, Eqs. (29)
and (30)]. The classical Poisson brackets for /„cosu,
and sinu are obtained from relations (14)—(16) accord-
ing to the general rule by dividing the right-hand sides
of these relations by i (b is assumed equal to 1).There is,
therefore, the regular correspondence between classical
and quantum mechanics in the definition of the angle
in regular spa, ce. As will be seen in Sec. III, this corre-
spondence is violated in the definition of the phase.

where
~
m) is an eigenstate of t, corresponding to the

eigenvalue m. As seen from (23) and (24), the operators
bt and b behave like creation and annihilation operators
correspondingly. However,

which means that
btb =bbt = i, (25)

[b,b'1= bb' btb =—0 (26)

For real annihilation and creation operators, the com-
mutator does not vanish' [see also relation (46), in Sec.
III]. It can also be verified that

[l.,bt] =bt,

[l„b]= b. —
(27)

(28)

The relation (26) is equivalent to (16), while either
(27) or (28) is equivalent to the relations (14) and (15)
together. This second-quantization notation will also
be used in the next section.

III. AN ANGLE IN PHASE PLANE

An angle in the xp plane (phase plane) can be defined
in a way similar to the definition given by relations (1)
and (2) in regular space. Here, x is the coordinate of a
particle and p its momentum. In order to have the
same dimensions in both directions, ngcux and p will be
used as coordinates (m is the mass of the particle and
&o has the frequency dimension). In analogy with (1)
and (2), an angle q in the (nuux, p) plane is defined as
follows:

cosy = noix/[(nuux)'+p2]'~', (29)

»nv = —p/[(~x)'+p']'". (30)

The reason for the minus sign in (30) will become clear
later. Unlike in regular space where the definitions (1)
and (2) were valid both classically and quantum-
mechanically, the formulas (29) and (30) are meaningful
only in classical mechanics. The reason for this is that
(29) and (30) contain noncommuting quantities (x and

p), and the meaning of the division sign is not clear
unless properly described. Before going to the quantum-
mechanical definition, let us 6rst complete the classical
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case. It, is known' that in classical mechanics one can
define a quantity P',

which is conjugate to the angle q in the phase plan---
i.e, , the classical Poisson brackets for P and q are

(P, y) = —1.
One can also verify that

(P, cosy) =siny,

{P,siny} = —cosy,

(cosy, siny) =0.

(32)

(33)

(35)

Relations (33)—(35) are the same as the relations
satisfied by the classical quantities l„cosn, and sinn,
correspondingly Lthe latter relations can be obtained
as was mentioned before from (14)—(16) by dividing
the right-hand sides by i]. It is for this reason that sine
in (30) was defined with a minus sign. Classically, there
is, therefore, a complete analogy between the angle—
angular-momentum commutation relations in regular
space and q -P commutation relations in the phase plane.
This analogy goes even further. It is known that the
component of the angular momentum in the z direction,
/„ is a generator of an infinitesimal rotation in the xy
plane. Similarly, one can check that P given by (31)
is a generator of infinitesimal rotations in the (mcex, p)
plane. Indeed, the infinitesimal transformation caused
by P is'

8p = (nuox) d y, (36)

(37)

where the infinitesimal parameter was denoted by dq.
The transformation (36), (37) expresses a rotation by
dy in the (mcgx, p) plane. The analogy between I, and cc

on one side, and P and q on the other, is therefore
complete.

It is very interesting to note that the quantities P'

and q are closely related to the Hamiltonian and phase
of a harmonic oscillator. Indeed, the Hamiltonian of a
harmonic oscillator is

H =p'/2 +n,'ceav' '-x
The solution of (38) can be given by

(38)

max= (2nueP)'" cosy, (39)

p = —(2euuP)'~' siny ) (40)

where P is given by (31) and has the meaning of H/a&,
and y is the phase of the harmonic oscillator. Relations
(39) and (40) coincide with the definition of y in (29)
and (30), and we see, therefore, that the angle y in
phase space is in classical mechanics also the phase of
a harmonic oscillator. Since very many problems in

k4. Goldstein, Class~ca/ Mechanics (Addison-wesley Publishing
Co. . Inc. , Reading, Mass. , 1950).

a=L(2mce) "c'](mcex+iP),

at = L(2nuu) '"](nudx —c'p) .

(42)

(43)

The operators u and a~ have the following properties:

al n) =n'~'I n —1&,

at
I
n&= (n+1)' In+1&,

I a,a']=1.

(44)

(45)

(46)

They are real annihilation and creation operators and
differ therefore from b and bt defined in (21) and (22).

The problem, however, is not so straightforward in
regard to symmetrizing the expressions for cosy and
sing. In a recent paper by I.erner, '0 it was shown that
there is no unique way for symmetrizing these classical
expressions. In order to clarify this, let us define the
following expressions:

e'"= cos y+i sin y = a*/P'~' (47)

e "=cosy i siny—=a/P'", (48)

where u and u* are the classical expressions for the
operators a and at in (42) and (43), correspondingly,
and P is given by (31).In Refs. 4-6, the operator corre-
sponding to the classical expression (47), for example, is
defined as

e'"=at(n+1) '".
Expression (49) corresponds to replacing P by (n+1)
in (47). However, we know that the symmetrized ex-
pression for P is given by (41) and equals n+ ', Thus, -.
taking P =n+1 in (49) corresponds to the assumption
that P is given by act and not by the symmetrized ex-
pression (41). The denominator in (49) is a "little bit"
bigger than the correct symmetrized expression. Clearly,
one could choose for P the expression Ota=n, and then
the denominator in (45) would be '~ nwh2ich is a
"little bit" smaller than the symmetrized expression.
As shown in Ref. 10, many different choices are possible.
The problem is, therefore, to find symmetrized ex-

"K. Lerner, Nuovo Cimento 568, 183 (1968).

classical physics and in particular in quantum me-
chanics are represented by the harmonic oscillator, the
investigation of the angle in the phase plane is of funda-
mental importance.

The treatment of an angle in the phase plane in

quantum mechanics is connected with some difFiculties

which are caused by the noncommutativity of x and p.
One difficulty (which is not a fundamental one) is due to
the symmetrization procedure for defining operators
from the classical expressions (29)—(31). There is no
problem with finding the operator P from (31):

P = ', (aa'+a'-a) =n+-,',
where n is the number operator for a harmonic oscillator
and a, at are annihilation and creation operators:



pressions for C(p)
physical results.

In this paper we
metrized operators
and (48):

(56)C(y) i
cosy') =cosy'i cosy').

choose the following properly sym-
for the classical expressions (47) One can expand the vectors in (56) in the eigenvectors

~
n) of the harmonic oscillator'

E(~)=&'f( ii)

E( q) =—f(N)a,

f(n) = (n+1)'"/(n+ ')'"-, (n+ ')'i-'

(50)

(57)lcosv')= 2 C (~') Ia).
nm

(51)
where

(52) From (56) and (57) andfrom the definitio (54) of C(p),
one has

The operator E(p) corresponds to the classical expres-
sion e'" [cf. Eq. (47)] and E( rp) corre—sponds to e '".
The reason one does not denote the operators (50) and

(51) by e'& and e '", correspondingly, is because these
operators are not unitary. ' The choice of f(n) in the
definitions (50) and (51) is based partly on the sym-
metrization of the expressions (47) and (48) and partly
on a heuristic argument that is justified by the results
given below. In previous work, ' ' the function f(n)
according to (49) is [call it f(N)]:

)ii+-', y'"
[

~C„,+(m+1)cu„
—2 cosy' [(n+ ,') (n-+2)]'"C.=0 (5. 8)

One can easily verify that relation (58) is exactly
the recursion formula for normalized Legendre poly-
nomials. "The eigenstates of C(p) are therefore

(59)icos&p') = Q y, (cosy') i+),
nm(53)f(I)= (n+ I) ""-
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and S(y) that lead to reasonable ment of S(v) is similar]

For large ii, the functions in (52) and (53) coincide,
whereas for small n, they are, of course, different.

In a similar way one can also define operators C(&p)
and S(p) that correspond to cosy and sin&p in (29) and

(30), respectively. One has

C(~) = l[n'f(a)+f(~)n], (54)

S(q) = (2i) '[a"f(N) f(n)a] — (5.5)

From this definition it is clear that C(p) and S(y) are
constructed from E(v) and E( &p) as if the l—atter were
exponential operators. Now we come to another dHB-

culty that follows from the noncommutativity of x and
p: The operators C(q) and S(p), as can be verified [see
relation (71) in Sec. V], do not commute. As was men-
tioned before, an angle in regular space or in the phase
plane can be defined by measuring the cosine and the
sine of the angle. In the case of the regular space this
could be done both in classical and quantum mechanics
[cosn and sinn can be measured simultaneously, since
they commute; see relation (16)].Classically, there is a
complete analogy between n and rp. Quantum-mechani-
cally, this analogy is broken. There exist operators (cosn
and sinn) which measure the angle n in regular space,
while the corresponding operators in the phase plane
cannot be measured together. One thus comes to the
conclusion that a coordinate perfectly well-defined clas-
sically, i.e., the angle in the phase plane and the phase
of a harmonic oscillator, is not an observable in quantum
mechanics.

Since the operators C(p) and S(q&) do not commute,
the question can be asked whether each of them sepa-
rately defines a quantum-mechanical representation.
Let us show that the answer is afFirmative. To do so we
write down the eigenvalue equation for C(q) [the treat-

~

cosrp") = P (—1)"y„(cosy")~n).
nm

(61)

The eigenvalues of S(y) range from —1 to 1 and they
can therefore be denoted by cosp" with p" varying
from 0 to m. and defining an angle measured from the
negative direction of the p axis. There are two reasons
for such a "strange" notation [to denote the eigenvalues
of the sine operator S(v) by cosp"): First, it is denoted
by cosine in order to give the meaning of the angle that
is measured by the operator S(v), namely, it measures
the angle from the —p axis in the xp plane [the minus
direction of the p axis is chosen in correspondence with
the classical definition (30)]; secondly, it is denoted

"W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and
Theorems for the Special Flnctions of Mathematical Physics
(Springer-Verlag, New York, 1966).

where the eigenvalues cosy' assume values from —j. to
1 and y„(cosy') is a normalized Legendre polynomial":

q. (s) = (n+ ')'12(1-/2 "I!)(if"/ds") (s' 1)"—(60.)

Since the Legendre polynomials form a complete and
orthonormal set, the operator C(y) defines a quantum-
mechanical representation: It is a Hermitian operator
with eigenfunctions that form a complete set. The
eigenvalues of C(&p) form a continuous spectrum from
—1 to 1 (an independent proof of the spectrum is pro-
vided by Lerner's results" ), and they can therefore be
denoted by cosp'. The angle q' varies from 0 to ~. It
defines an angle measured from the positive direction of
the x axis (in three-dimensional space this corresponds
to a polar angle).

Similar results are obtained for the operator S(p).
Its eigenfunctions are
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by y" in order to show that S(q) measures an angle
different from the one measured by C (y). In the classical
case, cosy and sing measure together the angle q. As
was mentioned before, in quantum mechanics this is
impossible because C(y) and S(y) do not commute.
What was shown here is that each of these operators
separately deffnes an angle: C(y) defines an angle
measured from the x axis, and S(q) an angle measured
from the —p axis.

As was mentioned before, in previous work a
different definition of the cosine and sine operators was
given. For example, the cosine operator was defined as
follows:

cos4 zp=azf(n) yf(n) a), (62)

In the semiclassical limit (large n), the symmetrized
expression (54) and definition (62) coincide. In the
quantum limit (small n), however, they are different.
For example, f(0) =2/v3, while f(D) =1. This slight
change, however, makes a very big difference. Unlike
solution (63), the coefficients in the eigenstates (59) of
C(q) are the Legendre polynomials. As will be shown in
Sec. IV, this leads to a profound connection between
rotations in regular space and in phase space.

Having established that each of the operators C(y)
and S(y) forms a quantum-mechanical representation,
it is interesting to find out the connection of the latter
with other well-known representations. Relations (59)
and (61) give the eigenfunctions of C(y) and S(y), re-
spectively, expressed in the eigenfunctions of a harmonic
oscillator. From (59), for example, one can find In)
expressed in the eigenfunctions of C(y):

In}= d(cosy) y, (cosy) I cosy}. (64)

From the expressions (54) and (55) it is very simple to
write C(y) and S(y) in the n representation. For
example,

(nlc(q) In' ) =zL&-.-in'"f(n —I)
+b„~ (n+i1)' f(Iz))n(65).

A very interesting result follows from Kq. (59): The
Legendre polynomial y„(cosy) is the eigenfunction of
a harmonic oscillator (for the sta, te n) in the cosy repre-
sentation. Since y„(cosy) is a Legendre polynomial, it
satisfies the following equation":

1 d dy (y))—siny — I+n(n+1) y. (y) =0. (66)
siny dy dq

with f(n) given by (53). The eigenstate of this operator
corresponding to the eigenvalue cos8 was found4 to be

Q sin(n+1)8I n).

cosy representation is as follows:

a d d
n (n+1) = — —sin y

sUly dy dy
(67)

~bile the expression (67) for n(n+1) is very simple,
the expression for n itself is not simple at all. It should
be mentioned here that if e and y were conjugate
coordinates (as they are in classical mechanics), then n
would be given by iB—/By

One can also express the connection between the
cosy representation and, for example, the x representa-
tion. Of particular interest is the expression for the
eigenfunction (59) in the x representation. One has

(xl «»y) = Z y-(cosy)4-(x)

where f (x) are the Hermite functions. Relation (68)
gives a definition of a new function, (xlcosy), as a
series of products of well-known functions. From the
definition (68) it is clear that the functions (xlcosy)
form a complete and orthonormal set of functions.

The operators C(y) and S(q) in (54) and (55) and
the number operator n for a harmonic oscillator Lsee
relation (41)) satisfy the following commutation
relations:

Ln, c(y))=iS(y),

Ln, s(q)) = zC(y)—,

(69)

1 n' (n+ 1)'
Lc(q),s(y)) =—. — (71)

2z n' '(n—+-1)'—-',

The first two relations are the same as for the operators
l„cos n, and sinn in (14) and (15).Relation (71)differs,
however, from the corresponding relation for cosa. and
sinn Lrelation (16)).Because of the noncommutativity
of C(y) and S(y), these operators cannot be used for
defining the phase of a harmonic oscillator. This can
also be expressed in a different way: From the definitions
(50), (51), (54), and (55) it is clear that

&(y) =C(y)+zs(y), (72)

E(—y) =C(q) —iS(q). (73)

That it is impossible to define an operator for the phase
follows also from the nonunitarity' of E(y). For a
unitary E(y), one can write E(y) = e'& with q a
Hermitian operator, and this would lead to a definition
of y, the phase. However, since E(y) is not unitary:

&(y)~(y)' =&(y)&(—y) =n'/(n' —4) (74)

it cannot be used for defining q.
Having the commutation relation (71), one can find

the uncertainty relation for C(y) and S(q),
From (66) it follows that the operator n(n+1) in the ~c(y)~s(y) & ,'(g), —(75)
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where

The commutation relation for the cosine and sine

operators was discussed before, ' and a similar dis-
cussion can be carried out for the new operators C(p)
and S(y). For example, for large e, g goes to zero and
the commutator for C(y) and 5(p) vanishes. In this
limit, the phase q can be well defined either by C(p)
and S(q) or by the operator E(q) in (72).

o'Yi„(e,c)
+ +/(/+1) Y,„(te)=0. (77)

sin'8 84'

For m=0, I'z does not depend on 4 and Eq. (77) goes
over into Eq. (66) with n replaced by /. This means
that for m=0, the operator P is given by expression
(67) with y replaced by lt:

1 d d
I2 = — —sin8-

sin8 d8 d8
(78)

IV. CONNECTION BETWEEN ROTATIONS IN
REGULAR SPACE AND xp PLANE

As is well known, in regular space the l, component
and the square of the angular momentum t2 have as
their eigenfunctions spherical harmonics, Y~ (O,C),"
where m is the eigenvalue of /, Lsee Eq. (20)] and

/(/+1) gives the eigenvalue of 12:

8 Bl', (8,4)}—sin8
sin8 88 88

from the similar meaning of y and 8, and from the fact
that 12=/(/+1), it follows that / can be given the mean-

ing of an operator, i.e., it can be given by the same

operator in the sp. plane as e is given in the xp plane.
From (41) and (31) one has

Therefore,
(79)

(8o)

It is easy to check that /(/+1), with / defined according
to (80), leads back to the operator P in (78). To see this,
one can write the definition of cos8 in a way similar to
that given in (54), with n replaced by / and with x re-

placed by s and p by p, in the definition of a and at

Lrelations (42) and (43)]. Since the operator n defined

by (79) leads to relation (67), the operator (80) will

lead to the right-hand side of (78) and, therefore, for
m=0, the operator I' can be given by /(/+1) with /

defined by (80). This shows that not only 12 but also /

has the meaning of an operator.
The result (80) has a very simple interpretation. The

function V~0(8) in Eq. (77) can be looked at as a state
for one degree of freedom (the azimuth and the absolute
value of the radius vector do not appear in this func-
tion). This degree of freedom is described by the angle
0 which is measured from the z axis. Since I'~0(8)
satisfies Kq. (66) with n replaced by /, it is clear that
for a one-dimensional motion I, and 8 can be given the
same meaning as n and q have for rotations in the phase
plane; i.e., l can be given the meaning of a generator of
infinitesimal rotations in the zp, plane (in complete
analogy with n), while cosa can be given by the ex-
pression (54) in the sp, plane.

Since the eigenvalues of 12 are /(/+1), there is a close
analogy between Eqs. (67) and (78).To see this analogy
better, let us come back to the definition of y and 8.
Although the angles p Lin Eq. (67)] and 8 Lin Kq. (77)]
were introduced in different ways, it is easy to show
that they can be given the same meaning. Originally,
q was defined as an angle in the xp plane, while 8 is the
polar angle in regular space. However, in the latter
case, when no=0, the only meaning that 8 has is that
of an angle measured from the s axis. It is possible
therefore to add to the s axis a p, axis, to define in
such a way a sp, plane, and to assign to 8 the meaning
of an angle measured from the z axis in the zp, plane.
Such a definition gives 8 the same meaning that p
(the phase angle) has. Having established this possible
meaning of 8, one can go on and find a very far reaching
connection between I and n. Usually, in rotations in
regular space, P has the meaning of an operator, while l
appears as a number so that /(/+1) gives the eigen-
values of 12. From the identity of Eqs. (67) and (78),

'~ L. D. Landau and E. M. Lifshitz, QNantum Mechanics
{Addison-Wesley Publishing Co., Reading, Mass. , 1958).

V. DISCUSSION

In textbooks on quantum mechanics one can usually
find the statement that observables in quantum me-
chanics and their commutation relations can "easily"
be constructed from their classical counterparts. In
particular, the quantum commutation relations for two
observables can be obtained from their classical Poisson
bracket by multiplying the latter by ih. This rule,
although in general correct is not without exception, as
shown in this paper. The quasicoordinate approach to
the angular coordinate shows that there is a very
simple correspondence between the classical and quan-
tum-mechanical definition of the angle in regular space.
However, with respect to the angle in the xp plane, the
analogy between classical and quantum mechanics is
broken. As is shown in this paper, one can define
classically an angle in the phase plane t Eqs. (29) and
(30)] which has no quantum-mechanical analog. This
angle also has the meaning of the phase of a harmonic
oscillator and is an example of a well-defined classical
quantity that cannot be expressed by a Hermitian
operator in quantum mechanics. The above-mentioned
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rule (its formulation is never very clear) does not seem,
therefore, to be universal.

The quantum-mechanical treatment of an angular
coordinate in the xp plane leads, as was shown in this

paper, to a new' representation. Although this repre-
sentation was developed on the x and p coordinates, it is

clear that similar results can be obtained for any pair
of conjugate coordinates, because the only information
that was used about x and p is their commutation rela-
tion. As an example one can mention the kinetic mo-
mentum for an electron in a magnetic field. It is known'

that the components of the kinetic momentum in the
plane perpendicular to the magnetic field form con-

jugate coordinates. The new representation (the phase-
angle representation) introduced in this paper is there-
fore of a very general nature.

In addition to having possible practical applications,
the new representation sheds light on the general under-

standing of rotations in quantum mechanics. Of par-
ticular interest is the connection between the generator
of rotations in the xp plane and rotations in regular
space. This connection is expressed by the fact that 3,

which defines the eigenvalues of the square of the
angular momentum, I' LI2=1(l+1)], can be given the
meaning of a generator for rotations in the sp, plane
Lsee formula (80)7.

Finally, one should remark about the importance of
the new representation in a number of fields of physics.
We have discussed the phase-angle representation in
connection with the definition of phase for a harmonic
oscillator. Since the phase plays a dominant role in
coherent phenomena like laser physics, superconduc-
tivity, and superQuidity, one would expect the new
representation to be of wide use in these fields of physics.

cosf=-2'La (22+1) '"+(I+1) "2aj.

The eigenvalue equation for this operator

co+~i~) =lijX), (A2)

when written in the 22 representation (the harmonic
oscillator representation), becomes4 )for details see
derivation of Kq. (58)j

C„+C„+2=2'„+.g,

APPENDIX

A discussion is given here of the eigenvalue equation
for the cosine operator defined in previous work4

Fq. (62)l:

with the boundary condition

Cg 2XCQ ~ (A4)

It is known" that equat. ion (A3) wit. h the boundary

condition (A4) is satisfied by Cheb& shev polynomials of
the second kind,

U (cos8) = sin (n+1)8/sin8. (AS)

The solution (A5) corresponds to the eigenvalue
X=cos8 in (A3) and to CO=1 in (A4). The Chebyshev
pol&uomials of the second kind, U (x), are known to
form a complete and orthonormal set of functions
in the interval (—1, +1) with the weight function

(1 x2) i /2 ~

U (x) U ~ (x) (1—x2)""dx=-'22r5 (A6)

Q J'„( x) U„( x)(1 x2't'"=8—(x x'). (—A7)
n=0

In (A6) and (A7), cos8 of (A5) is replaced by x. For an
angle 8 varying in a plane, the weight function will be
sin'8, because, for exaniple, the integral (A6) can be
written

sin (n+1)8 sin (I'+1)8
sin'-8d8=-', iran. ~ . (AS)

sin8sin8

The Chebyshev polynomials of the second kind give,
therefore, a consistent solution of Kqs. (A3) and (A4)
with an eigenvalue spectrum (li=cos8) ranging from
—1 to +1.Formally everything is correct: The problem
is, however, that physically the functions U (cos8)
cannot be interpreted as wave functions because for
their normalization a weight function sin8 is needed
(the physical variable is cos8). This means that U„(cos8)
do not have the meaning of probability distribution.
In Ref. 4 the solutions of Eqs. (A3) and (A4) were
chosen as

sin(n+1)8.

This corresponds to the choice C2 ——sin8 in (A4). Such
a choice is possible as long as sin8/0. When sin8=0,
we have Co ——0, and Ci ——0 )from Eq. (A4)g, and this
results in a trivially zero solution. This can also be
seen from (A9): sin8=0 means 8=0, 2r and for these
values of the angle the solution (A9) is trivially zero.
This is clearly not physical because the operator cosp
LKq. (A1)j of Ref. 4 is used for defining the phase which
supposedly has nonvanishing eigenstates for all possible
values of the angle.


