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A new approach to equations of motion in general relativity is presented. Unlike the usual approaches,
which rely on a regular background, this approach, by means of the method of spin coe%cients, is based on
the properties of the null cones emanating from a singular world line. We apply it to the Robinson-Trautman
metrics as well as to their charged counterparts, and obtain exact equations of motion that give an intrinsic
description of the behavior of a singularity in its own space-time. Two results of this approach are the
discovery of an internal structure for a singularity and the surprising appearance of the Abraham radiation-
reaction term in the charged case.

I. INTRODUCTION

HIS is the Grst paper of a series in which a new
approach to equations of motion in general rela-

tivity wiQ be presented. The point of view adopted in
this approach is that matter is to be represented by
suitably dered singularities (elementary singularities)
in the Geld, the Geld being the Weyl tensor. The
problem then is to give a description of the motion of a
singularity, intrinsic to its own space-time, with no
reference to a regular background space as is usually
done. ' Such a description is provided by an approach
that is based on the structure of the null cone in the
neighborhood of the singularity. The application of
Einstein s Geld equations in spin-coe@.cient formalism
yields exact equations of motion for these singularities.
A concomitant result, unsuspected by us, is the
discovery of an internal structure for these elementary
singularities and equations governing the time develop-
ment of this structure.

In this paper we will restrict ourselves to the special
case in which the elementary singularities are free, i.e.,
not interacting with incoming Gelds. This leads to the
Robinson- Trautman type-II metrics, ' 4 and to the anal-
ogous case in the Einstein-Maxwell theory, namely,
the charged Robinson-Trautman (RT) metrics.

In Sec. II we discuss the notation and general
formalism. It will be assumed that, to a large extent,
the spin-coefficient formalism' is known. Section III
will be devoted to the analysis and interpretation of
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the RT metrics. Section IV will be concerned with the
charged counterpart of the RT metrics. Here we get the
Grst signiGcant result of our approach, namely, the
rigorous derivation of the well-known Abraham
radiation-reaction force, with no cd hoc assumptions
and no mass renormalization.

Future papers in the series will discuss the introduc-
tion of an intrinsic dipole moment and angular momen-
tum to the singularity and their effect on its motion.
The interaction of the singularity with both incoming
gravitational and electromagnetic Gelds will also be
discussed.

II. GENERAL FORMALISM

The basis for our analysis of motion is the structure
of the null cones emanating from a singular world line
in space-time. Kith this as motivation, we consider a
family of null hypersurfaces, each labeled by u= const,
with an one parameter r measuring "distance" along
the null geodesics lying in the hypersurfaces, and two
"angular" coordinates x' (i 2,3}la=beling the geodesics;
that is, we construct a null coordinate system. ' (At this
point the null surfaces are arbitrary, but later they will
be made deGnite, giving a geometric invariance to the
work. )

%e now introduce a standard null tetrad system'
associated with this null coordinate system; that is, we
delne the set of vectors f&, n", m&, m", where l& (tangent
to the null geodesics) and n" are real null vectors, m&

and its complex conjugate mI' are complex null vectors,
and

with all other scalar products vanishing. In the coordi-
nate system constructed above (x'= I, x'= r, x', x'),
these vectors take the form

)u = glV ~V= $&W+ Pg, Is

nI'= 80&+ U81 I"+X'8;I', i= 2, 3. (2.1)

The contravariant components of the metric tensor are

' See, e.g. , F. Rohrlich, Classical Charged Part&les (Addison-
Wesley Publishing Co., Enc. , Reading, Mass. , 1965).
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given by~
gl'0= gp g"= 2(U (u—(o),
gli —Xi ()i~+ )i~)
gi0 — (p)0+ )i]0)

(2 2)

g =g '1'+O(7), g J=g ~(Q,x ).
The proof consists in 6rst noting that from (2.2)

g. ,g
jk —g.k

and then remembering that P satis6es'

a('/ar =p('+~]'.
From this one can show that

(2 4)

and, by taking the inverse of g", obtain the result (2.4).
We de6ne the fundamental two-surface (F2S) metric

by
g';, =limg;;/r'.

o

It can be proved (though we will not do so here) that, if
the line r= 0 is a regular, timehke (null, spacelike) line,
then the F2S has a positive (zero, negative), constant
Gaussian curvature.

The F2S is most conveniently represented in con-
formally Qat coordinates. Thus, its line element7 can
be written as

dt'= g';,dx'dx~= (1/2P')d fdf,
where f=x'+ix' The quant. ity P=P(u, f g) will be our
fundamental variable; from it, as we shall see later, is
derivable, in principle, all information concerning the
motion and internal structure of singularities. If the

7 The factor 2 in the line element is for conventional reasonS
and the F2S metric is really defined by ddt /P~.

The spin coeScients p and cr defined by'

p= L„),nz"m"= —2l" q )

0 = l„,.m"m" = (complex shear)

play a signiGcant role in what follows.
A severely restrictive condition on the fancily of null

surface is now imposed, namely, that near r=O,

p= — '+o( ), = o( ) (2 3)

Geometrically, this condition means that in the
neighborhood of the origin, the nu}l surfaces behave
like "cones." (In fact, in fiat space, light cones are
characterized by p= —1/r and 0 =0.) It also 6xes the
origin for r. When condition (2.3) is satisfied, and the
Weyl tensor is singular at r=O, we call the singularity
an elementary singularity.

The importance of condition (2.3) lies in the fact that
it permits us to prove that the two-surfaces, u and r
constant (that is, the cross sections of the cones),
possess a metric given by

y&= P(N)+rfl'(N, f'f), f=x'+'ix'

with the conditions (see Ref. 9)

$„l~= 1, f„l~=0.

(2.6)

(2 &)

For fixed I, the vector field l&(N, l,f) sweeps out the
directions of the full null cone as 1 and 1 vary over their
range. One must now specify how the directions t and f'

are to be propagated as u varies. This is most easily
done by setting

t"=&"/Po i &"= &"(fit') i Po= P0(Nit if ) (2 g)

Differentiation with respect to e then leads to the
propagation law

I+= —(P /P00)l~ (2.9)

expressing the parallel transfer of the direction of /&.

The metric tensor in the x~ coordinates,

g"= (~y /»") (~y'/»")~-s,

is now found to have the following components:

g„g= 8„, g«= 2(1+]~) r),
go;=0, g;;=( „l,,~', (2.10)

where use has been made of (2.7) and (2.9). Note that

I This can be seen by considering the infinitesimal coordinate
transformations that preserve (2.4) and keep the line r=o
unchanged.

~ The number 2 means that instead of being the proper time
g=)VX times the proper time. This choice of normalization is
adopted for purely notational reasons, i.e., to make the line
element agree with E. T. Newman and R. Penrose, Proc. Roy.
Soc. (London) ABOS, 175 (1968).

line r=0 is a singular line (i.e., the Weyl tensor becomes
infinite on it), then the Einstein 6eld equations yield
differential equations for the determination of I'. These
are the equations that will be analyzed and the ones
from which equations of motion and the time develop-
ment of the internal structure will be extracted.

In the coordinate system we have adopted, the only
coordinate freedom' that remains is the renaming of the
null surfaces; formally, this is given by

u'= f(N), r'=r/f, f'=g(l, f'). (2.5)

LLater, g(uf) will be made into f by demanding that
directions be parallel-transferred. ] It can be seen from
(2.5) that the F2S is defined up to an arbitrary factor P.
It will be shown later how this factor can be normalized
to unity.

Before the effects of the Einstein Geld equations on
the F2S can be considered, it is essential for interpretive
reasons to consider first the pat space -case of this
coordinate system associated with an arbitrary timelike
world line.

Let y" be Minkowskian coordinates and y& = P(u) be
the parametric form of an arbitrary timelike world line.
We now consider the coordinate transformation from
yl' —+ x&= (N, r,x',x') given by
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from (2.7)-(2.9),
P,=g„b»,

P,/P. = g„—l»= P„l»

(2.11a)

(2.11b)

l, ;l,,=b „b,;/Po'. (2.12)

Since Pp and b" were de6ned in (2.8) only up to an
arbitrary u-independent factor, b, ;b,; can be multi-
plied by a u-independent factor. Then, because all
two-surfaces are conformal to the plane, we can choose

(2.13)

A solution to this equation is given by

b =ov2(1+f1, 1 fi,—i+i, (f 1)/i—) (2. 14)

Using (2.11)—(2.13), we can now write the four-
dimensional line element as

ds = 2/1 (Pp/Pp)r jdu '+2dud'-r r'dfdf /2—Pp'. (2.15)

Thus, knowing the velocity and acceleration of a world
line, one can construct uniquely Lfroni (2.11) and
(2.14)j the line element (2.15); conversely, knowing
(2.15), or, in particular, knowing the FZS, i.e., Pp(ug, f'),
one can determine all the properties of the world line

For example, the maximum value of Po/Pp on the
sphere at each u is proportional to the magnitude of the
acceleration, and the direction in which this maximum
occurs is the direction of the acceleration, that is,

max(Po/Po) =V'(p&') 0= k»k"
(2.16)f,„=direction of g&.

This is seen from the fact that, from (2.11),

P,/P p k„l»= -,'v2$„——S», S» =42l» (g»/v2), —

where S& is the unit, radial, spacelike vector normal
to g». Thus, when S" is in the direction of the accelera-
tion, Pp/Po has its maximum. We can therefore give a
unique statement of equivalence between the accelera-
tion $» and Pp/P p, writing this as

k» ~Po/Po. (2.17)

(2.18)

To prove this, we first note that the u derivative of
$»l»= Po/P p is given by

f l" $„1"(Po/Po) =P—o/Po (Po/Po)—
or

(„l»=Pp/Pp.

By writing this in terms of 5&, i.e.,

'.~~( h.+ 'P$.)S"=P./Po+'P--
we obtain (2.18).

A similar statement can be made for that part of the
derivative of the acceleration that is normal to the
velocity vector, namely,

k "+pi t k"~Po/Po+pP.

An alternative means of obtaining the equivalences
(2.17) and (2.18) is to show that Pp/P p and Po/Po+ p P
can both be expressed in terms of l= 1 spherical har-
monics, and then to exploit the well-known relationship
between the components of three-dimensional vectors
and the coefficients of Yi . (See Appendix A.)

The equivalences can now be used to give an alterna-
tive expression for equations of motion, e.g. :

(a) Free-particle or geodesic motion,

m$»= 0+-+ mP p/P p 0. —— (2.19)

(b) Motion with the Abraham radiation-reaction
force '

Now, df/™easures angular velocity and hence be-
haves as r '. Therefore, for observers at infinity,

v2(d/dr) f,/fp=Pp/Pp. (2.22)

@2m'»= Ppe'( $»+-,'g'$»)+ -v2mPp/Po
= 3e'(Po/Po+ 2P), (2.20)

where u, it must be remembered, is not the proper time.
(c) Motion with a general force,

V2mj»= F»~ &2m(Po/Po) =F(u, f.g), (2.21)

where Ii is expressible as an /= f spherical harmonic.
Actually, these equivalences hold more generally,

applying as well to regular timelike world lines in an
arbitrary Riemannian space, where a similar coordinate
system can be constructed at least locally.

There is an interesting by-product of this alternative
description of acceleration. It is possible, by means of
Doppler-shift observations of light emanating from the
world line, to measure Pp/Pp directly (at least in
principle) and thus measure the acceleration of the line.

Consider a family of observers completely surround-
ing the world line and let their velocity field be s»(r, fg),
where r is the proper time along an observer trajectory
and (f g) gives the angular position of the observer.
The ratio of source frequency to observed frequency is
given by

'it2f /f p dr/du= $ 1—»/s l»= 1/s l»

Differentiating this with respect to 7, we get

v2 (d/dr) f,/ fp
= (dr/du) P(d/dr) —(p„l»)

(dr/du)'(o„„s—"1»+l„,„v»s")

If the observers are all moving along geodesics, then

&2(d/dr) f,/f p= —(dh/du)'l„, „s»o".
Since l„=b„' in our coordinate system, we get

v2(d/dr) f /fo= (dr/du)if';s»e"
= I'»„(dx»/du)dx"/du
= —-', g„.,i(dx»/du)dx/du
= (Po/P p)+ (r/2P, ') (df'/du) df /du.



SINGULARITIES I N GENERAL RELATIVITY 1787

p= —r ') cr=0. (3.1)

This condition leads uniquely to the class of metrics
known as the RT solutions, ' which we now summarize.
(Actually, we are only considering the type-II RT
metrics. ) The line element for the RT solutions can be
written as

( P M(u)) r'
ds2 = 2~ X r—~—du'+2dudr df'd—f, (3.2)'

P r 2P2

where E=I*lnP is the Gaussian curvature of the
F2S (I"=4P 8 /81 Bf) ' and P(u, f',f) and M(u)
satisfy the equation

M —3MP/P = 045~Z. (3 3)

From this equation we will extract the time dependence
of M, the equations of motion, and the time develop-
ment of the internal degrees of freedom (still to be
defined) In all. our generalizations from (3.1) to (2.3)
in a general R„,=0 and in the Einstein-Maxwell theory,
Eq. (3.3) is modified by the addition of extra terms
representing the interactions of the singularity with
gravitational and electromagnetic background fields.

We recall that P is still defined up to an arbitrary
function of u. A conventional choice of this factor is to
make the surface area of the F2S constant, i.e.,

dx dx

flu
=0 ~

This is equivalent to setting M=O in (3.3)~ Here,
however, we shall make a diferent choice of this factor.

%e impose the important regularity restriction that
P=POII, where Po is defined from (2.11a) and (2.14),
and H is a regular function on the sphere. We then use
the arbitrary factor in the definition of P to set the l =0
part of II equal to one and to incorporate the l= 1 part
into the definition of Pp. The latter can be done because
any variation in Po is such that bPO/Po is an l=1
harmonic. This is seen by varying Bp6p~ lnPp = 1,"
which yields

flo&0'bPo/Po = —2&P 0/Po,
"For properties of 5 and 5*, see E. Newman and R, Penrose,

J. Math. Phys. 7, 863 (1966); J. Goldberg et d., ibid. 8, 2 155
(1967). Because of typographical difFiculties, the 5 of earlier
references appear here as 5*.

In our notation here, 5 applies to an arbitrary two-surface,
while 5p applies to the unit sphere, i.e., 50' =2PO' '8(PO'y)/Bt for
any spin-weight s quantity g.

III. ANALYSIS OF RT SOLUTIONS

In Sec. II we developed an alternative to the usual
mode of describing motion in both Oat space and an
arbitrary Riemannian space. We now show how this
new mode of description can be applied when an
elementary singularity exists in the 6eld.

In particular, we consider here the special case when
(2.3) becomes

thus showing that 8PO/Po satisfies the eigenvalue
equation for an l= 1 spherical harmonic (see Appendix
A). Hence the regularity condition can be written

P =Po(1+I), (3.4)

where I is expandable in terms of / & 2 spherical har-
monics. (It is very likely that the additional condition
I& —1 should also be imposed to keep the F2S a
deformed sphere. ) I is inlerPreled to rePresent internal
degrees offreedom.

When (3.4) is substituted into (3.3), we get

M 3MP—O/Po 3MI/—(1+I)= (1+I) &0&0*%, (3.5a)

or

M=O, M(Pp/Pp)=0,
I= —(1/3M) l(l+ 1)[l(l+ 1)—2]I,

(3.9)

I=ID exp{—[l(l+1)/3M][l(l+1) —2)u). (3.10)

Thus, to first order, N is conserved, there is no accelera-
tion, and the internal degrees of freedom decay ex-
ponentially. A brief look at the nonlinear terms shows
that when they are taken into account, N will no longer
be constant, Pp/Pp will not be zero in general (except

E= (1+I)'606o* ln[Po(1+I)]
= (1+I)'+(1+I)5o&0*I—floI flo*I ~ (3.5b)

If we carry out the differentiation of X in (3.5), we can
write the equation in the form

M 3MP p/P—p 3MI/(1—+I)
= (1+I) (&0&o 50&0 I+250t50"I)

—(1+I)'fl02I 60*'I. (3.6)

This equation can in principle (though not in practice,
because of its extreme nonlinearity) be expanded in
spherical harmonics such that the l=0 part gives the
time dependence of M (which is related to the "mass"),
the l= 1 part gives an equation of the form (2.21) for
Po/Pp and the l~& 2 parts give the time dependence of
the internal degrees of freedom.

In particular, if I= 0, then M = 0, and P0/Po= 0, i.e.,
the singularity is unaccelerated with constant M. This
solution gives the Schwarzschild metric, with the
Schwarzschild mass m, related to M by M = 242nz, .

Although a great deal of eflort has been spent
attempting to find exact solutions (other than
Schwarzschild) to (3.3) or (3.5a), not one that satisfies
(3.4) has so far been found. It thus appears as if solu-
tions must be investigated by approximation methods. '

The linearization of (3.6) yields

M —3M(Pp/Po) 3MI= flp6p 506—0 I+2flp5p*I. (3.7)

If I is assumed to have a definite l value, i.e., satisfy
flpho I= —l(l+1)I, then

M —3M(Pp/P0) 3MI= l(l+ 1)[l(l+ 1)—2]I (3.8)

from which it follows that
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when I contains only even spherical harmonics), and I
will continue to decay exponentially. This leads us to
conjecture, with no proof in sight, that all solutions
of (3.5a) will decay towards Schwarzschild.

The discussion of the concept of mass has been
intentionally avoided until now because it appears to be
quite complicated. There seem to be at least four
candidates for the title @sass, all involving M times some
function of e. In each case the function is such that all

the different "masses" agree with the Schwarzschild
mass m, in the static case.

If we let the area of the F2S be

A(u) =
P2

then four possible dehnitions of mass are the following.

(1) m;=3EA'/32v2s', which appears to be a good.
candidate for the inertial mass of the singularity because
of its appearance in the ponderomotive law (see Sec. IV).

(2) ms= (3I/SV2or) f ', (1+@)dx-'dh'/Po, which ap-
pears to be equivalent to the Bondi mass, ""since it
has the property that m~&0.

(3)' m =MA'I'/2&2(4s)'" which satisGes the con-
servation law m, =0 (valid for the RT solutions).

(4) ou, = MA/Sv2n. , which has nothing to recommend
it other than its analogy with the de6nition of charge
(see Sec. IV).

The proof of the conservation law m, =0 is straight-
forward. Differentiation of m, yields

Therefore, an F2S is present, and if the Acyl tensor is
singular at r= 0, there exists an elementary singularity.

After a relatively simple calculation, if we use the
spin-coefIIcient formalism and impose coordinate condi-
tions identical to those used for the RT solutions, we
obtain the following metric and Maxwell Geld (see
Appendix 8 for details):

P goo E2 r'
ds'=2~ &—~+— +—du'+2dudr dl d—f—,—(4.1)

2P'

E(u) 4.'( l-,l.)
$p 0) $1 y Q2

r2 r
(4.2)

where IC=OO*lnP is the Gaussian curvature of the
F2S, and E(u), goo(u, t,l), and goo(u, f,f') satisfy the
equations

lV. ANALYSIS OF RT MAXWELL SOLUTIONS

In this section we will present and analyze a class of
solutions of the Einstein-Maxwell equations that are
characterized by the coincidence of a principal null
direction of the Maxwell held and a doubly degenerate
principal null direction of the Weyl tensor, these null
directions being hypersurface-orthogonal. These solu-
tions are the Einstein-Maxwell analogs of the RT
metrics. It can easily be shown that for these solutions

p= —r ' 0.=0.

dhodh'/ . P ~~w —m —(.
2~2(4~)o~o po '( pp

goo 3fooP/P = M—*E+Poogoo, —

E—2EP/P = —Qoo,

(4.3)

(4 4)

Then from (3.3) we get

g ()E
~C dx'dx' —— =0.

2%2(4or)o" Bi &j

d 3fPp'dx2dx3

8v2w dl P'
—5$$3 ia.' rye .

8&2m 8'Pp"

Since the last integral is always positive, it follows
that my&0.

To prove that m~&0, we set P=Pp'5', where
Po'= o(1+@),and W is a positive quantity. Equation
(3.3) can then be written as

~—33I(&/II') = II"&o'&o'*~—II"
[
&o"II'( ',

where t/ = Op'Op'*H/+28; and Op' is de6ned with
respect to Pp'. Dividing this by 8V2mW'Pp" and inte-
grating over the I'2S, we obtain

65*8= —
t E—2E(P/P)], (4 4')

xvhich looks very similar to (4.5). )

Ke now make the same assumption as was made in
the RT discussion, namely,

P=Po(1+I), I)—1

and again consider the difI'erent spherical harmonic
terms in (4.3) as yielding the equations of motion and
the time dependence of the internal degrees of freedom.

Although Eqs. (4.3), (4.4) Lor (4.4') j, and (4.5) are
extremely complicated (the only known exact solution
is the Reissner-Nordstrom" solution), and we know of
no systematic approximation method, nevertheless a
fair amount of information can be extracted.

M Po'= —2E(E 2EP/P). —(4.5)

{Note: If we make the change of variable go'= 0"R,
(4.4) becomes

"H. Bondi et A., Proc. Roy. Soc. (London) A269, 21 {1962}."L. Derry, R. lsaacson, and J. %inicour, Phys. Rev. 185, 1647
(1969). The total energy of the RT solutions dehned by these
authors using a cMerent formalism appe~s to be the same as mg.

14 This is obtained explicitly by setting E=V2e, $20= —2%2m,
I=o $2 =0 Po= $(l+g'), IC= 1, where e and es are, respectively,
the charge and the mass.
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First, note that by multiplying (4.4)
integrating over the F2S, one shows

dx dx—(EA) =—E
du du P'

by P Q and and X is that given in (3.5b). Because of the vanishing
of 5, T, and E—1 when I=0, we have 5=0 when I=O.
Since 5 can in principle be decomposed into a sum of
different spherical harmonic terms, Fg, the diferent 3

terms in (4.12) can be separated out, thus yielding

E—2—E =0,

and
pop= 3I(~) 2E—'Pp/Po+—2E'~

R= —EPp/P p+ ET,

(4 8)

(4 9)

the two equations become

(1+I)'5Q5Q"5
= —2(2I+ I')Po/Po+ 2I/(1+ I) E/E, (4.10)—

(1+I)'5Q5Q" T
2(2I+IQ)P p/Pp—+ 2I/(1+ I) E/E. (4.11)—

The important point to be noted is that both S and T
vanish when I=0; i.e., (4.8) and (4.9) separate out the
I-independent parts of fop and R (or @Qo). f In fact,
if I=O, (4.4) and (4.5) can be solved exactly to yield
(4.8) and (4.9), with S=O and T=0.) If we now
substitute (4.8) and (4.9) into (4.3), we obtain (after
some regrouping of terms)

where A(QQ) is the area of the F28. Thus, EA is con-
served and can be taken as proportional to the charge e,

e= EA/4v2Qr, (4.7)

and E(u) can be considered as essentially the charge
per unit area.

A useful way of looking at Eqs. (4.3)—(4.5) is to
pretend that one can solve the last two for fop and )f)QQ as
functions of P (or Pp and I) and then to substitute
these into the first to determine P p and I. There seems
to be little hope of doing this exactly, but one can do it
partially and obtain a very startling result.

If (4.4') and (4.5) are rewritten in terms of Pp and I,
and if we make the substitutions

M=F0,

Po &0
3M——2E2 —+-'g2 =r

Po Po

(4.14a)

(4.14b)

P 2
0

9E2 +jjo
Pp

(4.14c)

(& & 3) . (4.14d)

Then, if (4.14b) is multiplied by A'/3)&32pr' it becomes

V2m;Pp/Pp —I—e'(PQ/Ppy joj') = P, (4.15)
where

EA 3fd2
e=—,m;=

3)&32~2 4&2~ 32&2~2

A2

0000*S=2I, 0090*T=2I, i=0
while (4.12) becomes

(4.16)

In the static case, e and m; reduce to the charge and
mass, respectively, of the Reissner-Nordstrom metric.
Equation (4.15) is our main result: a rigorous derivation
of the Abraham radiation-reaction term (2.20), with no
model or mass renormalization needed. (In a future
paper it will be shown that, if the solution is generalized
to an arbitrary solution of the Einstein-Maxwell
equations, with an elementary singularity and F2S, the
same result plus the Lorentz force law is obtained. )

A second result follows from (4.14c): if I=O, then
P,/P, = 0; hence, if there is acceleration, then the
internal degrees of freedom musk be excited.

It appears as if little more can be done with the
exact equations. The linearization of (4.10) and (4.11)
yields

~+2E ( o/Po+ —t' ) 3cVP /P-
= 2E'8+3%I+c!Q5Q"5Q5Q*I+.25Q5QQI

If we now assume (with no loss of generality because of
the linearity) that I has a deijnite & value,
&o&Q*I= —l)I, &=&(1+1),then

5= -2I/X, T= -2I/y

&0 Po
M+282 —+~~ $2 —3M-

Po Po
P 2

0—9E2 —+-'(2 =S
0

(4.12)

(4.18)
and (4.17) breaks up into

M= 0 3MPQ/Pp —2EQ(pp/P +jj2)—0 (4 19)

(4E'/~)I —mI —XP, 2)I=0 (4 20)
The general solution of (4.20) has exponential growth
which though unpleasant, is not necessarily catastrophic.
The unpleasantness is due to the fact that the R.eissner-
Nordstrom solution is unstable (at least initially) to
small perturbations I and to small accelerations

I lr =2E2 8—3S—+3 M 2E~—2E2S
Pp 1+I Pp

— Pop' .- P,
+Q (2E+I') —

)
+ r 4' —'-,s)—

o& P,
Po

+(1+I)' 5Q5QQE+E' 5pT 5Q*-
Pp

Pp
+5o*T 5o—-5oT.5o*T, (4.13)

Pp
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[runaway solutions of (4.19)].It is not at all clear what
e6ect, if any, the nonlinear terms have in stabilizing or
reversing this behavior. It is our hope that these non-
linear terms will actually have a stabilizing eGect on
the solutions.

Assuming that the dynamical situation is physically
reasonable, one can look at both the gravitational and
electromagnetic radiation Gelds, which are, respectively
(see Appendix B),

i Pp J
f4'= —5*5~—= —50* (1+I)'50~ —+

P p 3+1

yP =5~R = (1+I)5p*R = (1+1)5p*(ET—EP0/P p)

=E5o*T—EBp*Po/Pp.

The last term in the &2o is precisely the Lienard-
Wiechert radiation Geld; the erst term is what one
would expect from an electric 2'-pole field (f& 2). The
same remark applies to the P4'. This suggests then the
interpretation of J, the internal structure, as repre-
senting some type of distribution from which both the
gravitational and electric multipole moments can be
calculated.

As a last remark, we point out that the method,
discussed at the end of Sec. II, of measuring P0/P0
(and hence t&) applies just as well to both the RT solu-
tions and their charged counterparts, with two provisos:
(1) It will be P/P that will be measured; and (2) the
frequency ratio f„/f0=dr/v2du will no longer be the
ratio of two proper times, but rather the ratio of a
proper time to our coordinate "time" N. The hypothesis
is that u is a physically signiGcant coordinate, which

plays the role of the proper time at the singularity.

V. SUMMARY AND CONCLUSIONS

We have presented what we believe is a novel
approach to the theory of equations of motion in general
relativity, in which motion is analyzed in terms of the
structure and "time" dependence of the family of null
cones emanating from a special class of singularities.
Several surprising results have appeared, which at the
beginning of the work we had no reason to suspect. The
first of these was the discovery of an internal structure
for the singularity, which responds in a unique way to
the acceleration, and from which one can calculate the
gravitational and electric multipole moments. The
second was the appearance of the Abraham radiation-
reaction term, with the correct numerical coe@cient and
with no mass renormalization. These results are
reminiscent of the early ad hoc models in classical
electron theory of an extended particle, ' for in our
approach it is as though the internal structure makes
the singularity behave as if it were a Gnite-sized body.

There are several directions in which this work can
be generalized while preserving condition (2.3).

(1) One can allow incoming fields to couple to the
RT type of solutions. The analysis, which is rigorous
but done only in the vicinity of the singularity, is
nearing completion. Unique equations of motion are
again obtained (with geodesic motion in the test-
particle limit), the internal degrees of freedom being
driven by the incoming field (which is in turn modified

by the presence of the singularity). In the presence of
an incoming Maxwell Geld, we obtain, in addition to
the radiation-reaction force, the Lorentz force law.

(2) In the work presented here and in the above
generalization, the Weyl tensor has r singularities.

By allowing r 4 singularities, further degrees of freedom
are introduced, which in linear theory correspond to the
dipole moment and spin or angular momentum. This
generalization would thus permit the discussion of
"spinning" singularities. It should be noted that if r '
singularities in the Weyl tensor are introduced, condi-
tion (2.3) would be violated. Hence, it is not possible to
generalize the method to higher-order singularities.

(3) A further type of generalization we are investi-
gating is to change condition (2.3) into

This would be analogous to generalizing from the
Schwarzschild to the Kerr metric. Presumably, this
would introduce angular degrees of freedom, which so
far have been missing from our analysis.

Although it is far too early to tell, we would like to
speculate that the approach presented here will lead to
a meaningful classical theory of elementary particles,
which in some sense can then be quantized and in turn
shed light on elementary-particle physics.
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APPENDIX A

We give here, essentially without proof, a set of useful
relations that were needed in simplifying many of the
equations in the text.

One can easily prove that Pa, defined by (2.11a) and
(2.14), satisfies the equation

~o~o~ InPo —&
& (A1)

where 6@0*=4PD'8'/Bt Bf This simpl. y states that the
Gaussian curvature of the unit sphere is equal to 1. If
this equation is now differentiated with respect to u,
one obtains

~050 Po/Po= —2P0/Po. (A2)

In the Qat-space null coordinate system described in
Sec. II, we can choose a set of four linearly independent



SINGULARITIES I N GENERAL RELATI V I TY 179i

Po Po /Po)'
&0—&0*—=-

(
—[+-'P

&z,i
P =4t" (A4)

With the help of (A2) and (A4), one can now show
that

— P ys — /P qs-
8,ho* —(+-,'P = —6 ]

—)+-,'js . (A5)
kP,)

By differentiation of (A2) with respect to u, one can
also prove that

vectors (gn, ln, Bl&/8$, Bl"/8|), in terms of which any
Minkowskian tensor can be expressed. In particular,
the Minkowski metric g„„can be written

qn„= lo)„+l„on 2t&l„—(dolodo l„+flo*lo50ln). (A3)

When this is multiplied with pod", the following relation
is obtained:

Tetrad and metric variables:

(o= X'= 0

(P,i—P)/r,
P' —Pp 2~or P 0/r

~ 4
0

~

2/r2

Tetrad components of the Weyl tensor:

$0=$2=0

y 0/rs+ 2141s
0

I
2/r4

ps =fs'/r'+ 34122'4tss'/r',

,o/r+ ciogso/rs+ 2@206o&20/r'.

Tetrad components of the Maxwell tensor:

go=0

(83)

(a4)

Po Pp
& 6o* —+-'P = —2 —+2k' ~.

I'o I'o ] (A6) Relationships among "constants":

Comparison of (A2), (A5), and (A6) with the eigen-
value equation for spin-weight zero functions, namely,

&0&o*g= l(l+ 1—)si, (A7)

thus shows that Pp/Pp and Pp/Ps+22/2 are both f= 1

quantities, while (Pp/Pp)'+ 0/2 is an f = 2 quantity.
The formulas (A2), (A5), and (A6) can be generalized

considerably. Details of this generalization will be
presented in a future paper.

APPENDIX B

For completeness, we present here all the spin-
coeScient quantities for the charged RT solutions.

Spin coeKcients:

O.o= —-', 0 lnP,
V'= —2PIP,

0—P 0

/so= 6*K,

Uo &o g = —00* lnP,
p= —20+)

@so= E(u) = E(u),
0 —2/42~0

Di6erential equations:

@4'+4m'4 2'= —% '
%0=2~04 0

0+6+0/ 0 — + 0+@ 04 0

Components of the metric tensor:

A'
g"o=8g", g"= —2 E ~+ + .2 )

(85)

(86)

0 = T=X=K=7T= 6=0 )

p= —r ', n=n'/r, p= no/r, —
y=yo —-'y '/r' ~42'~'/rs

Is = 140/r iso/rs
I ys I''/r 2—

,
—

&
—&0 P % 2y oy 0/r2

gm n — (2P2/r2) pm n,

In the calculations leading to the above results, we
have taken the magnetic monopole moment to be zero
and assumed that the Weyl tensor has no "wire"
singularities (i.e., angular singularities).


