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A method of self-consistent fields is used to study the equilibrium configurations of a system of self-
gravitating scalar bosons or spin-} fermions in the ground state without using the traditional perfect-fluid
approximation or equation of state. The many-particle system is described by a second-quantized free
field, which in the boson case satisfies the Klein-Gordon equation in general relativity, VoVe¢=pu2p, and
in the fermion case the Dirac equation in general relativity v*Vay =y (where u=mc/#). The coefficients
of the metric g.s are determined by the Einstein equations with a source term given by the mean value
(¢|Tw|o) of the energy-momentum tensor operator constructed from the scalar or the spinor field.
The state vector {¢| corresponds to the ground state of the system of many particles. In both cases, for
completeness, a nonrelativistic Newtonian approximation is developed, and the corrections due to special
and general relativity explicitly are pointed out. For N bosons, both in the region of validity of the New-
tonian treatment (density from 107% to 105 g cm™, and number of particles from 10 to 10%) as well as in
the relativistic region (density ~10% g cm™, number of particles ~10%), we obtain results completely
different from those of a traditional fluid analysis. The energy-momentum tensor is anisotropic. A critical
mass is found for a system of N ~[ (Planck mass)/m 2~10% (for m~1072 g) self-gravitating bosons in
the ground state, above which mass gravitational collapse occurs. For N fermions, the binding energy of
typical particles is G>m®N*37%2 and reaches a value ~mc? for N~Ngit~[ (Planck mass)/m P~1057 (for
m~10"% g implying mass ~10% g, radius ~10% cm, density ~10' g/cm3). For densities of this order of
magnitude and greater, we have given the full self-consistent relativistic treatment. It shows that the
concept of an equation of state makes sense only up to 104 g/cm?, and it confirms the Oppenheimer-Volkoff
treatment in extremely good approximation. There exists a gravitational spin-orbit coupling, but its magni-
tude is generally negligible. The problem of an elementary scalar particle held together only by its gravi-
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tational field is meaningless in this context.

I. INTRODUCTION

HAT a system in its degenerate state, composed
of a critical number of particles, will necessarily
undergo gravitational collapse was first pointed out by
Chandrasekhar and Landau.! In the intervening years,
many questions have been raised and much new in-
formation has been learned about gravitational col-
lapse.? Among the questions that constantly recur, none
are asked more frequently than these: (i) What does one
really know about the equations of state of matter at
supranuclear density? (ii) What right does one have to
use an equation of state at all? The first question will
not be treated here and for good reasons: One knows the
equations of state of “catalyzed” matter with sufficient
accuracy from everyday density up to the density
~10" g/cm? of nuclear matter, and one has an argu-
ment from causality (speed of sound<speed of light)
that no allowable modifications of the equations of state
* Work partly supported by the National Science Foundation,
under Grant No. GP 7669.
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1S. Chandrasekhar, Monthly Notices Roy. Astron. Soc. 91,
456 (1931); L. Landau, Phys. Z. USSR 1, 285 (1932).

2 For a complete review on the argument see Kip S. Thorne,
California Institute of Technology Report, 1968 (unpublished).

187

at supranuclear densities can change the critical mass by
more than a factor of the order of 2 from an estimated
figure M~Mo=2X10% g.3

We focus here on the second question: Can one discuss
stability against gravitational collapse without men-
tioning an equation of state at all? Eddington* raised
questions about the possibility of using an equation of
state at all and also purported to derive an equation of
state quite different in the relativistic domain from
Chandrasekhar’s standard equations of state for a
degenerate ideal Fermi gas. Today one takes seriously
none of his results but only his motivation. He sought
some escape from the concept of the critical mass, made
so vivid by the first detailed calculation of the critical
mass by Chandrasekhar.? Happily, in the same period

# See, for example, C. W. Misner and H. S. Zapolsky, Phys. Rev.
Letters 12, 635 (1964). The problem of the velocity of sound
larger than the velocity of light in connection with causality has
recently been critically analyzed by S. A. Bludman and M. A.
Ruderman, Phys. Rev. 170, 1176 (1968); M. A. Ruderman, ibid.
172, 1286 (1968).

" ;sssl)r A. Eddington, Monthly Notices Roy. Astron. Soc. 95, 195
a ;3851; A. Eddington, Monthly Notices Roy. Astron. Soc. 96, 20

¢8S. Chandrasekhar, Monthly Notices Roy. Astron. Soc. 95,
207 (1935); 95, 226 (1935).

8. Chandrasekbar, An Iniroduction to the Study of Stellar
Structure (Dover Publications, Inc., New York, 1957).
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Dirac,? starting from first principles and employing the
Hartree-Fock model of the atom, showed for the first
time how to go straight from the physics of bound
orbitals to the concept of an equation of state, as had
already been done in the Fermi-Thomas atom model.*—!*

A. Fermions

To justify the concept of an equation of state, Dirac
showed that it was only necessary to change the effective
potential by a small fraction of its value over one
wavelength.!? This condition is normally reasonably
well satisfied in atoms containing a large number of
electrons. In Sec. ITI, we extend the original Dirac
arguments to the context of general relativity and
particles moving with relativistic velocity, taking into
account all the effects of the spinorial variables.

We explicitly point out how difficulties arise in our
problem before one violates the condition laid down by
Dirac: a potential varying slowly over one wavelength.
A spin-orbit gravitational interaction starts to be
quantitatively important as soon as the effective
gravitational potential varies percentagewise by a
significant amount over a typical distance ~ L(m*/m)*/?
~10~% cm. [We indicate by L= (%#Gc?)!/? the Planck
length, by m*= (AcG~1)1/? the Planck mass, and by m
the neutron mass.] This coupling is generally neglected
in the fluid approximation. Its physical significance and
order of magnitude are analyzed in Sec. ITI. It seems at
first sight preposterous that in a system of 10- or 100-km
radius the effective gravitational potential can vary
significantly over 10~8 cm. However, in a configuration
of sufficiently high central density, the rate of fall of the
density is also very high (Fig. 1). Specifically, for each
hundred-fold increase in the central density, the half-
radius of this “central core” (Schwarzschild coordinate
where the density falls to half-value) decreases by one
power of 10.1® These enormous changes in the core have
practically no effect on the rest of the star; the core in
this sense is almost “isolated” from the rest of the star.
The outer radius and the total mass of the star are
influenced less and less as the central density goes to
higher and higher values!* (Fig. 2).

8 P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).

9 L. H. Thomas, Proc. Cambridge Phil. Soc. 23 542 (1926).

10 E. Fermi, Z. Physik 48, 73 (1928).

11 For a complete review on the argument see M. R. Brillouin,
Exposés sur la théorie des quanta, 1, 5, actualités scientifiques et
Industrielles (Hermann Cie., Paris, 1935). See also J. A. Wheeler,
in Collogques internationaux No. 170 du C.N.R.S. (Editions du
C.N.R.S., Paris, 1969), p. 154.

2P, A. M. Dirac, Ref. 8, rigorously demonstrated that if we
neglect the fact that the momenta p do not commute with the
coordinate g, we can introduce a classical description of the atom
adopting an equation of state as previously done by Thomas and
Fermi, Ref. 9. In this treatment Dirac neglected the contrilutions
from the spin variables.

13 This important scaling law was first put in evidence by H.
Bondi, Proc. Roy. Soc. (London) A281, 39 (1964). See also B.
Harrison, K. S. Thorne, M. Wakano, and J. A. Wheeler, Gravita-
tion Theory and Gravitational Collapse (The University of Chicago
Press, Chicago, 1965), Chap. 5.

4 These features of the curve of equilibrium mass as a function
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Nothing, in principle, prevents the central density
from being as high as 10> g cm~2 with a radius of the
central core of the order of magnitude of 10~% cm. Under
this condition the concept of an equation of state no
longer makes sense. Naturally, it is a fantastic idealiza-
tion to think of particles moving about “freely” at a
density of 10 g ¢cm™ and responding only to the
curvature of space. Even so, the spin-orbit gravitational
coupling has negligible effect on the radius and total
mass of the system. In Sec. IIT we show the basic reason
for this result: When many fermions are present, the
Pauli exclusion principle forces the typical fermion into
a state with very high quantum numbers. Then the
JWKB approximation is applicable everywhere except
in the core which is exceedingly small; outside the core,
the self-consistent field method that we have used gives
exactly the same results as the traditional fluid analysis,
and therefore the concept of an equation of state is
perfectly well justified.!®

B. Bosons

The direct opposite is true in the case of an idealized
system composed of many bosons interacting only by
way of gravitational forces. Some aspects of this problem
have been previously treated.’®-1* When the system is
in its ground state, each individual boson is also in the
ground state (one and the same state for all bosons).
Their distribution of stress, except near the center, is
anisotropic. Therefore, the concept of an equation of
state is completely inappropriate. Figure 3 shows the
stress ellipsoid at selected distances from the center. At
nonrelativistic energies (few particles, weak gravita-
tional binding), a Newtonian treatment is possible. In
this regime, a simple scaling law brings out a similarity
between nonrelativistic systems with different numbers
of bosons V. We find

(central density)
~0.9GN*m* 76X 1073=7.08 X 101084 g cm—3,

(distance from center at which the potential
falls to half-value)
~6.241*GIN"'m—3=7.55X 10 N~ cm,

of central density were first recognized by B. K. Harrison, Phys.
Rev. 137, B1644 (1965).

15 A completely different situation exists if one insists on extrap-
olating the expansion of the universe all the way back to the
point that the Hubble length (particle horizon) in the Friedman-
Lemaitre model is of the order of magnitude of the Compton wave-
length of the particles. See, e.g., E. R. Harrison, Nature 215, 151
(1967); P. J. E. Peebles, sbid. 220, 237 (1968). In the case, it is
not possible to describe the particles in a locally Minkowski coordi-
nate frame, ignoring the second-order variation in the components
of the metric tensor of the matter. The use of an equation of
state for the matter is meaningless and it would be necessary,
as we propose, to treat the particles as a field.

8 R. Ruffini, thesis, University of Rome, 1967 (unpublished);
Hamburg Seminar Report, 1967 (unpublished).

17S. Bonazzola and F. Pacini, Phys. Rev. 148, 1269 (1966).
(1918685j Bonazzola and R. Ruffini, Bull. Am. Phys. Soc. 13, 571

1 R. Rufhini, in Proceedings of the Fifth International Con-
ference on Gravitation, Thbilisi, 1969 (to be published).
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F1c. 1. Density is plotted as a function of the radial coordinate for a system of self-gravitating fermions for selected values of the
central density. Near the origin there exists a very simple scaling law (Bondi scaling law). A solution for a value of the central density
K2, where K? is a constant, is obtained from the solution of central density p, taking the value of p at the point r and then multiplying
p by K? and » by 1/K. Enormous changes in the core have practically no effect on the rest of the distribution.

(energy to remove all the particles to « separation)
~0.246G*m N3 2= 8.86 X 10~85N3 ergs,

having chosen for m the meson mass (2.489X10* g).
Evidently there exists a critical value of the order
N~ (hc/G)m=? at which the binding energy per particle
becomes comparable to the rest energy. For a number
of particles of this order of magnitude, the Newtonian
nonrelativistic treatment fails.

We have developed a fully relativistic self-consistent
treatment for the case N comparable to or greater than
the N for bosons. A detailed analysis of the system of
equations obtained is given in Sec. II. The solution of
the equations was carried out by computer; the par-
ticulars of the integration method are given in the
Appendix. It is of great interest to know at what point
the change from stability to instability takes place in
the family of equilibrium configurations that we have
found. One of us (R. R.) hopes to return to this question.
Without waiting for this analysis to be completed, one

~ P
R(Km)
6 ‘{
R

n
20 21

aF
@

! i 1090 Pc

F1c. 2. Radius R and the total mass (expressed in km,
M*=MG/c*) of a neutron star are plotted as a function of the
central density in the range 10'® g cm3<peent <1022 g cm™3, As
the central density goes to higher and higher values, the radius R
and the mass M* are influenced less and less and approach asymp-
totic values R,=6.4 km and M,=0.617M .

can immediately draw one new conclusion: There exists
no equilibrium configuration for a system of more than
Nerie~[ (Planck mass)/m]* ideal self-gravitating bosons
in their ground state.

There are both great differences and at the same time
great similarities betwesn a system of ideal self-
gravitating bosons and a system of ideal self-gravitating
fermions. Each is characterized by its own critical mass.
On the other hand, there is an enormous contrast
between bosons and fermions with respect to the value
of the critical number { N~ [(Planck mass)/m ]* for
fermions, Neie~[(Planck mass)/m]? for bosons} and

F1c. 3. Stress ellipsoid for a degenerate gas of self-gravitating
bosons is plotted at selected distances from the center. From this
figure it is evident how the anisotropy increases from the center
(the stress is the same in all directions, T1'=T72=733) to the
outside (7'11/T»%=T1'/T33=1.75). The plot refers to a distribution
with Ry;(0)=1.0 (see Sec. II). The radial coordinate is measured
in units %(mc)~, the stress tensor in units #2(2m)~1N.
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to the dimensions of the system required to reach rela-
tivistic conditions. This difference is due principally to
the fact that all the NV bosons are in the ground state,
whereas the V fermions, according to the Pauli principle,
are distributed in the N lowest energy states of the
phase space.

Section II also notes that it is absolutely meaningless
to consider in the present context the “problem” of one
elementary particle held together only by its gravita-
tional field.

II. BOSONS
A. Newtonian Treatment

In Newtonian theory the gravitational potential V
satisfies the Poisson equation

AV = —4rGp, 1

where p is the matter density and G is Newton’s
gravitational constant. The Schrédinger equation for a
particle of mass m, in the presence of a gravitational
potential ¥V, is

Y+ 2 (EAmV)g=0. )

We are interested in a system of self-gravitating bosons,
all in the same quantum state. We therefore assume
that the gravitation potential V satisfies equation (1)
with p= Ny*Ym, where N is the number of bosons and
¥ is the wave function of the quantum state under con-
sideration. The wave function is normalized to 1:

f Ydir=1.

We shall consider only the ground state of the system
n=1, |=0 which we may assume to be spherically
symmetric. Consequently, the resulting system of
equations in dimensionless units is

)

d? .
#~—(7¢)+(E+V)$=0,
dr?

(4a)

a
—(?V)=—¢%p, (4b)

dr?
S*eitdi=1, (4¢)
where

r=3Rm3G N7, (5a)
V= (2m) 1 22mPGN #~2)3 1%, (5b)
V= (one-particle potential) = 2A2G2N*m*V, (5¢)
E= (one-particle energy) = 2G*N*m*42E. (3d)

We have carried out a numerical integration of the
system (4) by the Runge-Kutta method. We have found
the eigenvalue £ by looking at the behavior of the wave
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TasLe L. The dimensionless quantities ¢, V, and # relative to
the equilibrium configuration of many self-gravitating bosons in
their ground state (n=1, /=0) are given. These data refer to a
Newtonian approximation valid for a number of particles
N<[(Planck mass)/m7]?, where m is the mass of the boson under
consideration. The solution relative to a fixed number of bosons

A

N is obtained from the dimensionless quantities ¢, V', and 7 by
appropriate scale factor [see relations (5)].

7 v P 7 7 P
0006902 0.15793 0.08329 1144081 008411 0.02122
1.04637 0.15667 0.08214  12.48026 007809 0.01714
208581 0.15305 007883  13.51971 0.07270 001374
312526 0.14741 007371 1455915 0.06788 0.01095
416470 014022 0.06724 1559859 0.06359 0.00867
520415 0.13203 005997  16.63803 0.05975 0.00683
624359 012335 005240  17.67747 0.05632 0.00536
7.28304 0.11460 004497  18.71693 0.05324 0.00419
832248 0.10614 003798  19.06340 0.05228 0.00386
936193 0.09816 003164  20.10285 0.04960 0.00300

1040137 009808 002605 2114230 0.04717 0.00233

function at infinity. As usual, we have determined the
ground state by requiring that the eigenfunction have
no nodes. The results are given in Table I and in Figs.
4 and 5. Knowing the solution of the universal system
of Eq. (4) and thanks to relations (5), it is possible to
obtain a solution relative to an arbitrary number of
bosons simply by making appropriate scale changes. If
we distinguish quantities referring to solutions with N,
and N, particles by suffixes 1 and 2, respectively, we
obtain the following relations:

E2 = El(]Vg/]Vly y r9= f](l\'rl/AVg) ,
‘P2 = 1//1(]\72/1\71)3/2 ) V2 = Vl(LVg/Avl)? .

These arguments could suggest that for any number
of bosons in the ground state there exists always a
position of equilibrium. But we must analyze whether
the theory we have used always makes sense.

It is possible to divide the plot of Fig. 5 into three
regions. To an increase in the particle number there
corresponds: in region I an increase in the total energy

(6)

4SG?BSAIOH!Z(SMISIGI?IB

—_—r—

F16. 4. Dimensionless quantities ¢ and ¥ relative to the equi-
librium configurations of many self-gravitating bosons in their
ground state (z=1, /=0) in the nonrelativistic domain are given
as a function of the dimensionless coordinate 7. The exact numeri-
cal values are given in Table I.
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Fic. 5. Total energy Eit as evaluated
by numerical computation in the New-
tonian approximation is plotted against
the number of particles V. We can under-
stand the qualitative behavior of this
diagram by considering the formula E
=Nmc*—0.1626N3G*m>%4~2. The maxi-
mum of the total energy corresponds to a
particle number given approximately by

SELF-GRAVITATING PARTICLES

1771

1

I
v{,uo BINDING

REGION I

REGION I
REGION I

[(Planck mass)/m]%. We indicate by m °
the mass of the elementary boson.

of the system; in region II a decrease in the total energy
of the system, which nevertheless remains positive; in
region III a decrease in the total energy of the system,
which is now negative.

It is very important to observe that at the end of
region I the gravitational energy of one particle is of the
order of magnitude of the rest mass energy of the
particle. Therefore, it is clear that corrections coming
from special relativity must be taken into account.
Moreover, no doubt exists that, in the regions II and
III, the application of Newtonian gravitational theory
is meaningless and one would expect important modi-
fications from the use of general relativity.?

B. General Relativistic Treatment

The effect of introducing general relativity is com-
paratively simple as long as the particles are treated in
a statistical way (no allowance for the details of particle-
particle coupling). Then the gravitational problem is no
more difficult than that of the Hartree-Fock atom. In
both cases the interaction is universal, in the sense that
one law covers all ranges of distances (in contrast, i.e.,
to nuclear forces). The case of ideal particles coupled
gravitationally differs from the case of electric coupling
In this respect, that no “interaction” ever puts in a

20 Using the Newtonian gravitational theory, many authors
have examined and have tried to give physical meaning to the
facts that (a) the total energy of a system of many self-gravitating
particles could decrease even if the number of particles increases
and (b) the total energy of the system could be negative. See, for
example, F. Pacini, Ann. Astrophys. 29, 193 (1966). In a very
simple and intuitively meaningful way based on a semiclassical
approach J. M. Levy-Leblond and P. Thurnauer [Am. J. Phys.
34, 110 (1966)] indicate that the nonlinearity of gravitational
interaction should eliminate the existence of systems of self-
gravitating particles with negative total energy. In the next
paragraph we develop a fully relativistic treatment that explicitly
shows how both effects (a) and (b) completely disappear. There-
fore, these effects resulted from the use, in a highly relativistic
region, of a nonrelativistic treatment; and it is clear that they are
physically meaningless.

|
|
|
|
|
!
|
|
1
{
1
!
|
|
|
1
!
1
1
1
1
i
1

direct appearance. Instead, thanks to the geometrical
interpretation of gravitation, it is possible to treat the
interaction by simply considering the field equation for
free particles in a curved space where the metric is
determined by the system of particles itself. This treat-
ment has the advantage of being valid even in the
region of an arbitrarily strong gravitational field.

We shall consider scalar bosons described by the

curved-space?! Klein-Gordon equation
Teretiet, ©
VoV +ule*=0,

where u=mc/# and V, and V< are, respectively, the
operators of covariant and contravariant differentiation.
This equation can be derived from the Lagrangian®?

L= —#(2m) (" 9,9*dvp — u’¢*e). (©)

In the usual way, we can derive the following conserved
quantities: the symmetric energy-momentum tensor

9 a(Vlghe oWlghe
Tw=2 U — - , 9
(leh <6x°‘ d(9g#/9x*) agr ) ®

and the current vector

Je=it'c{[0L/0(0,9%) Jo* —~[0£/3(0,4) 19} ,

where g= detgag.

We only wish to consider spherically symmetric dis-
tributions of equilibrium. Therefore, we may express
the metric in Schwarzschild coordinates (x°=ct, x'=7,

(10)

21 We use a metric with signature 4+ — — —; Greek indices run
from 0 to 3, Latin small indices run from 1 to 3; Latin capital
indices are used for spinors and run from 1 to 4. For the signs of
the Einstein equation we follow L. D. Landau and E. M. Lifshitz,
The Classical Theory of Fields (Addison-Wesley Publishing Co.,
Inc., Reading, Mass., 1962).

22 See, for example, A. Trautman, Bull. Acad. Polon. Sci. 4,
675 (1965); see also Ref. 21,



1772 R. RUFFINI
xt= 6, xl= ‘P) )
ds?= B(r)c2dt> — A (r)dr —r*(sin?0d o*+ d6%). (11)
In this system, Eq. (7) becomes
(lg)20.{g*(| g])/2up ]+ B10e* ¢+ w¢=0. (12)

It is possible to make a separation of variables in Eq.
(12) by setting

¢(r,0,0,0)= R(r) Y,(6, )e#E /M)t (13)

where Y,™(6,¢) is a spherical harmonic. The function R
must satisfy the equation

Ri"+(2/r+3B'/B—14"/ )R,
+ A[E 2Bt — 2 —1(I+ 1) A" 2R, =0, (14)

where the prime denotes differentiation with respect
to r.2

The most general bound solution of Eq. (7) can be
expressed in the following way:

6(r,0,0,) = 22 CrumRm¥ pleiEniint

nlm

+ Z bnimR 1Y m*ei(Entiit

nlm

(15)

Since we are considering a neutral field, ¢ is real and
therefore ¢ =¢* and

(16)

In the formalism of second quantization, ¢ is an
operator and can be separated into two components,

bnlm= Cnlm*~

¢+= Z ,u-lmn+-Rnlle(o,\p)e—‘.(Enl/h)t , (17)
nlm

=3 pimn RtV ¥ (0)etiEntiire (18)
nlm

so that

¢p=¢T+¢".
timat and uima— are, respectively, the creation and
annihilation operators for a particle with angular

momentum 7%/, azimuthal momentum #%m, and energy
E,;. These operators satisfy the commutation rules

[I‘lmn+) ﬂl'm’n'—]: 81 8mmOnn , (193.)
[”'l”m+7 Ill’m'n’+]= I:ﬂlmu_) I‘l’m’n'—:lz 0. (19b)

From the operator ¢, it is possible to construct the
energy-momentum tensor operator 7, and the current
vector operator J#. We consider a state |Q) for which all
the IV particles are in the ground state

IQ>= lIV)OYO’O)>'

We compute the mean values of the components of the
operators 7T, and J* for this state. We obtain

QIT|Q)=—3m=N
X{[B~Eo?/(#%¢?)+u2]Ro*+ A~ 'Ror’?},  (200)

%8 It is possible to demonstrate that the spectrum of eigenvalues
of bound states is discrete; see Refs. 16 and 19.
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(©IT2'|Q)=4#mN

X{[B™'En®/(#*c*) —u*JRn*+A~'Ro"}, (20b)
QIT2|0)=(Q| T5|Qy=3h*m™'N

X {[B_lEolz/(h%z) _#2:]R012 —R01'2A_‘} , (20C)
©ITs1Q)=0, (20d)

where Eo; and Ry, are, respectively, the eigenvalue and
the radial part of the eigenfunction of the ground state
(n=1, I=0). The mean value of the component J° of
the current vector is

(0]7°]0)= EnNm~1c2Ros2B". (21)
From the expressions (20a) and (20b) and from the

Einstein equations in Schwarzschild coordinates, we
obtain

A'/(A)+(1/r)(1-1/4)

= e{[B—lEolz/(h2C2)+#2]R012+A—1R01’2} , (22a)
B'/(ABr)—(1/r*)(1—1/4)
= e{[B-1Eo2/(h2c?) —p*JRo>+ A 'Roi"?}, (22b)

where
e=4rGci*m™N |

and these together with the Eq. (14) form a closed
self-consistent system. The other equations,
G2=kTy> and G#=kT3?,

are consequences of Eq. (22) because of the Bianchi
identities

VaG%=0
and of the relation

7,.,4=0.

The normalization condition

/ V=) x=N (23)

is, explicitly,
4r / Egm™'c2Ro?B~1124 122y =1. (24)

The initial conditions and the boundary conditions are

R1(0)= const, (25a)
Ro/'(0)=0, (25b)
A(0)=1, (25c¢)
B(o)=1. (25d)

It is possible to show!®:17 that the conditions (25) are
consistent with the system of equations (14) and (22).

We have put the system into dimensionless units
obtaining the following expressions:

B'/(AB)—(1/7)(1—1/4)
=& (B Bu>—1)Ro*+A~'Rn'?], (26a)
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A'/(A%)+(1/7)(1—-1/4) P=ru, (27a)
= (B B0 +1)Ro2+4"Ro'?], (26b) Eqp=Eop/me, (27b)
R=R(4nEqu3)2, (27¢)

Ry’ 4(2/#+B'/2B—A"/24)Roy’

2 . é= 5!13(47|'E01)_1 = LzﬂzN/Eol ’ (27d)
2R—1_ —

. TAECET=DRa=0, (26c) being the Planck length L= (hG/c%)!"2.

/ Ro2B12412p20p =1 , (26d) We have carried out a numerical integration of the

0 system (26) for different values of the radial function

Ry at the origin. We have plotted some results in Figs.

where now the prime denotes differentiation with  6-8. Particulars of the integration method are described

respect to 7, and in the Appendix.

.0

06

F1G. 6. Radial function Ry, is plotted as
a function of 7 (dimensionless) for selected

values of R (0) at the origin. l 04

0.2

1 1 1 1 1
0 i 2 3 4 5 6 T

~
[ —

F1c. 7. Coefficients gi; and goo of the metric are plotted as functions of # (dimensionless) for selected values of the radial function

Ro at, tl'le origin. To an increase of the central density [p.~R0:2(0)] corresponds an increase in the maximum of g1 and a decrease in
the minimum of goo.
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-NEWTONIAN APPROXIMATION
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I'16. 8. Mass at infinity multiplied by (mXm*~?) and the total number of particles mu}tiplied by (m/m*)? (m*="Planck mass ~10~° g
and m=mass of the single boson=2.689X 107% g) as obtained from the general relativistic treatment are plotted as a function of the
central density. We have adopted a particular scale to focus our attention on the extreme relativistic region {N~[ (Planck mass)/mJ*}
where the contributions of general and special relativity are more important. For a direct comparison, we also show tl}e‘co_rrespondmg
quantity obtained in a Newtonian approximation. For a number of particles N < [(Planck‘ mass )/m P, t}}e'ge'neral relativistic treatment
approaches asymptotically the Newtonian approximation. From this figure it is clear that in the full relativistic treatment, to an increase
(decrease) in the particle number, there always corresponds an increase (decrease) of the mass at infinity. This result eliminates one of
the strongest difficulties of the Newtonian approximation, where, for sufficiently high density, an increase in the particle number corre-
sponds to a decrease in the total energy of the system (in the Newtonian approximation this last quantity, divided by ¢?, takes the place
of the mass at infinity of general relativity). The mass at infinity always stays positive and, at least to the accuracy of our numerical
computations, seems to approach an asymptotic positive value when the central density goes to infinity. The total number of particles
in the general relativistic treatment reaches a maximum value N i1, otherwise nonexistent in the Newtonian approximation; in this way
the concept of a critical mass is introduced and the presence of the gravitational collapse, also in the case of the bosons, seems unavoid-
able. We notice that, in the asymptotic region, increasing the central density results in the curve of the mass at infinity crossing the

curve of the total number of particles, suggesting the existence of gravitationally unbound states.

The introduction of special relativity (Klein-Gordon
equation) and general relativity eliminates completely
some difficulties present in the nonrelativistic New-
tonian approximation; i.e., the regions II and III of
Fig. 6 have disappeared. An increase (decrease) in the
number of particles always corresponds to an increase
(decrease) in the mass at infinity. (See Fig. 8.)

On the other hand, the relativistic treatment intro-
duces the concept of critical mass. The mass at infinity
and the number of particles expressed as functions of
the central density (see Fig. 8) reach a maximum
M rie~0.311X107/m g, Neie~3.01X1071°/m?, corre-
sponding to a central density peric~5.26X 10m? g/cm?,
where m is the boson’s mass in g. Both quantities reach
their peak values at the same value of the central den-
sity (or the same value of any other appropriate
parameter). After this maximum they decrease mono-
tonically for an arbitrary increase of the central den-
sity.?* We give some numerical values in Table TI.
2 This asymptotic behavior can be studied even from the
analytic point of view. The system of equations (26) admits in
fact a scaling law between solutions relative to different numbers
of particles in the asymptotic regions [p(0) — « ]. The existence

Imagine bosons of one or another mass, and out of
each kind of boson imagine a system put together com-
posed of very many identical particles. For each kind
of boson there will be a different critical mass. When the
mass m of the particle goes to zero, the critical number
of particles Ny goes to infinity. So does the critical
mass M it For the case of distributions endowed with
the critical mass, the Schwarzschild radial coordinate 7,
at which gy reaches the maximum, also goes to infinity
as m goes to zero. Simultaneously, the central density
p goes to zero.

One can treat a system of many bosons at constant
temperature 7" as a fluid with an equation of state
p=p(p) derived from quantum statics in flat space.
Can we extend this treatment to 7=0 (ground state)?
No. We run into difficulties because the pressure is
proportional to 7%/2 and therefore vanishes in the limit
T — 0. Proceeding to this limit, we would never obtain
any of the configurations of equilibrium that we have
found. It is clear that the approximation of treating the
system as a perfect fluid is completely inadequate at

of such a scaling law was pointed out to one of us (R.R.) by
J. A. Wheeler,
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Taste II. In (A) are given some numerical results relative to the Newtonian nonrelativistic treatment of a system of many self-
gravitating bosons in the ground state (n=1,/=0). The mass of the bosons has been chosen to be m=2.689X107% g. The value of the
radial coordinate for which the potential has one-half of its value at the origin has been defined to be the radius of the distribution. The
total mass of the system has been computed neglecting the binding energy. From these numerical values, the presence of a scaling law
clearly appears in the nonrelativistic treatment. It is also clear that the density at which such a quantum-gravitational boundeq state
takes place is strongly dependent upon the number of particles under consideration. In (B) numerical results for the extreme relativistic
region are given. Ry, (0) is the value of the radial part of the wave function at the origin. The mass at infinity has been computed from the
asymptotic behavior of gi; and goo at infinity and the value is given in units (¢G~'m™1). The eigenvalue Eo has been determined by
requiring that the radial function Ro: goes to zero at infinity and is measured in units of m¢?, where 7 is the boson mass. The value of the
radial coordinate 7 corresponding to the maximum of g1, has been defined to be the radius of the distribution (units #m~*¢™?). The
minimum of g is attained at the origin and its value is fixed in agreement with the requirement ggo()=1. The number of particles
determined by the integral /*(J°)(—g)!/?d%x= N is measured in units L~?m2, where L= (fic/G)'/%.

(A) Nonrelativistic Newtonian region

Binding energy Gravitational
Number of Radius Mass of the over total Density potential at r=0

particles (cm) system (g) energy (g cm™3) (cm? sec™?)
1010 7.55X10v7 2.489 10718 1.060< 1062 1.047X 10762 3.089X107¢2
1020 7.55%107 2.489% 1075 1.060 10742 1.047 X107 3.089X107%2

103 7.55X1073 2.489X105 1.060<10722 1.047X10+18 3.0891072

(B) Relativistic region
Number of .
particles Eigenvalue .

R (0) X (m2m*~2) Radius X (A7 mc) Mo X (mm*~2) En=Eon(me?)™1 Max of g1y Min of gas
0.2 0.6389 5.100 0.6207 0.9403 1.236 0.5771
04 0.6225 2.992 0.6086 0.8993 1.452 0.3207
0.6 0.5163 2.072 0.5249 0.8783 1.632 0.1687

T=0in a system of this kind. It is essential to allow, as
we have, for the fact that all the particles fall into the
iowest quantum state, a state which moreover carries
lts own characteristic distribution of pressure, stress,
and density. Moreover, the pressure is anisotropic and
very different from zero.

The anisotropy is due to the factor A~'R'? which
appears with different sign in the component 7! and in
the components 7> and 7'3* of the tensor momentum
energy. In the distribution that we have considered, all
the particles are in the same ground state n=1,/=0and
they are limited to a region of the order of the de
Broglie wavelength %p~!. For a number of particles
N~[(Planck mass)/m]?, we have p~mc. Referred to
#/mc, the inhomogeneity of the effective gravitational
potential (Gpc™2) is of the order Gp#2m—2c—4~1. Under
such conditions the gravitational disturbance in the
energy-momentum tensor of the system of particles and
the anisotropy due to the tide-producing force are
indeed expected to be very large. However, if the \V
bosons are equally distributed in excited states, the
radial distribution R(r) of the system can have an
absolutely negligible derivative with respect to r. In
this case, the quantum gravitational bound state for
the system still exists, but the anisotropy in the energy-
momentum tensor disappears.

C. Possible Generalization of the Method

In the preceding paragraph, we have studied the
problem of a system of bosons in the ground state. It
would be interesting to study the corresponding problem
for a distribution function

<0:0:' : ':N"lmy' * 'aol ) (28)

i.e., all the bosons in the same excited state, and to
examine the dependence of the critical mass upon the
quantum numbers %, I, m of that state.

We would have to compute the mean value of the
energy-momentum tensor corresponding to this dis-
tribution. The radial function would satisfy Eq. (14),
and in the mean value of the energy momentum tensor
some quantities depending on #, I, and m would be
present, e.g.,

<T11>= .4—1Rnll2
4+ (B Ent— )R —[I(+ 1)/ ATRa2.  (29)

The computation of the mean value is completely
analogous to the calculation (20) for the ground state.
The number of zeros in the radial function is equal to
the difference #—I—1. This number was zero for the
self-gravitating system in its ground state. For the
general excited state this difference will be large, and
the radial function will have many nodes. However,
there is another case where again the number of nodes
is zero, namely, large #, but with / also large and equal
to n—1. A simple analysis shows that we are dealing
here with waves running round in a thin ““active region”
or ‘“spherical zone of activity.” It is interesting to see
that if we write the equations in the limit u— 0, we
obtain after some simple approximations Wheeler’s
equation for geons—not, however, electromagnetic
geons (built on a field of spin 1) nor gravitational geons
(spin-2 field) but geons built on a scalar field of spin 0.

A further generalization to distributions of the form

<LV100,N200,N210, tee ,Ol (30)

and a corresponding examination of the critical mass
would be possible.
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In this case we would have a number of radial equa-
tions equal to the number of different values of / and in
the energy-momentum tensor a sum of contributions
belonging to all the different values of #, I, and m for
which N,i.7#0, e.g.,

<T11> = ZZ Clmn<Tlllmn> ) (31)

where the cimn are some suitable normalization factors.
The computation of the mean values would be done
using the commutation rules (19).

Down to how small a number of particles does it make
sense to use the statistical treatment which we have
given for a system of N ideal self-gravitating bosons in
their ground state? For bosons of any familiar mass
value, the statistical treatment in the small-N limit is
Newtonian. It gives for the binding energy of the
N-boson system

Ebina=0.1626N3G*m5%72 (32)
and for the two-boson system
Eyina=1.3008G*m*h 2. (33)

On the other hand, the exact treatment of the ideal two-
boson system follows from the standard theory of the
hydrogen atom, when we insert (a) for the mass the
reduced mass 3m of the two-boson system and (b) for
the coefficient €? of 1/7* in the expression for the force
the Newtonian value Gm?; thus,

FEpinga= 0.25G*m*h2. (34)

Comparing (33) and (34), we see that the statistical
treatment gives a value for the binding ~5.2 times
greater than the correct value. The discrepancy will be
of the same order whenever we go to the full relativistic
treatment and we consider the case of a small number
of particles of appropriately larger mass (~10-° g). The
reason for the error is clear: The quantity (J°) does not
represent a real density of particles but only a density
of probability. Therefore, the metric is computed in
correspondence not to the time-changing momentary
distribution of matter but to a probability distribution.
Thus it would appear that the treatment developed
here, while valid for a system of a large number of
particles, is a poor approximation for a single particle
as well as for a system of only two or three particles
(large fluctuation away from any average density,
correction for center of mass, etc.). In fact, a system of
equations equivalent to the system (26) and sub-
stantially equivalent to the equations published in Refs.
16 and 17 has been recently analyzed in connection with
the problem of one particle or a few particles by
Feinblum and McKinley,?5:2¢ and by Kaup.2” Moreover,

;5 13 A. Feinblum and W. A. McKinley, Phys. Rev. 168, 1445
(1968).

26 Independently from the objection of the applicability of our
method to the one-particle system that we have just explained, a
serious difficulty comes from the development proposed by
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in our opinion there is not the slightest reason to believe
that the considerations on a relativistic many-boson
system given in this paper have any relevance whatever
to the quite different problem of the internal structure
of a single boson.?8:2°

III. FERMIONS

To bring out the effects that we are looking for with
maximum clarity, we restrict attention here and in the
following to an idealized system of fermions: particles
which interact with each other exclusively by gravita-
tional forces (no electric forces, no nuclear forces), and
which are treated as stable (no 8 decay, no other
elementary particle transformations). A collection of
neutrons (in the first few minutes, before 3 decay can
occur) is the closest approximation we have today to
such a system. However, it should be emphasized that
well-known effects come into play for neutrons at
sufficiently high densities, which make a neutron star
depart from the ideal system under consideration here
in respects which are important and which are still not
sufficiently well understood to be neglected in a detailed
analysis.3°

As we have pointed out in the Introduction, for a
system of many self-gravitating fermions, a “spike’ in
the density at the origin (Fig. 1) forces the effective
potential to change substantially over dimensions of the
order r~ L(m*/m)*3. Then the concept of equation of
state breaks down.

We make the analysis first in the framework of
Newtonian mechanics: The potential seems to be per-
fectly regular for the self-gravitating system of fermions
(Fig. 9). In this figure the gravitational potential (X/x),
expressed in appropriate dimensionless units, is plotted
as a function of the distance from the center, also in
appropriate dimensionless units. Both quantities are
taken from the tables of Emden®! for a polytrope of
index n=%; that is a function which satisfies the

Feinblum and McKinley in the neighborhood of the origin
[Egs. (18)-(20), and Sec. 7 in Ref. 25]. This development implies
that either (a) goo(0) =« or (b) £11(0)=0, or both. We know that
for any physically acceptable distribution of matter with >0,
it must always happen that go’/goo>0, and this shows that the
condition (a) is not compatible with the requirement of
Minkowskian space-time at infinity. On the other hand, the con-
dition (b) is not compatible with the standard expression for the
space part of a metric, regular at the origin, which is ex-
pressed in Schwarzschild coordinates; namely, that gn=—1/
(1— /5 To°r%dr/r). Moreover, with the expression proposed in
Ref. 25, the scalar of curvature and the invariants of curvature
are singular near the origin.

27 D. J. Kaup, Phys. Rev. 172, 1332 (1968).

* We understand from M. J. Stakvilevicius and Y. P. Terletsky
by private communication to one of us (R. R.) that they have a
somewhat different point of view than ours on this question.

%% In the neighborhood of one elementary particle of 105 g and
107% cm, there is an extremely strong vacuum polarization due to
the gravitational field of the particle. This argument has been
developed by one of us (R. Ruffini, Ref. 19).

% Strong interaction between the particles, creation of new
particles, gravitational vacuum fluctuations, velocity of sound
greater than ¢, etc.

# R. Emden, Gaskugeln (Verlag von Teubner, Berlin, 1907).
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equation
A2 /da?= —X312/\/x. (35)

The function X satisfies the normalization condition

f 2D x=1. (36)
[}

The connection between this polytrope and the system
of NV fermions is well known. The usual radial coordinate
r in the Newtonian system is connected with the
dimensionless coordinate x by the equation

r=N"13px, (37

where the unit of length b has the value

b=3Em)2 MG

The value of the gravitational potential (relative to the
gravitational potential on the surface of the system as
standard of reference) is

S=GNmX/r, (38)

where G is the Newtonian gravitational constant.

The kinetic energy (KE) of a fermion at the point 7 is
connected with the Fermi momentum and the potential
G by the equation

(KE)max= pr*(2m)t=mG.
The mass density of particles is
o(r)=(8x/3)mu3pp*.

This is the source term in the Newtonian equation for
the gravitational potential

(39)

(40)

AG= —4rnGp. (41)

From Egs. (37) and (38) it follows immediately that the
density distribution for an arbitrary particle number
can be obtained directly from the graph of X/x as
function of x in Fig. 9.

The smoothness of the dimensionless potential plotted
in Fig. 9 shows that there is no “spike” in the potential
for a system containing a reasonable number of particles.
However, with increaseing N the whole scale shrinks.
Automatically, what was a potential without a “spike”
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(o] 1 2 3 X

F1c. 9. Newtonian gravitational potential of a system of self-
gravitating fermions in degenerate state is plotted as a function of
the radius in appropriate dimensionless unit [§=GNmb™!(x/x),
r=N-13bx, where G is the Newtonian gravitational constant,
b=3(x)2*h*m 3G, and m is the mass of the fermion].

becomes a potential which is everywhere a “spike.”
Then the statistical treatment fails.

Long before one arrives at this critical value of .V,
however, the bulk of the fermions have been promoted
to relativistic energies (last entry in Table I1I). The
nonrelativistic treatment fails. The Newtonian non-
relativistic regime ends when the Fermi KE, largest at
the center of the system, attains a value of the order
of mc?; thus

(KE)rermi=mG~mc?, (42)
GNe**m2b~1(X/x)o~mc?. (43)

From this equation we find
Neaa~m*3/m3(~10% for m=my=1.6X10"2*g). (44)

Here m*= (4c/G)!*=2.2X10"% g is the Planck mass
and (X/x)o is the dimensionless measure of the gravita-
tional potential at the center.

For values of N> N1, the Newtonian treatment has
to be modified in two ways: (a) The nonrelativistic
relation Er= pr?(2m)~! between the Fermi energy and
the Fermi momentum must be replaced by the rela-
tivistic one, and (b) the Newtonian theory of gravity
must be corrected to general relativity, because the
dimensions of the system are becoming comparable to
the Schwarzschild radius.

TaBLE III. Properties of an ideal system of self-gravitating fermions in the Newtonian regime. The mass of the ideal neutral fermions
considered is m=1.6X10"2¢ g. Here the “radius” is the distance at which the Fermi kinetic energy falls to half-value; (KE/mc?):_o
is the kinetic energy of the particle at the center in units mc2. po is the central density, M is the total mass (neglecting the negative mass
of gravitational binding), and rsw is the gravitational radius of the system endowed with this mass. From the last line (10° particles)
it is evident how the effects of special and general relativity are manifested simultaneously.

N Radius (cm) (KE/mc?) rmo po (g/cm?) M (g) Schw (€M)
103 6.34X10% 3.901 1077 1.172 X109 1.675X 102 12.4X107%0
102t 6.34 <1017 3.901 X104 1.172X 1073 1.675X1073 12.4X10732
103 6.34 X 1011 3.901 X102 1.172X10718 1.675X 108 12.4X10™1
1057 6.34 X108 3.901 1.172 1018 1.675X10% 12.4X10*
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Historically, Landau?®® (1932) and Chandrasekhar3
(1931) considered the effect of special relativity before
Oppenheimer and Volkoff?* added the effects of general
relativity. In the meantime, the properties of an
idealized system of fermions have been studied in con-
siderably more detail.? As the central density goes
higher and higher, a localized ‘“‘spike” indeed develops
in the gravitational potential.®® Ultimately, it becomes
so sharp that in the region of the spike the concept of
the equation of state therefore breaks down.

In the following section we trace out in detail the
properties of the region of the spike, the connections
between the theory of many self-gravitating particles
and the concept of the equation of state, and finally the
modification which comes about in the region of the
spike.

We found that the modifications in the region of the
spike are qualitatively extremely important; however,
we believe that they cause no more trouble in the theory
of the neutron star than the corresponding troubles
caused for the theory of the atom and for the same
reason: The volume of the effective region is negligible
compared to the volume of the entire system. On the
other hand, we show explicitly that outside the region
of the “spike” the application of the equation of state is
perfectly legitimate and coincides with the treatment of
many fermions with a self-consistent field method.

A. Formalism of the Relativistic Treatment

We apply the formalism of Sec. II to the case of
fermions. We assume a familiarity with the spinor
formalism in a differentiable manifold. Nevertheless, it
is useful to recall a few definitions.?”

It simplifies the problem to adopt a system of iso-
tropic coordinates. Assuming a spherical symmetric and
static distribution, the metric in this system of co-
ordinates is

ds?= B(r)c2di? — A (r)[ (dx)?+ (dx?)2+ (dx®)2], (45)
where
2 42y a2 2
x"—-;, icj;j;r:’_zx;=z. (46)
The Dirac matrices must satisfy the relation
Ya¥8tV8Ya=28asl , (47)

where 7 is the unit matrix.

32 See Ref. 1.

33 See Refs. 1, 6, and 7.

(1;; g) R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 455

3 See, for example, B. Harrison, K. S. Thorne, M. Wakano, and
J. A. Wheeler, Ref. 13.

36 See Fig. 1.

37 We will follow the formalism of A. Lichnerowicz, Propagateur
et quantification en relativité générale (Gauthier-Villars, Paris,
1966); see also A. Lichnerowicz, Bull. Soc. Math. France, 1966;
Ann. Inst. Henri Poincaré 1, No. 3 (1964).

AND
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In the Majorana representation and with the metric
(45), we obtain for the v, the following expressions:

1 0 0
0
0

=)

Az, (48a)

|
b

V2= A, (48b)

OO OO
(e

A2 (48¢)

0o 1
0 0
0 0
0 0
0 0
-1 0
0 -1
0 0
0 O
0 1
1 0
0 O
0 0
0 1

ORrO OO mRO
(=]

o= B2, (48d)

0
1 0 0

We will also use the Pauli representation; we have the
relation

()

YPauli = Q™ YMajoranaQ , (49a)
where Q is the unitary matrix
11 ¢ 4
o=am)| i T g )
1 1 —¢ —1
The Dirac equation is
v AVl B =, (50)

with ¥4 indicating a contravariant spinor of four com-
ponents. The covariant derivative V, is

Va‘le: aa¢A+0’uAB'//B ) (51)
Vola=0u¥a—0caBa¢s, (52)
where
gotp=—1Tlsvs%cv?s. (53)
From (51)-(53) we obtain
Vavsts=0avsis—T s v
+o0atcvs’s—0aPrvs4p=0. (54)

We define the covariant and antisymmetric two-spinor

fundamental form
WAB= —WBA, (55)
with components
wi= —i(—gV4, we= —i(—g)4,
(56)
Wi =w13= w24 = w34 =0 )
for which we have

Vawap=0.
This fundamental form is used to raise and lower the
spinorial indices

Ya=wandb.

7



187 SYSTEMS OF

B. Dirac Equation in a Given Isotropic Metric

1f we write Eq. (50) using the metric (45), we obtain
the equation

Y 450a(ATIBINE) = ATIBI,  (58)
which in the Pauli representation is
A l/Z(B—-lﬂEh——lC—l_l_#)Pl
+(91P*—1i9,P*—9;P%) =0,
All2(B—ll2Eh—IC_l+}L)P2
4+ (81P3+19.P3—9;P%) =0,
Al/2(_B~—1/2Eh—-lc—l+#)P3 (59)
+ (8:1P?—19:P2+0;P1) =0,
A 1/2(_B—1/2Eh—16—-1+#)1)4
+ (01P +19,P1—9;P*)=0.
Here we have put
¢A(x1,x2,x3,x°) — ])A(xi)eii}h"c“‘z"A~7/83—3/8. (60)

Let us introduce a polar system of coordinates; just as
in flat space, it is possible to separate the radial part of
the function P4 from the angular part. We obtain the
following complete set of solutions.

For k>0, E>0:

Prlemn=[(k—14-m)/(2k—=1)]'*Fin ¥V 1™,
Premn=[(k—m)/(2k—1)]'*F . Vi1,

Primn= —il(k—m+ 1)/ k)] Gy, O
Prtima= ik m)/ (2 1) TG Vi
For k<0, E>0:
Prlimn=[(—k—m~+1)/(—=2k+1)]112
XEFn V™1,
P1e’jmn= —[(—k+m)/(—2k+1)]"2
XF Y™, (61b)
Prikmn= —i[(—k+m—1)/(—2k—1)]112
XGenV 1™,
Putimn= —i[(—k—m)/(—2k—1)]!/2
XGenV_p ™.
For k>0, E<O0:
Pritkmn=[(k—14+m)/ 2k —3) 2G4V i1™ !,
Prs?imn=[(k—m)/(2k—1) ]G, V1™,
Prurdkmn= —i[ (k—m~+1)/(2k+1)]12F_;, ¥, (61c)
Prttimn=1[ (k+m)/(2k+ 1)1 2F,, V™.
For k<0, E<O:
Prv'imn=[(—k—m+1)/(—2k+1)]'"2
XG-n V™1,
Prv?imn= —[(—k+m)/(—2k+1)]"
XG—knV_i™,
Prvimn= =il (—k+m—1)/(—2k+1)]"2 (61d)
XF jnV_ g™t
Pivtpmn= —i[(—k+m)/(—=2k+1)]12
XF ¥ ™,
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where I’ and G are the radial functions. The angular
part is described by the spherical harmonic functions
Y:™(8,¢); m and k are the integer quantum numbers
corresponding, respectively, to the observables

J.+% and K=e-L,

where ¢ is the spin momentum and L the orbital
angular momentum. The functions G and F must satisfy
the system of equations

dFkn/dT+Fkn(1—k)/f

- (Eknh—lc—lB—lﬂ_i_#)A 112Gy,
de,,/dr—i—Gk,z(l—f—k)/r

= (=Exul ¢ B 24 ) AV F
where Ein, Fin, and Gin are the eigenvalues and the
eigenfunctions corresponding to a given k. It is possible

to demonstrate that the spectrum of eigenvalues is
discrete.®®

(62)

C. Einstein Equations

So far the treatment applies as well to charged
particles as to neutral ones. However, we are interested
only in neutral particles (ideal system of self-gravitating
neutrons). Therefore, we ask that the field function
verifies the condition

A=cyA,

Here ¢ is the charge-conjugation operator. To make
this condition take its simplest form, we now go to the
Majorana representation. There the operation of charge
conjugation has the form

QPA=¢A* ,

where y4* is the complex conjugate of y4. Thus we
demand that

(63)

YA=yA*, (64)
It is easy to see that in the Majorana representation we
have from (49)
Y1lmn=3(Pr*+iP 2+ 1P B4+ P kmn

X et (Enktile"1)2® 4~7/8 B—3/8 ,
Y =3(Pr'+iPr*~1iPP4+P1*) imn

X et (Enkh™le=) 20 4~T/8 B—3/8
Vi%kmn=3(—1P' =P+ PP —iP1)imn

X i Enkh™le™ a0 —T/8B=3/8
V1kmn =3P+ PP —PP—iP 1) kmn

X et Enkh=le™1)a0 4—1/8 B—3/8

(65)

In the same way it is possible to obtain Y114, Y1114, and
Y1iv4. For simplicity in the following, we indicate with 7
the eigenfunctions with >0 and with | the eigen-
function with £<0. It is now possible to write the
following expressions:

% A system of equations equivalent to (62) has been found for
the motion of a neutrino in a spherically symmetrical gravitational
?legl)(;7 )See D. R. Brill and J. A. Wheeler, Rev. Mod. Phys. 29, 465
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(i) the symmetric energy-momentum tensor

Tap=1(Valvsl+ Vebval —vsVal —¥vaVa) hc;  (66)
(ii) the current vector
Je=ipyy; (67)
(iii) the spin tensor
Seeb=gryr(yyP =Py ). (68)

With ¢ we indicate the covariant spin that is obtained
from the contravariant spinor ¢ by means of the lower-
ing operator (57); e.g.,

P=wp*.

In the formalism of second quantization, the wave
function ¢ is an operator acting on the state vector
(Q|. The Tap, J&, and S are also operators and their
mean values are computed for a state vector (Q|
remembering the antisymmetric fermion commutation
rules. In the minimum-energy state of the system, the
lowest 3NV cells of phase space are occupied. Conse-
quently, we have for the mean values of (Q] 7’| Q) the
following expressions:

QIT7]Q)= k§ B[,
X | B| (Gin2+Fn2)A—1B-12,

(69)
QIT|Q)= ¥ B™'2E,
k<0,n
X {kl (Grn?+Fyn2)A—1B-12,
and for the mean value of the spatial trace:
QITAQ)=—QITT]Q)
Fme Y | k| (Fra2—Grn2)A1B712,
£>0,n (70)

©ITQ)=—QITLQ)
+met ¥ | k| (Fin?—Gra?) A71BV2,

k<0,n

For the projection of T on a unit vector # normal to a
radial unit vector, we have

QI Taltitt| Q)= FinGin| k| A7 B~12r1,
(Ol Taltitt| Q)= FinGin| k| A—1B11201.

We define, as in the boson case, the probability density
p by means of the zero component of the vector J*:

Z pk"T= Z Ik[(Gk712+Fkn2)A_lB_”2

(71)

k>0,n k>0,n

=J'T(go0)*'?, 72)
2 penl= 2 |k (Gr2+Fi A7 B2
k<0,n k<0,n

=J()l(g00)1/2.

It is possible now to write the Einstein equations for

AND S.

BONAZZOLA 187
the system of NV fermions:
R ~3R=8xGc*(T'T)+(T"L)), 73)

Ri—3R=8aGe (T +(T+])).

These equations, with Eq. (62) and the normalization
condition

[ riev=gie= [ i —ga=py

0

determine the distribution of the N fermions in the
lowest state of energy. The boundary conditions are the
same as in the boson case.

D. Possible Approximations

In the ground state of the N-boson system, all the
particles are in the same quantum state. How different
is the N-fermion system! The Pauli principle forces all
the particles into different quantum states. To solve
exactly the problem of 109 self-gravitating fermions, it
would be necessary to compute 105 eigenvalues and
10% eigenfunctions. Therefore, it is necessary to develop
some approximation method.

From (72) we can write the expressions (69) in the
following form:

( TOOT) = Z B12E,pknt

k>0,n

<T00l> = Z B—”zEknpknJ .

k<0,n

(74)

In the system of equations (62), we can eliminate Gia,
obtaining a second-order equation

Fin’4 (& /@) Fin'+ Fial (Exa? i 2c 2B 1—p?) A
o —k(k—1)r2]=0, (75)
where
o (Exuh 11 B2 ) AV (76)

and
da1=14"471 —%B/Ek,.B—3/2(Ek"B_”z‘-f:—”‘wz)-l :- @

We now fix attention on high quantum numbers and
we suppose that Ex,B~/2%~1¢c™! is greater than u inside
the distribution. Then we can write

dat=3(A’A"'—B'BY). (78)

If we put ¢=a'F, we have for Eq. (75) the following
new expression:

&'+ {[Exn? B (fc) 2 —u2]A —k(k—1)r 24/ a Yer1
+3(e"/a)—{(d/a)*}=0. (79)
We apply the JWKB method. We write

¢= J'(,)eis (r)/h’ (80)
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We obtain the following exact equation®® for S:
— (S84 (Exn2c 2B 1 —m2c®) A —k(k —1)r222
+[5@"/a) =3 /a)* I 4o/ o~ Yhr A2+ 2
XE(S7/8)—3(8""/8)]=0. (81)

In the case where all the quantities with #? in front
are small in comparison with the others, with the excep-
tion of k(k—1)/r? (high quantum numbers), Eq. (81)
becomes

A[k(k—1)R2r 2414+ A-152+m2c?]= E;,2B-1.  (82)

The quantity A~1/2S" is the projection in the radial
direction of the momentum p of a particle with total
energy Ei,, i.e.,
A-128 = pip‘, ,
where p* is a unit radial vector of components
pt'= [(_gll)IIler—l , (_g22)1/2x2,—1 , (__g33)l/2x3r—1];
pipi=—1.
The quantity Ex,B~'/? is the energy of the particle and
the quantity [k(k—1)]/224~1/%~1 is the magnitude of
the projection of the momentum in a plane normal to
the radial direction. We see that (82) reduces with this
notation to the familiar relation between momentum
and energy,

w=EB12=c(p>+m?c?)1/2, (83)

We neglect in this approximation the following
quantities:

oo kr 1A, (84a)
A3 (o /) =3 [e)* ]2, (84b)

and as usual we neglect
LE(S7/S ) —3(8""/8") Jw*. (84¢)

The expressions (84a) and (84b) contain the interaction
between a fermion and the metric. We consider in detail
the expression (84a).

For high quantum numbers, the projection of the
momentum in the plane orthogonal to the radius can
be written

po=khr-14-1/2, (85)
We put

F j=psE B2 =khcEBU14-12 | 0<j<1. (86)

The = are a consequence of the fact that k& can have
positive and negative values. From (81) we obtain

P?= 202 (1 —mPc'w2F ja'ca 1A 2hw~ ). (87)

The jo'ca'A='2hw=! represent a gravitational spin-
orbit interaction. The particle with parallel spin modifies
its binding energy in opposite sign from the particles
with antiparallel spin.

3 See, for example, A. Messiah, Mécanique Quantique (Dunod
Cie., Paris, 1962), pp. 194-202. Clearly this treatment has been
generalized in our case to a curved background space.
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For o/ 1cA" 12w 1> j~'mc*w—2, the P* would be
timelike. In this limit, certainly different phenomena
take place and other effects must be considered (quan-
tization of gravitational field, interaction fermion
gravition, etc.). We will now give an order of magnitude
for the interaction between the spin and the angular
momentum. We have from the relation (87) that this
interaction is important when

ol he A=\ P~ mct. (88)

To evaluate this quantity we consider the Oppenheimer-
Volkoff analytic solution for an infinite central density.4°
Using this solution, we can evaluate in Eq. (88) the
factor @’a! as well as give an approximate value for w.
We must only remember that g/8~'= —p'(p+p) and
the behavior of the equation of state and of the density
p(7) near the origin.#* We see that condition (88) is satis-
fied when the density is p~c2GL2(m/m*)83~10142 g
cm~3 and the central core has dimensions 7~ L (m*/m)*/3
~10~% cm (having chosen for m the neutron mass, and
m* and L being the Planck mass and the Planck length).

E. Case of a Weak Field

It is clear that in Eq. (69) the low quantum numbers
give a negligible contribution to the mean values (7'°T)
and (T°]). Therefore we can limit our attention only
to high quantum numbers and, in this limit, the sum-
mations can be replaced with integrals. From expres-
sions (69), (72), (74), and (83), if we express the differen-
tial density of presence in the momentum space, we
obtain for the energy density of our configuration the
following expression:

@y=ictes [ cprrmeripap, @)
0

where pr is the Fermi momentum that is related to the
density of particles p by the expression

PR
p=htn? / pap=tpeirine. (90)
[1]

To compute the mean value of the spatial trace, we must
evaluate the quantity Y i.|k|(Fi:2—Gy.?) present in
the expressions (70). Following the approximations
adopted in Sec. ITII D, we can write

Gin=gin'S™ and Frn= fiane’S™»,. (1)
We obtain for Eq. (64) the expression
geal () Ern B2 ] A1
= (fin' —1S"H frn—krfin). (92)

40 See Ref. 34.
41 We know that in the relativistic regime w~cp and

/ " 8 pth 3 idp=2mprti-Sci=p .
[

On the other hand, we have o’a~l~4xGc %r, and Gpc~2~r~2 from
the Oppenheimer-Volkoff solution.
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We multiply Eq. (92) by the complex conjugate, and,
neglecting the quantity fi.’, we have
Zingrn*L () Exn B2+ 24

= (k2,—2+ ﬁ—szz)fknfkn*z'

Remembering the expression (82), we can write (93) as
follows:

| gkn | 2[(Hc) Exn B2 4]
=[(#e) ExnB~ 12 —p]| fin|?.  (94)

On the other hand, we know from (72) that the prob-
ability density can be expressed in the following way:

pen= || (|genl*+ | fun|)A7B712. (95)

We can therefore express | fi.|2 and | gia|? as a function
of prs, and we obtain

[k| | fea|?=3A B 2pn(EB~ 2 4-mc*) 7B,

(93)

96
]kl [gk,.]2=%AB”zp;m(EB_‘”—mcz)E“‘B‘”. ( )
Remembering Egs. (70), we can write
(T =~ TN +E pram?c Er, B,
kn (97)

<Tiil> = —<T001«>+Z Prnm?c* Ey ' BY/2,
kn

We can, as before for the (7°), transform the summa-
tion into integrals and express the differential density
dp in the momentum space, obtaining for the trace the
expression

(TF)=h%r2
Pp
X/ Lc(p>+m3c¥)! 12— E-\m?c* B2 ]p*dp.  (98)
0

After the computation of the integrals, we obtain
<T00> = 6(8T2k3)—1[pp(2Pp2 +m2c2) (PF2+m262) 1/2

—(mc)4 sinh~Y(ppm~c1)], (99)
(T = —3c@r* 1) "[pr(Gps* —m?c*)(pr*+m?c*)'
+ (mc)* sinh~(ppm=1c1)]. (100)

These expressions for the source of the Einstein equa-
tions are exactly the same as those used by Oppenheimer
and Volkoff. We have also shown that the pressure is
isotropic. We have, in fact, found the relation

(Tat'tt)=3(T7), (101)

where #* is a unit vector normal to a radial unit vector.
It is possible to verify that the relation (101) follows

from the approximation previously adopted and
from (71).
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APPENDIX

The system (26) appears to be a system of nonlinear
differential equations of first order in the functions 4
and B and of second order in R. All three functions are
present in each of the three equations. The system is
solved by determinining the eigenvalue Eq; which per-
mits the boundary and initial conditions (25) and the
integral condition (24) to be satisfied.

If we have a solution of (26) that satisfies the bound-
ary and initial conditions (25) but with the integral (24)
having a value 731, then this will be equivalent to a
new solution normalized to 1 with

A*=4, R*=R/v/I, N*=NI,
B*=B, &=,

where the asterisk indicates the new solution. Another
very useful property that we have used during the
integration of the system is that geo can be defined up to
an arbitrary constant factor. In other words, we can
integrate the system and find the eigenvalue inde-
pendently of the boundary condition (25d), and then
divide goo by an appropriate factor so that goo()=1.

We have integrated the system in two completely
different ways. In analogy with the usual method
adopted for similar problems in atomic and molecular
physics, we have used an iterative method of computa-
tion. We have expressed 4’ and B’ as functions of 4,
B, and R; R" has been expressed as functions of R’, A,
B’, A, and B. We start from flat space 4 =B=1 and

I#l ]

\I:l/x

INTEGRATION OF R
K

I

INTEGRATION OF B
INTEGRATION OF A

CALCULATION OF
THE NORMALIZATION
INTEGRAL.

Fic. 10. Scheme of the iterative program relative to the nu-
merical solution of the relativistic equations of many self-gravitat-
ing bosons in their ground state. The index I indicates the cycle
number; the index K is determined by the number of iterations
necessary to obtain a given accuracy.
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Fic. 11. Radial functions Ro, relative to the ground-state distribution of N self-gravitating bosons are plotted as a
function of # (dimensionless) for different values of Eoi. The eigenvalue is £¢ =0.8842.

from a given initial radial distribution R(r). We com-
pute new values for 4 and B. We put these new values
in the radial equation and integrate, obtaining a new
radial function. Starting from these values for 4, B, and
R, we start a new cycle (see Fig. 10).

For any reasonable choice of the initial function R,
the procedure converges rapidly. Within five cycles,
we found

|Gi/Gip1—1] <1075,

where G; and G4 stand for the three functions 4, B,
and R, evaluated for the ith and (:+1)th cycles. This
program was extremely accurate, but five cycles at 3
min per cycle is too long to be practical. For this reason
we have developed a new program based on the Runge-
Kutta method (for particulars see Ref. 18) using the
preceding program only for comparison or for improving
the accuracy of some results.

The method of integration is completely different
from the former. We fix some value for 4, B, and R at
the origin and a random value for the eigenvalue Eq,.
We solve all three equations simultaneously and we
extend the solutions, starting from the origin, by succes-
sive intervals Ar= k.

If the value of Ey, is correct, the radial function R

decreases exponentially, reaching the value zero at
infinity. If it is too small, then at a certain value of r the
derivative R’ changes sign; thereafter R increases and
goes to +  as 7 goes to + . Moreover, if Eq is too
large, then at a certain value of r the radial function R
will change sign; as r increases further towards infinity,
the function R will go to — . The program starts the
integration at the origin and extends the solution to the
point where either R'>0 or R<0.

A subprogram optimizes the choice of a new eigen-
value and the integration starts again from the origin.
The computation is stopped at the asymptotic region
R<10719, gy;~goo~1. Some illuminating diagrams are
sketched in Fig. 11.

From the asymptotic form of g1, we have computed,
in the usual way, the value of the mass at infinity, and
from the maximum of gu, we have determined the
“effective radius” of the distribution:

T(maxgy,)

effective radius= / (Vgu)dr.

0

The computation carried out with this second program
(Runge-Kutta) is in perfect agreement with the com-
putation of the first program (iterative method).



