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As a basis for a generally covariant theory of Mach's principle, we express Einstein, 'p field equations in
integral form. The nonlinearity of these equations is rejected in the kernel of the integral representation,
which is a functional of the metric tensor. The functional dependence is so constructed that, subject to
supplementary conditions, the kernel may be regarded as remaining unchanged to the first order when a
small change in the source produces a corresponding change in the potential. To obtain this kernel, a linear
differential operator is derived by varying a particular form of Einstein's field equations. The elementary
solution corresponding to this linear operator provides the kernel of an approximate integral representa-
tion which becomes exact in the limit of vanishing variations. This representation is in a certain sense
unique. Our discussion is confined to a normal neighborhood of the field point.

1. INTRODUCTION

'HIS paper is a sequel to a previous one' in which
an attempt was made to construct a theory of

inertia which would satisfy Mach's principle. The basic
idea of that theory was to express the gravitational-
inertial potential as an integral over the distribution of
matter, thus ensuring that the whole of the potential
was due to physical sources. In the interests of sim-
plicity, the potential was assumed to be a four-vector,
but it was recognized that a satisfactory theory would
have to be based on a potential which is a symmetrical
second-rank tensor. The development of such a theory
was promised in that paper, and this is the question to
which we now return.

The first problem which must be resolved is the rela-
tion such a Machian theory of inertia would bear to
general relativity, where the inertial properties of matter
are described by means of a tensor potential g&" satisfy-
ing Einstein's field equations. It is now well understood
that these equations are the only wavelike equations
for a tensor potential whose sources are conserved in
the presence of the field. It would therefore seem
natural to express the Machian inertial theory in terms
of a generally eovariant integral formulation of Einstein's
equations —provided that such a formulation could be
derived in spite of the nonlinearity of these equations
(this nonlinearity being enforced by the requirement
that the sources be conserved). By expressing the inertial
theory in this manner, the boundary conditions would
be incorporated directly into the theory. This might
permit a rigorous statement of Mach's principle.

However, prior to the placing of any restrictions on
the boundary conditions, this integral formulation
would presumably resemble a tensorial analog of
Kirchho6's formula for the scalar inhomogeneous wave
equation; that is, it would represent the potential g&"

at any point as the sum of a volume integral over sources

I D. %. Sciama, Mon. iWot. Roy. Astr, Soy, Il3, 34 (1953).
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plus a surface integral depending on the values of the
potential over the bounding surface. The surface inte-
gral would represent the contribution from sources
outside the volume, and also the contribution from. any
source-free part of the potential.

It is the source-free contribution to the potential
which should vanish according to Mach's principle,
and it might be hoped to ensure this by requiring that
the surface integral in the theory should tend to a suit-
able limit when the surface tends to infinity. '- However,
a global condition of this type is difhcult to discuss in
pseudo-Riemannian space-time, so in this paper we
shall retain the surface integral, and confine our atten-
tion to a normal neighborhood of the point at which
the potential is to be evaluated. %e believe that our
integral formula, (14) for such a neighborhood may be of
interest in general relativity independently of the
problem of Mach's principle.

There remains our second problem: that of expressing
Einstein s equations in integral form. Interesting at-
tempts to solve this problem have already been made
by Altshuler' and I.ynden-Bell. Ke shall take over
many of their ideas and differ from them principally
in our choice of kernel for the integral form and in our
retention of the surface integral.

The most important idea which we borrow from
these authors' is that, despite the nonlinearity of Ein-
stein's equations, we may regard each element of the
source T&" as contributing linearly to the potential g&"

in the sense that the inRuence of each element may be
regarded as propagated linearly over the actual space-
time, whose structure does, of course, depend on all the
other sources in the universe. Symbolically we may

'D. W. Sciama Proc. Roy. Soc. (London) A273, 484 (1963);
Rev. Mod. Phys. 6, 463 (1964).' B.L. Altshuler, Zh. Eksperim. i Teor. Fiz. 51, 1143 (1966);55,
1311 (1968) LEnglish transls. :Soviet Phys. —JKTP 24, 766 (196/);
28, 687 (1969)j.' D. Lynden-Hell, Mon. ibot. Roy. Astr. Soc. 135, 413 (1967).' Lynden-Bell at tributes this idea to F.Hoyle and J.V. Narlikar,
Proc. Roy. Soc. (I.ondon) A282, 191 (1964}.
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means equality to the first order in a small variation
parameter.

g&"(x) = G s &"(x,x') T 'i'd'x'+surface terni, (1)

where the kernel G .p. &"(x,x') is suitably defined for a
space-time with metric g&". In other words, the kernel
or Green's function is a functional of the potential in-

stead of being fixed u priori as it is in linear theories.
Once we permit the Green's function G to depend

explicitly on the potential it becomes possible to repre-
sent solutions of Einstein's equations in the integral
form (1) with many different definitions of G. These
definitions involve linear differential operators D„v

„

of which G is the Green's function in the usual sense,
that is, D operating on G gives a 8 function. We would
like to set up conditions which lead to a unique choice
of operator D. This we do by demanding that:

(i) A first-order variation of source and metric should
lead to an approximate (first-order) integral representa-
tion in which the Green's functional remains un-

changed. ' This is the nearest we can get to regarding
Einstein's theory as a linear theory.

(ii) D„„„=D.,„„.This condition is required in s,ny case
if we wish the volume integral alone to be a solution of
Einstein's inhomogeneous field equations and the sur-
face integral to be a solution of the homogeneous equa-
tions. This splitting of the potential is customary in the
Kirchhoff representation, and has an obvious physical
significance.

(iii) Only g„„org&" should be regarded as suitable repre-
sentations of the potential, rather than (Q—g)"g,„or
(&—g) "g"".

As we shall see, we then arrive at a unique covariant
linear second-order differential operator D„v,given by

DJIVIIT 4 (g/lllgVT+g+Tgwa)& &p 2 (R~atr+R~rva) (2)

for defining the Green's function of (1).

2. NOTATION

The metric tensor g„,of space-time has signature
+ ———,and its determinant is denoted by- g. Partial
derivatives taken with respect to x& are denoted by, p
and covariant derivatives by;p or V„.The block oper-
ator (d'Alembertian) is defined by =g&"V„V„.

The Riemann-Christoffel tensor is defined in terms
of the Christoffel connection I' „vby

xfxv I xy, v I xv, y+ I pvt xp, I pyI ) v ~

The Ricci tensor is R)„=R q „.
Small parentheses indicate symmetrization, e.g.,

2R(&( "&
&

——R&,".+R",4.= R~,".+R&.",.
The speed of light is taken to be unity. The symbol =

The importance of this condition was stressed to us by D.
Lynden-Bell.

3. PERTURBATIONS OF EINSTEI¹8
FIELD EQUATIONS

Our aim in this section is to find a way of perturbing
Einstein s field equations which is compatible with con-
dition (i) of Sec. 1. Einstein s equations are

Rfxv 2 Rgy, v= K "tv ~

Any perturbation of these equations, when 1inearized,
will be of the form

D„„,bg = —ff.8T„„
for a suitable differential operator D„„,defined in
terms of the unperturbed metric g". Condition (i)
would be satisfied if also

D„v„g"= —~T„„
for then

D„„.,(g"+bg") = «(T)„+b—T„„).

The perturbed metric would then be governed to first
order by a linear homogeneous differential operator de-
fined in the unperturbed space-time. Accordingly, we
could regard g '+8g ' as a gravitational potential
acting to first order in the unperturbed space-time. The
equation for this potential would by virtue of the homo-
geneity of D admit a first-order Kirchhoff representa-
tion with a Green's function defined in the unperturbed
space-time. In the limit as 6g"~ 0, the potential would
coincide with the metric and the integral representation
would become exact, and would thus be the representa-
tion we are seeking.

We now consider this procedure in more detail. Let
us introduce a small variation in the energy-momentum
tensor T&«Lwe choose the mixed form of this tensor in
anticipation of our later result that this is the only form
for which conditions (i) and (ii) of Sec. 1 are satisfied7:

rh

~"x~ ~")=—~"~+~1"x.

This will induce a corresponding small variation'

g" g"=g"+~g"
where

g~"(R„„+bR„„)= «(T~„,'T"„b~„)——
= —~*TI"g, say.

Now, to first order, we have

8R„„=(b F"„«),„—(bF"„„),«,

bF""=2g" (bg-' .+bg. ',. bg:;..), —
bg-u, « =bg-', «; (R'-»gn. +R—'"«bg:),

~giuv tv gpagvPg

7 J. N. Goldberg and E. T. Newman $J. Math. Phys. 19, 369
(1969)g have independently used this device of varying g&" to
obtain a Green's theorem for general relativity.
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where the covariant derivatives are taken in the un-

perturbed space-time. These relations enable us to write

(3) in the first-order form

g~ g" + (gap~"~ &"—pox 2&—",x.)g'
+g""(A;~+0~;.) =2x*T"~, (4)

~I =rgP~g;P gf Pg
.I, —& "pe "pr

It is convenient to write (4) in the symmetrized form

g"" 2~"—.".~'+g" g"'(&-;~+4~;-)=2 &"", (5)

where
gpv 1(gpawTv +graATp )

(Owing to the ambiguity involved, we do not raise or
lower indices of varied quantities. )

Equation (5) has the required form, that is, gI'" is
acted on by a linear homogeneous diGerential operator
defined entirely in the background space-time. The
linearity follows from the fact that the operator is in-
dependent of bg&", which is a trivial consequence of our
rejection of all terms of order higher than the first. The
homogeneity, that is, the absence of a term on the left-
hand side which is independent of j&", is nontrivial.
Had we varied T„„,TI'", Z„„,Z"„,or 7""instead of Tl'„,
there would have been an additional term, namely,
G„„,—G~", 3(Q—g)G„„,2(Q—g)G»„, or (Q—g)G~"
(where G&"=E&"——,'Eg&"), which would have spoiled the
homogeneity (except in empty space-times). This in
turn would have prevented us from superposing solu-
tions to first order and so would have made a KirchhofII'

representation impossible. In passing we note that vary-
ing Z", does lead to a linear homogeneous differential
operator acting on the covariant tensor g„„,but this
operator does not satisfy our symmetry condition (ii)
and so would not be a physically satisfactory starting
point for a Kirchhoff representation.

Before we can contemplate defining a Green's func-
tion associated with our differential operator we must
allow for the well-known fact that (5) admits an in-
variance group of gauge transformations in addition
to its coordinate invariance. This guage group arises
from our ability to make a first-order coordinate trans-
formation in the perturbed space-time without making a
corresponding transformation in the unperturbed space-
time. It is convenient to work in a particular gauge
frame, which must of course be chosen in such a way
that it implies no restriction when we eventually pass
to the limit g&" —+ g&". Kith this in mind we make the
first-order coordinate transformation

in the perturbed space-time, choosing tl' so that'

D. Hilbert, Nachr. Akad. Wiss. Goettingen, Math. -Physik.
Kl. 53, 127 (1917); K. Lanczos, Z. Physik 31, 112 (1925); M.
Mathisson, ibid. 67, 270 (1931);B. S. de Witt, in Recent Develop-

in a finite region. As is well known, this requires that P
be a solution of the inhomogeneous wave equation

&4—~".4=4.. (7)

Henceforth, we shall assume that this choice has been
made, and so suppress the dashes.

It is known that Cauchy's problem for (7) has a
unique local solution. This uniqueness ensures that our
supplementary conditions eliminate the degenerate
case in which the perturbation leading to the varied
form of Einstein s equations is entirely due to a local-
ized infinitesimal coordinate transformation of the
original space-time.

We thus arrive at the following equation for g&":

Qg~"—2R~" gp =2M~" (g)

In operator form, this equation is

where
Dsv = &g(p( P) &Q R(y( v)

&

which clearly satisfies the symmetry relation

Daeva v Drrrgv ~

4. KIRCHHOFF REPRESENTATION OF
PERTURBED EINSTEIN EQUATIONS

The starting point for the Kirchhoff representation of
any differential equation is the existence of a Green's
function or elementary solution. The modern theory of
such solutions for second-order hyperbolic diGerential
equations was developed to avoid the divergent integrals
used by Hadamard. ' A number of people" have ex-
tended this development to include tensorial wave equa-
tions. Ke record here some conventions and formulas
relevant to the construction of the elementary solution
which is required in the present work.

The two-point scalar I'(x', x) denotes the square of the
proper distance along the geodesic interval between x'
and x, and is positive, zero, or negative according as the
interval is timelike, null, or spacelike. This scalar has
the property that

g"r „r,„=4r.
To ensure that I'(x', x) is single-valued in a compact
four-dimensional domain 0 containing x in its interior,

ments in General Relativity (Pergamon Press, Inc. , New York,
1962), p. 175; Gravitation, An Introduction to Current Research,
edited by L. Kitten (Wiley-Interscience, Inc. , ¹w York, 1962),
p. 266; also Ref. 4.' J. Hadamard, in Lectures on Cauchy's Problem in Linear
Partial Differential Equations (Yale University Press, New Haven,
1923). A modern treatment of the wave equation in a curved
space-time is given by F. G. Friedlander in a forthcoming book
in the Cambridge Series of Monographs on Relativity."B.S. de Witt and R. W. Brehme, Ann. Phys. (N. Y.) 9, 220
(1960); B. S. de Witt, Ref. 8; A. Lichnerowicz, Publ. Math.
de l'Inst. des Hautes Etudes, Paris 10, 1 (1961); D. Robaschik,
Acta Phys. Polon. 24, 299 (1963); Y. Bruhat, Annali di Mate-
matica, Serie 4, 64, 191 (1964); H. P. Kunzle, Proc. Cambridge
Phil. Soc. 64, 779 (1968).
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it will be assumed throughout that 0 lies within a
normal neighborhood of x'.

Let V ~ be a local vector specified at x'. (Singly

primed indices refer to the point x'.) A vector field can

be generated in 0 by parallel transport of V ~ along the
geodesics emanating from x'. The field vector obtained
at x is g '„V., where g '„(x',x) denotes the two-point
vector of geodesic parallel transport" which is covariant
at x and contravariant at x', and satisfies

lim g '„(x',x)=(x',x) =6 '„
We shall be concerned with an elementary solution

E~')'„„=E(~'&'(„„)(x',x) which is a two-point tensorial
distribution satisfying

X[g(x')g(x))
—'"b(x', x), (9)

term is difl'usive (this diffusive contribution vanishes
in flat space-time).

We may regard x' as fixed and allow x to range
throughout Q. It is then evident that the support of the
distribution E '&'„„(x',x) is the interior and the surface
of the whole (future and past) null cone with vertex x'.
Furthermore, by putting

b(r) = b+(r)+ b-(r),
H(r) =H+(r)+H-(r),

where the distributions with (+) have support in the
future of x', and those with (—) in the past, we can
decompose the elementary solution (10) into unique
advanced and retarded Green's functions (because of
the uniqueness of Cauchy's problem in a normal
neighborhood) as follows:

where b(x', x) denotes the four-dimensional 8 distribu-
tion of the two points x' and x.

In a normal neighborhood, this elementary solution
can be taken in the form

where

p~'))' = 1(G+~'))' +G-~'s' )

j ')'„„=(1/4)r)[b(r)g '(„g&',)Z(x', x)

+H(r) V- ~'„„(x',x)), (10)

where b(r) js the Dirac 8 distribution, H(I') is the
Heaviside step function

H(I')=1 when F)0
=0 when F40,

Z(x', x) (2= 1 in flat space-time) is a two-point scalar
defined by

~= l [g(x')g(x)) '"[—det(r. -,.))'",
and V ')'„„(x',x) (V '&'„„=0flat space-time) is a regular
two-point tensor. The substitution of (10) into (9)
shows that V '4'„„is the unique solution of the character-
istic boundary value problem for

which satisfies the following relation along each null
geodesic x"=x&(X) issuing from x'.

Note that both these Green's functions are elementary
solutions which satisfy (9).

The existence of these Green's functions enables us
to derive a Kirchho6 representation in the usual way.
Adapted to our present problem, the procedure is as
follows. Let (a) denote the equation resulting from the
multiplication of (9) by g&"[—g(x))'" and let (P)
denote the equation resulting from the multiplication
of (8) by E '&'„„[—g(x))'". Then the equation (n) (P)—
ls

g""g" g' [g(x)g(x'))'"b(x' x) 2«"'—A""[ g(*))"—'
~"""i"" &"'"&ji—"")L g(*))'" —(»).

The right-hand side of this equation can be rewritten
in the form

&g' [~"";ng"" ~"""i"";.)[ g(*))'"),'—
Now let us integrate (11) throughout the domain D.
After taking into account the properties of b(x', x) and
the g '„,this integration yields

1——V"'" +—[&(g"(.g'.)~)
z 4Z i " 2« "—A""E g(x))'"d'x-2&'.'g" (.g'. )~—)=o.

where b/bX denotes an intrinsic derivative taken with
respect to the admissible parameter X (l(=0 at x').

The term containing 8(r) in (10) is the parametrix
and is nonvanishing only when F(x',x)=Q, whereas
the term containing H(F) is nonvanishing for F(x,x))0.
Therefore, the contribution to the elementary solution
of the former term is sharp, whereas that of the latter

"J.L. Synge, Retativ@y: The Genera/ Theory (North-Holland
Publishing Co., Amsterdam, 1960).

(g"i&"'"'i"" &"'..g"" )—
X[—g(x)))") d4x, (12)

where d'x=dx'dx'dx'dx' is the coordinate volume ele-
ment in O.

We can use the divergence theorem to transform the
right-hand side of (12) into an integral taken over the
boundary 80 of Q. Thus, we obtain the KirchhofI'
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formula

go~(P~'1' gy~ F~'P' go~ j
)&L

—g(x) j'"d5„(13)
where d5, is the coordinate surface element on 80,
directed outward from Q. For consistency, this integral
formula must be subjected to the same supplementary
conditions (6) as were imposed on the varied field

equations.
In practice, it is usually convenient to use the re-

tarded Green's function as the kernel of the Kirchhoff
representation. This representation then conforms to
the usual notions of causality. However, we emphasize
that the advanced Green's function would given an
equally valid representation. We believe tha, t the lack
of advanced effects in nature is connected with the
diferent limiting behaviors of the advanced and re-
tarded surface integrals as the volume 0 increases until
it comprises the whole of space-time. "

We now make the usual Kirchhoff requirement,
referred to in (ii) of Sec. 1, that the integral In '&' over
0 in (13) should by itself satisfy the inhomogeneous
differential equation, that is

D+I
&I I ~lpl g +I&l

This would be true if the action of D on the elementary
solution in Ig were to produce a 8 distribution. However,
reference to (8) and (9) shows that we have the wrong

pair of indices of D contracted with a pair of indices of
Iz. Thus, we require that

Dylgtr f Pl D~l Pl f tyt

which is the symmetry condition referred to in (ii).
As we have already stated, our operator (2) satisfies
this condition.

S. EINSTEIN'S FIELD EQUATIONS IN
GENERALLY COVAMANT

INTEGRAL FORM

We now proceed to the limit in which the variations
of Sec. 4 tend to zero. As 8T&,~ 0, we have

I~ For a corresponding discussion of the electromagnetic case see
O. W. Sciama, Proc. Roy. Soc. (I ondon) A2?3, 484 I'2963).

Our Kirchhoff representation (13) now tends to an
exact generally covariant integral representation of
Einstein's field equations:

g =2» G ~" (+",—qT &,b"„)L—g(x) j ~ (f x

+ G 's'"„:
L
—g(x)$'"45 . (14)

This result could have been derived directly from
Einstein's field equations, without going through the
variational procedure. However, such direct consider-
ations would not have revealed the important property
of our particular Green's functional, namely, that, sub-
ject to the supplementary conditions (6), it may be
regarded as remaining unchanged to first order when a
small change in the material sources produces a small
change in the gravitational potential. "We regard this
stability property of the Green's functional as of con-
siderable importance both in principle, as representing
the nearest approach of Einstein's equations to linearity,
and in practice, as suggesting an iterative procedure for
solving the field equations which may be convergent in
many cases.

Computations based on the integral representation
will be presented in later papers.
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"An integral representation possessing this property is possible
with a nonvanishing cosmological constant only if this constant is
incorporated into the source term. This would seem to be unaccep-
table on physical grounds.


