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It.is shown that a generalized formulation of statistical mechanics provides a uni6ed logical basis for the
construction of a manifestly covariant theory of relativistic thermodynamics in contrast to heuristic ap-
proaches, such as the original theory by Planck and Einstein, and more recent ones by Ott and Mgller.
The generalized formalism is applied to discuss the relativistic thermodynamics of blackbody radia-
tion, including such processes as the absorption and reflection of a light beam as well as the adiabatic cooling
of cosmic blackbody radiation in Milne's model of the universe. The measurement of the temperature of a
light beam is also discussed.

I. INTRODUCTION

ELATIVISTIC thermodynamics has been charac-
terized by a certain degree of arbitrariness and

confusion. Most of the existing formulations of the
theory are based on discussions of particular examples,
which are used heuristically to generalize the mathe-
matical forms of the First and Second Laws of thermo-
dynamics in order to take relativity into account. These
formulations depend both on the particular examples
chosen for constructing the theory, and on the authors'
personal preferences in defining certain fundamental
quantities.

Ke shall construct relativistic thermodynamics on the
basis of a generalized formulation of statistical me-
chanics. ' ~ The resulting formalism will be automatically
covariant and, in principle, of general applicability.
Our main interest lies in analyzing the physical signifi-
cance of fundamental quantities, as well as in deter-
mining their transformation properties under the
Lorentz group. The generalized statistical mechanical
approach to relativistic thermodynamics is not new and
is mentioned in Ref. 2.

In Sec. II we will present two of the existing formula-
tions of relativistic thermodynamics. %e will sketch a

~ This paper forms the principal part of the author's Ph. D.
thesis submitted to Syracuse University. The research was
partially supported by the AFOSR.

f On leave of absence from Instituto de Matematica, Astronomia
y Fisica, Universidad Nacional de Cordoba, Argentina.' D. van Dantzig, Physica 6, 673 (1939); Proc. Koninkl. Ned.
Akad. %etenschap. 42, 601 (1939);42, 608 (1939).' P. G. Bergmann, Phys. Rev. 84, 1026 (1951}.
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generalized theory of statistical mechanics for quantized
systems and state the generalized forms of the First and
Second Laws in Sec. III. A discussion of the relativistic
thermodynamics of blackbody radiation will then be
given in full detail, including such processes as the
absorption and reflection of a light beam as well as the
adiabatic cooling of cosmic blackbody radiation in
Milne's model of the universe (Sec. IV). Finally, we will
summarize results important either from a historical or
observational standpoint (Sec. V).

D. PREVIOUS FORMULATIONS OF RELATIVISTIC
THERMODYNAMICS

The original approach of Planck and Einstein to
relativistic thermodynamics is an example of a heuristic
construction of a physical theory. In their treatment, '
they consider a system composed of radiation, or of an
ideal gas, in equilibrium inside a box. Drawing upon the
relativistic mechanics of continuous media, they com-
pute the total energy and linear momentum of the
system. Then, imagining that the system undergoes an
infinitesimal transition from one state of equilibrium to
another, they calculate the change in the total energy of
the system 6E and express it as the sum of the transfer

' Although the method described in the &st part of Sec. II is
not the approach originally adopted by Planck t M. Planck,
Sitzber. Preuss. Akad. %iss. Berlin 542 (1907)j, it is the one
followed by Einstein fA. Einstein, Jahrb. Rad. E. 4, 411 (1907)$
and the way in which the theory is presented in most textbooks
t see, e.g. , W. Pauli, Theory of Relativity (Pergarnon Press Ltd. ,
London, 1958),p. 134), For a historical sketch of the development
of relativistic thermodynamics, see L. A. Schmid, Goddard Space
Flight Center, Maryland, Report, 1969, p. 59 (unpublished).
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is not clear whether or not the total change in the linear
momentum bp in that expression has a contribution
from "the transfer of heat. " If the transfer of heat does
contriba&te, the former interpretation of the produi t

u bP is incorrect. To illuminate these points, Mfiller
chooses a system of the same type as the one considered
in the first part of this section, designed to lend itself to a
careful analysis of the external forces and to a computa-
tion of the changes in the linear momentum hJ and the
energy h.4 of the system caused by their action. He
finds that the total change in linear momentum is
dilferent from cU and tha, t the change in energy hA (the
work done by the external forces) is given by

of heat to the system AQ and the performance of work
on the system dA. Such a decomposition maintains the
form of the First Law in all inertial frames. Planck
'l(lf)pcs as a (/efinlti(ill ()I 5 -f the expres'slAIl

W|=u 8P—p8V,

where u is the velocity of the system, P is its total linear
momentum, p is the isotropic pressure, and V is the
volume of the box. He justifies the 6rst term, u 8P, as
representing that part of the work done by external
forces in changing the total linear momentum by bP.
The second term is the usual expression for the "in-
ternal work. " Kith this choice for A.4, the transfer of
heat is necessarily given b~'

AQ= AQ(1 —u')"', (2)

where DQ is the transfer of heat to the system as
measured in the rest frame (u= 0). In this formulation,
expression (2) represents the transformation law for the
transfer of heat under the Lorentz group. Under the
assumptions that the entropy S is a scalar under the
Lorentz group, that the form of the Second Law is the
same in all inertial frames, and that the process con-
sidered is reversible, the transformation law for the
tern erature T,

(6)A4=u hJ —pdV,

an expression of the same form as (1) but with AJ
replacing bp. Having recognized that the total change in
linear momentum is not due only to the action of
external mechanical forces, he generalizes the form of
the First Law to

(7)81"=AQ~+AIV,
where

I"=(E,P), DQ~= (i)Q, AG), aIV~= (AA, AJ),
p

T= T(1—u')'", (3)

readily follows (T is the rest temperature of the
system).

The original formulation of relativistic thermo-
dynamics was generally accepted until Ott's paper' set
oG a controversy involving all aspects of the subject. '
Ott claimed that formulas (2) and (3) of Planck's theory
for the transformation laws of the heat transfer and
temperature, respectively, under the Lorentz group
were in error and that they should be replaced by the
equations

ZQ= AQ(1 —u')-'",

T=T(1—u') '"

and AG is the transfer of linear momentum associated
with the transfer of heat AQ. He discovers that hQ&

transforms as a four-vector under the Lorentz group. In
the particular case in which 66=0 in the rest frame, he
can write

aQ~= AQr~, v~= (s',W), r~r„=1,

and, consequently,

AQ=AQ(1 —u') '",
which is Ott's formula for the transformation of the
transfer of heat. Equation (8) Land hence (9)j is valid
for a reversible process. Therefore, considering S a
scalar, i.e., making in this respect the same assumption
that Planck did in his theory, he obtains for the trans-
formation formula of the temperature the expres-
sion (5).

Mfiller also considers the possibility of having irre-
versible processes. To include such cases in the present
formalism, he simply writes the most general form of the
Second Law of thermodynamics for systems at rest in
terms of moving system quantities9:

ds + O~ "AQ O~"= '8"/T.

(4)

(5)

Although Ott was the first to attack Planck's theory
directly, in presenting the main features of his proposal
we shall follow the work of Mff lier. r Like Ott, Mfiller
objects to Planck's choice of expression (1) as the total
work done by the external forces on the gas, because it

This expression is supposed to represent the most
general statement of the Second Law in relativistic
thermodynamics. We recall that v& in (10) represents the
four-velocity associated with the particular system of
interest.

~ Mgller has introduced this form of the Second I.aw only re-
cently fC. Mgller, Kgl. Danske Videnskab. Selskab, Mat. -Fys.
Medd. 36, No. 16 (1968)j.The inverse temperature vector 0& was
introduced by van Dantzig (see Ref. 1).

' We take the velocity of light equal to unity throughout this
paper and the metric tensor q&"=0 for p~v, g~=1, 7t"=q 2

—nu ——1' H. Ott, Z. Physik 175, 70 (1963).' H. Arzelies, Nuovo Cimento 35, 792 (1965); 411, 81 (1966);
R. Penney ibid. 43A, 911 (1966); T. W. S. Kibble, ibid. 418, 72
(1966); 415, 83 (1966);41B, 84 (1966); A. Gamba, ibid 37, 1792.
(1965); 418, 72 {1966);I'. Rohrlich, ibid. 458, 76 {1966);A.
Staruszkiewicz, ibid. 45, 684 (1966); P. T. Landsberg and K.
Jones, ibid. 528, 28 (1967); K, Kuchar, Acta Phys. Polon. 35, 331
(1969).' C. Mgller, Kgl. Danske Videnskab. Selskab, Mat. -Fys. Medd.
36, No. 1 {1967).

C. Mgller, in Old arid Em Problems in Elementary Particles
(Academic Press Inc. , New York, 1968).Mgller has recently given
a statistical mechanical account of the results presented in this
paper and in Ref. 7 {see Ref. 9).
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So far, we have presented the inain features of two
different formulations of relativistic thermodynamics.
Neither theory is completely satisfactory from a physical
standpoint. In constructing a physical theory it is de-
sirable to have a unified picture, free of the constraints
usually imposed by a heuristic approach. In the two
formulations of relativistic thermodynamics that we
have presented, the consideration of a particular system
such as an ideal gas enclosed in a box led the authors to
include the velocity of the system in the expressions of
the First and Second Laws. Hence, neither theory can
be applied to situations in which there is no unique rest
frame or no rest frame at all. This is the case, for
instance, when we consider the thermodynamics of a
beam of photons or of massive particles. These two
examples are of primary interest since they provide
possible mechanisms for interchanging energy and mo-
mentum between components of a general system. It is
also important to notice that a heuristic generalization
of an existing theory to enlarge its scope of applicability
or to agree with underlying physical principles will

usually require the identification of certain expressions
with generalized quantities —a procedure that in most
cases is not unique. Even the explicit computation of
these generalized quantities in some special cases is
subject to personal preferences and is tied to the
characteristic features of the example used in per-
forming the calculations.

5= —k Tr(p Inp),

where k is the Boltzmann constant and p is a positive
definite operator subject to the normalization condition
that its trace is unity. We shall say that a system with
given mean values (A &') for a set of observables A' is in
thermodynamic equilibrium if its density operator
maximizes the value of the entropy function under the
subsidiary conditions

i.e., if

Tr(pAi)=(A~), (12)

III. GENERALIZED STATISTICAL MECHANICS

A. Density Operator

Let p represent the density operator characterizing a
given state of a quantized system. %'e define its entropy
function 5 by the expression

formulas take the form

85 = —k P imp. (lnp +1)=0,

Q A, 'Sp, =0,

Q bp, =0.

where X and P, are Lagrange multipliers. Equation (15)
gives

(16)

The function Z (the partition function) is defined by the
expression

Z(P, ; 7)=Tr(e -'&'"'), (17)

with y representing a possible set of external parameters
entering the definition of the operators A &. The density
operator a.s given by (16) corresponds to the canonical
distribution of classical statistical mechanics. To satisfy
the conditions (12), we must formally compute the
values of P; from the expression

(A &) = —a lnZ/BP,

The value of the entropy function for a system in
thermal equilibrium is

S=k(g P,(Ai)+lnZ). (19)

The proof that (16) represents a true maximuni is
straightforward and will be omitted here. Ke notice
that the invariance of p, with respect to a transforma-
tion that leads from the set A ~ to a set A ~' consisting of
linear combinations of the A&, implies that P, trans-
forms contragrediently to A&. We shall refer to the
parameter P,. as the generalized temperature of the
system.

B. First and Second Laws of Thermodynamics

The concept of performance of work on the system is
related to the change in the mean values of the ob-
servables A & when the parameters y change. We obtain
in this way what is called the adiabatic change' of (A'),

Therefore, by using the method of Lagrange multipliers,
we find that p is an extremal for the function 5 con-
sistent with conditions (14) if, and only if,

1np, +Q P,A, '+X+1=0,

6S=O, PS(O (13) b„g(A ') = (BA'/By) 5y. (20)

for all variations of p that fulfill the requirements

bLTr(p. l i))=0, 6/Tr(p)]=0. (14)

We can use the conditions (13) and (14) to determine
the form of the operator p. In the p representation, these 8q(A ') = 8(A ')—ii,g(A ') . (21)

We will interpret the expression (20) as the "generalized
performance of work on the system. "The "generalized
transfer of heat" is then introduced through the differ-
ence between the total change of the mean values of A'
and the expression (20):
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bS=k Q P,4o(A&) (22)

In thermodynamics, it is customary to designate the
change of the measurable quantities (A J) by dU&, where
U& is a thermodynamic function or variable of state, the
generalized work performed on the system by 6$'&, and
the generalized transfer of heat by AQ&', where
indicates that the quantity to which it is attached is not
a thermodynamic function. Consequently, according to
expressions (21) and (22), for those processes during
which the system is and remains in thermal equilibrium,
the First Law of thermodynamics is

dU'= AQ~+hW'. (23)

(The total change in the observables U'=—(A') can be
decomposed into the sum of the transfer of heat and
the work performed on the system. ) The Second Law
takes the form

From expression (19) and relation (18), we immediately
find that

mentum operator
p~=kk~m, (26)

Z(P„; k,)=(~)+1,
(p")=k(g)k" (28)

b(p~) =k(k~h(n)+(N)8k~), (29)

S=kLkk p„(n)+in((e)+1)j, (30)

where k& is a positive-frequency null vector defining the
energy and direction of propagation of the pencil of
radiation. We identify this four-vector with the external
parameters y; n is the number operator whose eigen-
values are non-negative integers, and h is Planck's
constant divided by 2~.

Since the density operator p should be a scalar under
the Lorentz group, it follows from (16) that P„should
also transform as a four-vector. The application of the
general expressions (17)—(22) to our case yields

dS=k g P AQ' (24)
(32)

dS&k P P;DQ', (25)

where dS is given by (22) and AQ&' enters the First Law
as stated in (23). The inequality (25) represents the
most general formulation of the Second Law in a
generalized thermodynamics. We obtain a relativistic
thermodynamics in the particular case in which the
symmetry group of our theory is the Lorentz group.

IV. BLACKBODY RADIATION

A. Thermodyn~~ics of a Pencil of
Electromagnetic Radiati. on

We shall now apply the ideas developed in Sec. III to
the relativistic thermodynamics of a pencil of electro-
magnetic radiation (also referred to as a light beam).
With such a pencil, we can associate a single normal
mode of vibration that is characterized by a set of
operators (A"—=p&) corresponding to the four-mo-

"See, e.g., P. G. Bergmann, Beat and Quanta (Dover Publica-
tions, Inc., New York, 1962), $5-2 and $5-3.

(For reversible processes the total change in the entropy
is obtained through the projection of the transfer of heat
along the generalized temperature p, .)

In order to obtain the generalized mathematical form
for the strong formulation of the Second Law, namely,
that all thermodynamic processes involving a system
that is isolated thermally from its surroundings will
increase its entropy, we must supplement our discussion
with considerations of nonequilibrium systems and their
approach to equilibrium. The line of reasoning is parallel
to the one followed in ordinary statistical mechanics"
and leads to the expression

In expression (29), the second term is associated with
the generalized performance of work, while the first is
related to the generalized transfer of heat. It is im-
mediately seen from (32) that knowledge of (e) and k"
is not enough to determine a unique value of p„. We
have only one equation for four unknowns. We also
notice that p„could not be parallel to k„, since this
would require the mean value of I to be infinite. We may
conclude from the requirement of having (I) Gnite and
positive de6nite for all values of k that p„(assumed
independent of k) must be timelike and pointing
towards the future; i.e., there exists a frame of reference
in which P„ takes the simple form P„= (P,0,0,0). In this
frame, expression (32) will only depend on ko and as-
sume the usual form of the Planck distribution for
isotropic radiation in thermal equilibrium. From this
analogy, we can identify the parameter P with 1/kT,
where T is the absolute temperature assigned to the
radiation beam. "

To relate a single normal mode to a pencil of electro-
magnetic radiation, we recall that the number of normal
modes characterized by wave vectors k with components
in the intervals lS~, hk2, and hk3 of a field enclosed in a
volume M~du2M3 is given by"

2(2s)—'~g~gM3hkghk2&g. (33)

The expression (33) is Lorentz-invariant, i.e., the value
and form of this formula are independent of the frame
of reference employed in the description of the physical
system.

"M. Planck, The Theory of Beat Radiation (Dover Publica-
tions, Inc. , New York, 1959), $166.

'~ See, e.g., L. Landau and E. Lifshitz, The Classkal Theory of
Fields (Addison-Wesley Publishing Co., Inc. , Reading, Mass. ,
1951), Chap. 6, p. 130.
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Then, with the help of expressions (28), (30), and
(33), we can de6ne

I"=f:2k/(2~)'1&n)k" Ik I'«
f

k
I dfl,

I.= f
2/(2~)'3S'fk f'd fk f«

(34)

(35)

as the energy-momentum and entropy, respectively,
emitted by (or incident on) a unit of normal area per
unit time in a solid angle dQ, with direction and fre-
quency given by k We shall refer to Ii' and I, as the

specific intensities of energy-momentum and entropy.
Let us now suppose that we are in a region of space

that is filled with radiation and that we have a speck of
dust acting as a matter catalyst at a given space point.
Then, according to the Second Law of thermodynamics,
the change in the entropy density 0. at that point must
satisfy

ba-&» 0, (36)

while the condition of conservation of energy-mo-
mentum requires

bN~=O, (37)

where nt' is the energy-momentum density. With the
help of expressions (34) and (35), uv and o can be
written as

k (n) fkf'd fkfdfl,
(2zr)'

(38)

o= Sfkf'dfkfdn.
(2zr)'

(39)

I. Absorption by a Cold Slab of Matter. Temperature of
a Light Beam

The energy-momentum intensity of a light beam can
be altered independently by a transfer of heat and by a
performance of work Lsee expression (29)$. The partial
absorption of a light beam by a cold slab of matter
illustrates a process in which a pure transfer of heat
takes place. Since neither the frequency nor the direc-
tion of propagation of the beam changes in a process of

Ke can now state the necessary and sufhcient condition
for having radiation in thermal equilibrium (So=0) at a,

point. Using the expression (31), we see that we can
satisfy both bo. =0 and (37) for an arbitrary change in
(n) if there exists a vector n„ independent of k, so that
for all values of k,

(40)

Hence, we see that for a system in thermal equilibrium
we can choose the different world vectors P„of the
various pencils of radiation passing through the point
to have the same value. That is the case, for instance,
for radiation in thermal equilibrium within a cavity of
finite volume.

Let us now study some typical processes in which a
pencil of electromagnetic radiation is involved.

absorption, the variations in the specihc intensities of
energy-momentum and entropy assume the form

bI"= L2/(2zr)z]kk"b(n)
f
k f'd

f
k fd&, (41)

bI, = f 2/(2zr)'jbS fk f'd fk fdQ

=kP„SIl".
(42)

Supposing that the piece of absorbing material is
originally at O'K, we have, according to the Second Law
of thermodynamics,

~I,+~I,&O, (43)

where 6Is represents the change in entropy of the slab
per unit of normal area and unit time. The expression
(43) can also be written in the form

bT, & kP„bI -. (44)

a more familiar expression of the application of the
Second Law to the piece of absorbing material. We
notice from (41) and (42) that bIv and bI, depend on the
projection of p„along kl'. We cannot determine a unique
value for P„ from these expressions. If we choose to fix a
convenient value for P„, we could begin in that frame of
reference in which the slab is at rest and assign a
temperature T to the beam through the relation"

(n) —(eh kz/ kT 1)
—z

This is equivalent to choosing P„=b„/kT. Then, in any
other frame, we can express P„as

P„=a„/kT, (47)

where v„ is the four-velocity of the slab. This is just a
particular choice, however, and does not need to be
adopted in general.

Because of the invariance of (n) under a Lorentz
transformation, it is important to notice that according
to (46) two different inertial observers making intensity
measurements" of a pencil of radiation will assign
diferent temperatures T and T' to the beam, which are
related by

v/T = v'/T', (48)

where v and v' are the respective frequencies as measured
by the two different observers (k = 2zrv, ka'= 2zrv').

Z. Re/lection by a Movzng Mirror

The following example provides an illustration of a
reversible process in which the pencil of radiation is

Since energy-momentum is conserved at any instant
of time, we also have

bI~+bl~ = 0,
where 8Il' is the change in energy-momentum of the
slab per unit of normal area and unit time. Therefore
(44) gives

6I, &~ kp„bIv,
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allowed to change its specific intensity of energy-
momentum by performing work.

Let us denote the mean occupation number and null

vector characterizing the incoming beam by (n)i and

ki&, and the corresponding quantities for the reflected
beam by (m)2 and k~&. ft is convenient to choose the
generalized temperature P„of the incoming beam to be

P„=b„o/kT in that frame of reference in which the
mirror is at rest. T is determined from (ri)i by using

expression (46). In this same frame of reference, we also

have
(N)i (H)21 kl k2 (49)

Consequently, if we move to a frame in which the four-

velocity of the mirror is v&, we shaH have

P„ki"=Pqkg" ) Pq=ii„/kT. (50)

by using formula (50), the law of reflection, and
a Lorentz transformation. From expression (34),
Ii"(cosni —u) represents the energy-momentum inci-
dent upon the mirror per unit area and unit time ',

similarly, I&"(—cosa&+u) represents the energy-mo-
mentum leaving the mirror per unit area and unit time.
Consequently, the difference between these two ex-

pressions gives the transfer of energy-momentum 8(P"

to the mirror per unit area and unit time. Taking into
account formulas (49) and (51), we obtain

6tf'~ = (2ts/(2x)' j(n) i(cosoti u)—
X(k,~—k,~) ~l, ) it~i, (dt's, . (52)

To be dehnite, we assume that the mirror is plane and
has a four-velocity r&= (ip, r'u), where u is along the
direction of the normal to the mirror. Then, it is possible
to prove that (see Fig. 1)

(cosni —u)d'ki ——( co.a2+N—)d'k2, u=
~

n~ (&1)

the expression (53) and obtain the result.

p= 2Iiof(cosa. i—u)'/(1 —u')], (54)

which agrees with the value obtained by other methods. "
Considering the relation (51) and that li(ri)=0

((n)i —(n)2), we find that the entropv incident upon the
mirror per unit area and unit time equals the entropy
leaving the mirror per unit area and unit time. The
reflection of the beam is therefore a reversible process.
There is no transfer of heat to the beam, and

consequently,
(55)

where ~%& represents the generalized work done on the
mirror per unit area and unit time. The zeroth com-

ponent of h%& is related to the performance of work,
while the spatial components represent a transfer of
linear momentum.

3. Cosrrnc EMackbody Radhation im Spectra/ Relativity

An interesting application of the fact that different
radiation temperatures T and T' are measured by
difTerent inertial observers (see example 1) is involved
in a special relativistic model of the expanding universe. '

In a simplihed version of the model, it is usually as-
sumed that all stars and galactic objects were created in
an explosion occurring at the point 0 in a space-time
diagram (see Fig. 2) and propelled in every direction
with aH possible speeds. The influence of gravity is not
considered, and consequently all particles are repre-
sented in the diagram by straight lines passing through
0. We shall assume that there is a uniform distribution

A

xo

The zeroth component of this expression is the amount
of work done on the mirror per unit area and unit time
and equals the product of the speed u and the pressure p
exerted on the mirror, i.e.,

By a straightforward procedure, we can compute p from

k) Fro. 1. Diagram of the re-
flection of a light beam by a
moving mirror. The mirror
moves toward the left with
velocity u in the figure. The
incident light within the ele-
mentary cone dU& is reflected
by the mirror into the ele-
mentary cone d02.

XI

j.''ro. 2. Space-time diagram of Milne s model of the Universe.
All stars and galactic objects are created in an explosion occurring
at the point 0. It is assumed that there is a uniform distribution of
matter on a pseudosphere Z of radius ~. The value of ~ could
correspond to the time in which matter and radiation cease to be in
thermal equilibrium. Any observer will detect isotropic blackbody
radiation at any point on his world line. The temperature of the
radiation decreases as the observer progresses along his trajectory.

'3 A. Einstein, Ann. Physik 17, 891 (1905}.
'4 E. A. Milne, Relativity, Gravitation and World-Structure

(Clarendon Press, Oxford, 1935). See also J. L. Synge, Relativity:
the Special Theory (North-Hol}and Publishing Co., Amsterdam,
1965), p. 149.
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of matter on a pseudosphere z of radius ~.I5 Conse-
quently, the universe will appear uniform and isotropic
to all observers on their respective world lines. %e shall
also assume that any observer on the surface Z can
detect isotropic blackbody radiation of absolute temper-
ature T. This means that the mean occupation number
(n) for any observer, say, B, on Z will be given by

(11)—(ek kk/ kr ])—1 (56)

In the rest frame of the observer A, the expression (56)
will assume the form

(11)—(gk/1Pk" I)—1 (57)

where p„=u,„/k T; u„ is the four-velocity of B. It is cles, r
from Fig. 2 that the observer A will also detect isotropic
radiation at his proper time t of intensity proportional to
(n). The mean occupation number (n) depends on k'
according to (57); i.e. ,

(11)—(~kkk /kr 1)—1 kk1/ k0~.=L(&+ )/(1- )]"- ( 8)

The radiation detected by A at his proper time t

preserves its thermal character and possesses an effec-
tive temperature T' given by

Through the expressions (38) and (39), the total energy
P', the total linear momentum P, and the entropy 5 of
such a system are defined in all frames by the expressions

P» = f(krak)kkd'xd'k,
(211)'

(62)

S= g (k pp')(Px/Pk,
(21r)k

(63)

where f and g are obtained through formulas (28) and
(30); i.e. ,

f(k.p') = (»),

g (k,P') = kghP, k'(n)+ ln ((n)+ 1))
(64a)

(64b)

/3y P/uv /W~ p (65)

The integral over d'x extends over the entire volume of
the cavity, and the integral over d'k covers all possible
values of k between minus and plus infinity. To simplify
the computation of the expressions (62) and (63), it is
convenient to introduce the three-dimensional element
of h1persurface dZ„= (1Px,0,0,0') and write

T'= T/71. (59)

It is very easy to show that r/=//r Therefore, .formula,
(59) becomes

5= a-"(/Z „, (66)

T'= T(r//) . (60) where

Since the radius of the universe is given by t in our
model, we can conclude that the radiation temperature
varies inversely as the radius of the universe.

The same arguments are applied to any other world
line; accordingly, two different observers will detect
cosmic blackbody radiation of the same temperature for
the same value of their proper time. The radiation at
any point in our space-time diagram will be represented,
in general, by a distribution of the form

(11) (ekP„' k" I)—1 (61)

where P„'= 1/„/kT'; T' is given bv the expression (60);
t is the proper time of the point considered along the
world line of four-velocity e„.Since the propagation of a
beam of radiation is reversible, the cooling in the course
of the expansion is adiabatic. It is interesting to notice
that although (11) is constant along a given null ray for a
particular value of k, the temperature vector P„' changes
from point to point.

2k d'k

f(k,P ~)kkk"
(21r)' k"

2 d'k
g (kp')k& —.

(21r)' kn

(67)

T""= (p+ p)bp"f/o" pr/"", — (69)

where

Both Tf'" and 0.& have a well-defined tensor character
under the Lorentz group. They correspond to the
energy-momentum tensor and the entropy current for
the radiation. In the case of thermal equilibrium, there
exists a frame of reference in which p„ takes the form
P„=P11„',with P independent of k and x, since we can
choose P„at each point in the cavity independent of k
(and in our particular case independent of x as well). In
that frame, we shall have

B.Thermal Radiation vrithin a Cavity of Finite VoIume

In this section we shall return to the subject of
radiation in equilibrium within a box (cf. Sec. II).

"The value of v could correspond to the time in which matter
and radiation cease to be in thermal equilibrium I see, e.g. , R. H.
Dicke, P. J. Peebles, P. G. Roll, and D. T. Wilkinson, Astrophys.
J. 142, 414 (1965)j.

p(P) = f(k'P)k'd'k,
(2x)'

p(p) =kp,

11(p) = g(k'p)d'k.
(21r)'

(71)

(72)

(73)
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By using (32) and (64), we can readily show that 0 and p
are related by

By (83) and the condition v»bv»=—0, we have

0.= 3kpp. (74)

In a general frame (P»= vP, ii»~»= 1), we have

T""=(p+ p}v»v" rl» "p— (75)

P» = (p+p) e»v'V pq»OV- ,

S=(re'V, (78)

where V is the total volume of the cavity. Ke see that ~»

defines a linear velocity u= (v') 'v, which may be
interpreted as the velocity of the system. We notice that
the possibility of assigning a unique velocity to the
entire system is a direct consequence of the conditions
for thermal equilibrium because we can introduce a
vector P„, independent of k and x, as the generalized
temperature of the system. The frame of reference in
which u=0 (P=O) will be called the rest frame. The
particularization of the above expressions to the case
u= 0 reproduces the formulas of the ordinary theory of
blackbody cavity radiation in which we identify P with
1/k T."

Now let the system make an infinitesimal transition
from one state of equilibrium to another. The variations
in the values of the total energy, linear momentum, and
entropy of the radiation are obtained by taking the
variations of the expressions (77) and (78):

bP»= (bA+pbV)r»+HR»+bpV~i» b(pV)ri»'—,

85=85,

where'=E+pV, E=pV, V=v'V, S=OVare the total
rest enthalpy, energy, volume, and entropy, respec-
tively. Projecting (79) along the vector kP», we find that

bS= kP„(bP» hW»), — (81)

where, according to the relations (74) and formula (80),
we have identified 85 with the expression"

bS =kp»Db~+ pb V)i»+~C» j, (82)

(83)

and 68'b' with

Consequently, after integrating expressions (65) and

(66), we obtain

After a straightforward calculation, we 6nd that

hW'=AW u —pbV. (86)

bP»= d Q»+aW»,

bS = kP„AQ».

(89)

(90)

We see that in the special case of a reversible process,
these expressions coincide with those obtained by
Mibller Lsee expressions (7) and (10)$ if we require that
both bu and C» (or D») vanish.

It is worth noting that in our discussion we have not
considered the radiation container. The problem of
including it in an enlarged system will not be treated
here.

V. CONCLUSIONS

We have shown that a generalized formulation of
statistical mechanics provides us with a unified logical
basis for the construction of a manifestly covariant
relativistic thermodynamics. Quantities representing
temperature, transfer of heat, performance of work,
etc. , are generalized to tensors whose rank depends on
the set of observables chosen to describe the system.
Although the generalized temperature is represented by
a tensor, it is frequently impossible to determine its
value uniquely by performing physical measurements.
As we have seen in the case of a pencil of electromagnetic
radiation, where the generalized temperature is com-
prised of four quantities (four-vector), only one param-
eter is directly measured and properly called the
"temperature" of the beam. Only in particular cases
(e.g. , cavity radiation) can the unit vector n» in ex-
pressions like P»=v»/kT be identified with the four-
velocity of the system and a meaning ascribed to T,

The formula (84) is interpreted as the generalized
expression for the work performed on the system when
the work measured in the rest frame is given by

AW'= —pb V. (87)

Whenever (87) is valid, we shall also define the gener-
alized transfer of heat to the system by

DQ»= (bA+pbgs»+HC». (88)

With these definitions, the expressions (79) and (81) can
be written in the form

DW» = bp 0w» b(pV) rl»'+BD», '—
(84)
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