

FIG. 9. Low-lying levels in Te isotopes. The 11/2- levels for Te¹¹⁷ and Te¹¹⁹ are extrapolated from the neighboring isotopes.

In the latter case, a sum peak of 260+511 keV could easily be mistaken as a weak γ ray. The half-life value of 18 ± 0.5 min is in good agreement with the value reported by Andersson et al.2

The logft values both for I¹¹⁷ and I¹¹⁹ are based on the assumption that there is no β^+ feeding to the ground states of the daughter nuclides. Because of a small amount of I¹¹⁸ (β^+ end-point energy of 5.45 MeV) present in our samples, it is not possible to find the ground-to-ground-state β^+ transitions. Hence, it is possible that with sufficient feeding to the ground states, the log *ft* values would increase and could become first forbidden transitions.

It should be pointed out that the decay of I^{119} as well as I¹¹⁷ is probably not as simple as we have found. As seen from the systematics in this region, there will be many very weak, high-energy transitions in I¹¹⁷ as well as in I¹¹⁹. Gfoller and Langhoff⁵ investigated the decay of I¹²¹ and found up to 60 transitions. The intensities of these γ rays, compared to the two main transitions, are very low. In some cases they are down by a factor of 10, or, in most cases, by a factor of 100 to 1000. Recently Sergolle et al.⁶ confirmed the findings of Ref. 5. In our experiments, we were limited by the strength of the sources and the short half-lives, as well as by the contamination of I¹¹⁸ in our sources of I¹¹⁹. Furthermore, a strong limitation was due to the use of the small 3.6-cm³ Ge(Li) detector.

It is of interest to compare the low-lying levels with the calculation of Kisslinger and Sorensen,⁷ in which a pairing-plus-quadrupole interaction is assumed. It is seen that the positions of the $\frac{1}{2}$, $\frac{3}{2}$, and $\frac{11}{2}$ states are fitted adequately in the Te region. As seen in Fig. 9, excited states of $J = \frac{3}{2}^+$ and $\frac{11}{2}^-$ can be seen to migrate upward in energy with decreasing neutron number. It would be interesting to locate the positions of the $\frac{11}{2}$ isomers in Te¹¹⁷ and Te¹¹⁹. However, these isomers will not be populated by the β decay of iodine.

ACKNOWLEDGMENT

The authors thank the technical staff of the Heavy-Ion Accelerator for their assistance.

Errata

Use of the K Matrix in Nuclear Reaction Theories, W. TOBOCMAN AND M. A. NAGARAJAN [Phys. Rev. 163, 1011 (1967)]. Professor T. Tamura has very kindly pointed out to us an error in the paper for which this erratum is written. To correct this error: (a) Replace the symbol $\hat{G}_{\alpha}^{(\pm)}$ that appears in Eqs. (31), (34), and (35) by another symbol, say, $\tilde{G}_{\alpha}^{(\pm)}$. (b) Replace the phrase following Eq. (40) by the phrase "By the definition given in Eq. (4), $\hat{G} = \hat{\Gamma} - i\pi \hat{\Delta}$, so that. . . ."

⁵ D. Gfoller and H. Langhoff, Z. Physik **211**, 317 (1968). ⁶ H. Sergolle, G. Albouy, J. Bouloumie, J. M. Lagrange, L. Marcus, and M. Pautrat, J. Phys. (Paris) **28**, 383 (1967). ⁷ L. S. Kisslinger and R. A. Sorensen, Rev. Mod. Phys. **35**, 853 (1963).

 $^{^{208}}$ Pb(d, t) and (d, 3 He) Reactions with 50-MeV Deuterons, W. C PARKINSON et al. [Phys. Rev. 178, 1976 (1969)]. It was stated erroneously in this paper that the expected spectroscopic factors for neutron pickup were $C^2S = (44/45)(2j+1)$. This should be $C^2S = 2i + 1$.