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A set of coupled equations for rearrangement collisions involving processes such as scat-
tering, electrontransfer (4=+B —A +B~), collisional detachment (A™+B—~A+B + e), and associa-
tive detachment (A= + B — AB +¢) is solved numerically for the (H~, H) collision system at low en-
ergies. In this calculation, the interaction potential between the ground states of H and H™
is approximated by a set of local complex potentials. The energy dependence and scattering -
angle dependence of the electron-detachment and electron-transfer probabilities, and of dif-
ferential cross sections for scattering, electron transfer, and detachment processes, are
calculated. A detailed analysis of the interference structures in the various differential cross
sections is made for the diffraction and multipath scatterings, and for the gerade-ungerade
and nuclear symmetry interferences. The effect of damping due to the imaginary parts of the
complex potentials and the effect of isotope substitutions are investigated. To examine the
sensitivity of the calculated results to the potentials adopted, the calculations are carried out
for several sets of such complex potentials. Important differences, which may provide use-
ful information for further investigations, are found for different sets of potentials.

I. INTRODUCTION

It is now well recognized that the collisional
processes resulting from the collision of negative
ions with atoms and molecules are strongly cou-
pled with the electron-detachment channels, !~
This coupling may persist for extremely slow
collisions if the associative-detachment channel
is exoergic (exothermic). Consequently, the
collision of negative ions with atoms and mole-
cules, even at energies below the electron-de-
tachment potential, is a multichannel rearrange-
ment problem with all its complexities. Formally,
the coupling with the electron-detachment chan-
nels may be accounted for in the other channels
by making the interaction between the ion and the
atom (or molecule) nonlocal, energy-dependent,
and complex. This well-known formal procedure’
turns out to be very fruitful for the present prob-
lem, because the nonlocal energy-dependent com-
plex potential may, when the large mass disparity
between the electron and the nuclei is utilized, be
approximated by a set of local energy-independent
complex potentials.

For the (H™, H) collision system, the interaction
potential between H™ and H when both H™ and H
are in their ground states may be approximated
by two sets of local complex potentials corre-
sponding to the 23} and *Z [ Hj adiabatic com-
pound states. Such sets ofglocal complex poten-
tials for the interaction between ground states of
H and H™ have been calculated by Bardsley,
Herzenberg, and Mandl, ® and deduced semi-
empirically by Chen and Peacher.® The real
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parts of these sets of potentials have also been
calculated by Eliezer, Taylor, and Williams. '°
The purpose of the present work is to utilize these
potentials for the investigation of the collisional
dynamics of the (H™, H) system. In this paper,
we will confine our interest to the very low-ener-
gy collisions by solving the set of appropriate cou-
pled equations numerically.'* This is an energy
region that, at present, is not easily accessible
for accurate experimental investigation. Itis
therefore of interest to obtain some theoretical
predictions.

A brief review of the formulation of the coupled
equations for multichannel rearrangement col-
lision is given in Sec. II for the (H™, H) collision
system. The set of coupled equations is then
simplified and expressed in terms of local com-
plex potentials in Sec. III in a form suitable for
numerical solutions. The available complex po-
tentials are collected, compared, and then adopted
for the calculations. The results and their in-
terpretation are presented in Sec. IV, together
with remarks concerning the interaction potential
between the ground states of H™ and H.

II. MULTICHANNEL REARRANGEMENT
COLLISIONS

The formal theory of rearrangement collisions
is well documented in the book by Goldberger and
Watson.'® For computational purposes, it is
often desirable to describe the collisions in the
form of a set of coupled equations.'® Such a set
of coupled equations for rearrangement collisions
may be obtained in the projection-operator tech-
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niques first developed by Feshbach.'* We now
adopt this technique for the treatment of the
(H™, H) collision system.

We consider for the collision system the case
where both H™ and H are in their ground states
before the collision, and where four reaction
paths

H +H-H +H (scattering)
-H+H (electron transfer)
-~H,+e (associative detachment)
and ~H+H+e (collisional detachment)

2.1)
are energetically accessible after the collision.
Following Feshbach, '* we may construct a pro-
jection operator P which projects onto all the
open channels associated with the four reaction
paths. In terms of this projection operator P,
the Schrddinger equation

(E-H)T=0 (2.2)

for the (H™, H) collision system may be rewritten*

(E—SCP)PT= 0, (2.3)
R 1
Q=1-P, (2.5)

where H and T are the total Hamiltonian and col-

lisional wave function of the system, respectively.

The projection operator P which projects onto
the scattering, electron-transfer, and electron-
detachment channels [see Eq. (2.1)] can be de-
composed into projectors p,, p,, and p,, which
project, respectively, onto each of three sets of
channels.'® We have asymptotically for the scat-
tering and electron-transfer channels
> tkq
ik« q, ~ e

+fs(k-q1) 7 },

as ¢, -, (2.6)

p T~ CGolr, rZa)‘“rsb){e

- - - A A iqu
Pyt~ o(Fay Tgphh ¥y )g e e - Gy)e"/a,,
—w, (2.7
as g,=~<, (2.7)

where @ is the antisymmetrization operator; ¢
and y are the appropriate wave functions of H-
and H, respectively; ¢, and g, are the corre-
sponding channel coordinates; fg and get are the
scattering and electron-transfer amplitudes; and
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k is the asymptotic wave number for H™ and H.
For the electron-detachment channels, we have

asymptotically two terms corresponding to the

associative- and collisional-detachment channels'®

ezkyq3
a3

- = (ad) A
v l’rZ’R)gu (E.qS)

1)3’1’-@{2 v (F

+ [k xpkx"’ F ) Wy xkx(R)

}} as qs""oy (28)
3

where the ¥,’s are the appropriate wave functions
for H,; g, is the channel coordinate for the de-
tached electron (with respect to the c. m. of H™
and H); gV(ad) and g;\(Cd) are the associative-
and collisional-detachment amplitudes; «, and
ky are the asymptotic wave numbers for the de-
tached electrons in the associative- and collision-
al-detachment channels, respectively;__and pp is
the density of the continuum states x,(R) for H and
H associated with the collisional-detachment chan-
nel.

The projectors p,, p,, and p, are constructed
with the indempotent and orthogonal properties!'®

b, =p5.. .
b;p;=0;0; (2.9)

Though such projectors are required to be
Hermitian only asymptotically,

- 00 ) = + - 00
p;lg, ~) 7} (qj ), (2.10)

77

Hermitian expressions may in certain cases be
obtained for them.'” The P projection operator
then takes the expression

P=p,+py+ps, (2.11)
where the sum of the projectors are necessarily
Hermitian. From Eqgs. (2.9) and (2. 11) it is
clear that

P=p., p.Q=p.(1-P)=0. 2.12
b; P], IJ]Q 1’]( ) (2.12)

Because the projectors, as well as the projection
operator P, are defined only asymptotically, they
are not unique in the near region of interaction,
and may be constructed, !” for example, in terms
of some suitably distorted (or polarized) functions
which go over to the correct asymptotic imper-
turbed wave functions of the reactants and the
products.

Operating Eq. (2.3) from the left-hand side with
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the projector pj, we obtain the following set of
three coupled equatlons for the (H™, H) collision
system:

j
0
{E-3¢ }p.T= 25 P, §=1,2 ...,
. " b 3 b b 05
b7 g Pt (2.13)
with :}cp =pj1H+HQE QHQ Qij (2.14)

J

3 =p {H+HQ QH}p ,, (2.15)

where we have used the idempotent and orthogonal
properties of the projectors. On eliminating the
electron-detachment channels in the set of cou-
pled equations, we obtain a pair of coupled equa-
tions for scattering and electron-transfer chan-
nels

- QHQ

{E—Gc;l}pl'rﬂfc'mpzpz’f, (2.16a)
{E -sc’pz} p;:sc})zplp;r, (2.16b)
where
scpipj—acpza = Psﬁ;?xf’spj' (2.17)

This pair of coupled equations, which are more
convenient for dealing with scattering and elec-
tron-transfer collisions, are in principle equiv-
alent to the set of three coupled equations. The
detachment channels are now formally eliminated
from the coupled equations, but are transformed
into nonlocal energy-dependent complex channel
potentials [see the second term in Eq. (2.17)] for
the scattering and electron-transfer channels.

[lI. METHOD OF SOLUTION

The exact equations, Egs. (2.16) or (2.13), are
difficult to solve. In this section, we examine
how these equations may be simplified with rea-
sonable approximations, and how the simplified
equations may be solved once certain approximate
complex potentials become available for the ef-
fective channel potentials.

A. Born-Oppenheimer Separation Approximation
Utilizing the large mass disparity between the
electrons and the nuclei, we may represent the
channel wave functions plT amd p,T as products of

the electronic and nuclear wave functions.

2Tz &,F, T, T, AV FR), (3.1a)

T2 &,(F,, T,, T, R)GR), (3.1D)

where &, and @, are the linear combinations of the
appropriate Born-Oppenheimer electronic wave
functions which go over to the atomic states
@ @(F1,, To,¥(Fgp) and@ o(Fgy, T3p)d(Fy,), re-
spectively, at large R; and where F and G satisfy
the asymptotic expressions that follow, respec-
tively, from Eqgs. (2.6) and (2.'7), if one ignores
certain recoil factors'® 7 which are negligibly
small at low energies. In this approximation, we
have neglected the small recoil factors and re-
placed the channel coordinates q, and g, by the
internuclear coordinate R.

Substitution of Egs. (3.1) into (2. 16) yields

{Kp (2, |zc'p1_ ALY -E}F(R)

—-<q>1|:fcplp2|q>2>c(R), (3. 2a)

{K, +(e, lsc'pz -KgzP,|®) - E}G(R)

== (@[3’ , [8)) F(R), (3. 2b)

where K is the kinetic-energy operator for the
relative nuclear motion. This pair of coupled
equations for F and G may be further simplified
for the (H™, H) collision system when the sym-
metry of the identical nuclei is utilized.

B. Decoupling of the Pair Coupled Equations

We observe that Eqs. (3. 2a) and (3. 2b) for the
scattering and resonant electron-transfer pro-
cesses for the (H™, H) collision system are in-
variant under interchange of the two protons.
This then allows a decoupling of these equations.

Upon interchange of the protons, we have for
the electronic wave functions the property

-

&, (F,R)=a,(- T, R), (3.3)

and for the projectors the property

--», -

p;(F, R)= bj(-F, - T, R), (3. 4)

where T denotes the collection of the coordinates
of the three electrons. This then implies that

(2 |3<:p Kgb,|®)) =<<1>2|3cp2_KRp2l<1>2>,(3.5)

e |’ |a)=(a, %" |®.), (3.6)
which permit us to decouple Egs. (3.2a) and
(3. 2D).

When Eqs. (3.3)-(3.6) are utilized, we obtain
for Egs. (3. 2a) and (3. 2b) the decoupled equa-
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tions!®

-

{K§+ Vi(R) - %ir‘i(R)}Ei(R) =EZ _(R), (.7

where Ei(ﬁ)=F(§) +G(R); (3.8)

Vi(R =(e, lsc -Kzp, |q>>

+Re{Wi}— (1/2u)<q>i|v§2pi|<1>i>, (3.9)
r,(R)=-2m{w}; (3.10)
W(R =(a, |5 — 1 |,
pp E - 3(3 +1€ p3p
(e, 3¢ — 1 |<1>> (3.11)
p p E - Z‘Cp +1€ p p ’

In the Born-Oppenheimer separation approxi-
mation, the channel potentials are computed with
the nuclei held fixed so that Wy may be treated as
if it is local in R(see Sec. III C). We also as-
sume that the energy dependence of the complex
shifts W, is weak, so that these quantities are
determined by their values at the electronic res-
onance energies.

We seek solutions of Eq. (3.7) which behave
asymptotically as

z:t(ii)-eZkR of (b AR /R), (3.12)
with
. 21’51(*)
f(k-R)= @+ 1) ~1)P,(cosb),
0k T 613
51(*) ZCZ(i)-"inl(i) , (3.14)

where 6;(+) are the complex phase shifts of the
radial parts of Eq. (3.7). The scattering and
electron-transfer amplitudes can then be ex-
pressed in terms of f . '8

P r=3{(p, +p 2)T+ (py=p)Tt~ a0 T, )

XII)(F%) {e1k sz

/R}, as R -,
(3.15)

+ z(f f

1 - > >
P,T= z{(pz +P2)T— (Pl -—Pz)T} afﬂ(er, r3b)

ikR

sz(fla)%(f+—f_)e /R, as R-. (3.16)
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Hence, once the amplitudes f, and f_ are ob-
tained, it is straightforward to calculate the pro-
cess of scattering and electron transfer. From
the imaginary part of the complex phase shifts
(i.e., the n;(£)'s), the cross section for the de-
tachment processes may be obtained.

C. Complex Channel Potential

The complex potential in Eq. (3.7) may be writ-
ten in a symmetric form

Vi(R) - i%l"i(R)

=(3V2 (plez)zT@z)lﬁzl—é—ﬁ (5,9, £p,%,),(3.17a)

(V2 (p, 8,25, ®,) | R |3V2 (p, @, £0,8,)), (3.17D)

ith o=@ -K=)+8, :
wit =(H - §)+ b3 g Py

TWPSH’ (3.18)

B=H + HQ (3.19)

1
E-QHQ ~’
where we have made use of Egs. (3.5) and (3.6)
and of the idempotent and orthogonal properties
[Eq. (2.9)] of the projectors. The small Born-
Oppenheimer correction term —(1/2u)(¢i‘vﬁzpi[d>i)
is neglected in Eq. (3.17) for simplicity. The
inclusion of this term is straightforward.

Now if we replace hig by H (that is, if we neglect
the closed-channel segment projected by @), the
first term in A becomes simply the electronic
part of the total Hamiltonian H, =H -Kp. We
have

2 1
H :He+Hp3W

DsH . (3.20)
Since the functions p,®, and p,®, go over to the
atomic states G(Ty,, To,) Y(T3p) and Ce(Tgy,
r3b )zp(rla) respectively, at large R, the two
linear combinations p,®, +p,®, and plél -p9,
possess the gerade and ungerade symmetry of
molecular electronic states of the H; molecule.
It is then apparent that the first part of the com-
plex potential, which is associated with the
(# - KpR) part of Eq. (3.18), is simply the quasi-
stationary potential [see Eq. (3.9)].
é’i(R)=i(p1<I>1ip2<I>2[He jplcplip2q>2>, (3.21)
resulting from the electronic parts of the inter-
action between H™ and H in the gevade and
ungevade modes.

The coupling with the electronic-detachment
channel is given by the second term in Eq. (3.18).
This coupling gives rise to the nonstationary
character of the electronic interaction and intro-
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duces into the quasistationary potential §(R) From this analysis it becomes clear that the
[Eq. (3.21)] complex shifts W.(R): channel potential may, for certain restricted
- 1 regions, be approximated by a set of local energy-
w 1‘:(R)’—- 5(b,®, +p,®, | Hp, E=pHp,+ic independent complex potentials. Several sets ofg Y
complex potentials which are local and energy-
Xp.H | D1®, 2D, ®,) . independent have recently become available for
the interaction between ground states of H™ and
We emphasize that this complex shift is nonlocal H. Although these potentials are of limited valid-
and enevgy-dependent. ity, it is nevertheless of interest to investigate
As an approximation, the energy dependence of the predictions of these potentials. In Fig. 1,
W, may be suppressed by eyaluating W, ata these potentials are collected and compared for
quasistationary energy §.(R) for each value of R. the real and imaginary parts. There are impor-
In evaluating W,, the nuclear motion may be held tant differences among these potentials.
fixed. This then makes the complex shift W, (R) The set of theoretical complex potentials cal-
local. These approximations, of course, have culated by Bardsley, Herzenberg, and Mandl®
a very restricted region of validity. It is ap- using an adiabatic stationary variational method!®
parent that if the energy of the system is in- is, in general, much larger than the set of semi-
creased, there will be more open channels to be empirical complex potentials determined by Chen
included in P. Consequently, the complex shift and Peacher® from dissociative-attachment mea-
W,(R) will be significantly modified. The non- surements, 22! including isotope effects. The
local virtual excitation and polarization effects in theoretical and semiempirical results are in
the @ part [i.e., the HQ(E - QHQ)™* QH part] of reasonable agreement for the real part of the
Eq. (3.19) are also of importance and should be ungevade-mode interaction. Experimental mea-
explicitly considered when the closed channels in surements®?23 on the vibrational excitation of H,
@ become significantly coupled with the open molecules by electron impact indicate, however,
channels of concern. that this part of interaction should be lower than
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FIG. 1. Comparison of the complex potentials for the interaction between the ground states of H™ and H together with
the 12; and 32{;H2 adiabatic potentials. Curves A, the 22; and 22:'1 H5 complex potentials calculated by Bardsley,
Herzerberg, and Mandl (Ref. 8); curves C, the 25" and 22{; HE complex potentials determined semiempirically by Chen
and Peacher (Ref. 9); curves D, the modified real part of the 22‘; HE semiempirical complex potential (Ref. 17); curves
E, the real parts of the 25 and 22:; HE complex potentials calculated by Eliezer, Taylor, and Williams (Ref. 10). The

‘z‘g* and ®Z] H, adiabatic potentials are calculated by Kolos and Wolnicwicz [J. Chem. Phys. 43, 2429 (1965)].
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both the theoretical and semiempirical results.

A modified semiempirical curve for the real part
of the ungerade-mode interaction is obtained, *
and is shown in Fig. 1(a).

The real parts of the set of complex potentials
have also been calculated by Eliezer, Taylor,
and Williams, '° using an adiabatic stabilization
method. The latter results do not agree with the
real parts of the stationary variational results of
Bardsley et al. The real part of the gerade mode
interaction obtained by Eliezer ef al.'° is, how-
ever, in reasonable agreement with the corre-
sponding semiempirical curve. In view of the un-
certainties in these potentials, we have carried
out calculations using all these available poten-
tials.

Six sets of complex potentials which go over to
the appropriate long-range polarization potentials
were constructed from these potentials. They
are shown in Fig. 2. Sets A and B are the com-
plex potentials calculated by Bardsley ef al.® In
set B, the real part of the gervade-mode inter-
action (i.e., the *Z] Hj state) is modified in such
a way that at large R, the system goes over to
the correct energy states for H- and H. Sets C
and D are the semiempirical complex potentials.
Set C is the semiempirical potential obtained by
Chen and Peacher.® Set D corresponds to the
same set with the real part of the ungevade mode
of interaction (i.e., the 23} Hj states) modified!”
in accordance with the vibrational-excitation mea-
surements. 22, 2% Sets E and F are constructed
from the results of Eliezer et al.'® with the imag-
inary parts taken from the theoretical and the
semiempirical complex potentials, respectively.
The published curves of Eliezer et al. were given
only for R < 3a,. In sets E and F, their curves
were extrapolated (somewhat arbitrarily) to the
correct asymptotic energy states for H™ and H.

It should be noted that none of these potentials
shown in Fig. 2 provides an adequate account of
the physical system. The theoretical set of com-
plex potentials (set A), and its modification (set
B), do not yield values in agreement with dis-
sociative-attachment and vibrational-excitation
experiments. % ?* These potentials, on the other
hand, have been found® to give reasonable agree-
ment with electron-detachment experiments, 2%
and to provide sufficient reduction in the cross
section for the electron-transfer collisions2® in
an energy region 100-10* eV. This is, however,
a region where one expects that the nonadiabatic
collisional detachment, which cannot be accounted
for by these adiabatic potentials, would become
significant. The semiempirical set of complex
potentials (sets C and D) although accounting by
construction for the dissociative-attachment and
vibrational-excitation experiments, is certainly
not unique. There is no reason to expect these
potentials to have consistent accuracy for other

T T T T T T T

COMPLEX POTENTIAL (eV)

1 L 1 1 1 1 1 1 1
80 0 20 40 60 8.0
INTERNUCLEAR SEPARATION R (ad)

0 20 40 60

FIG. 2. S8ix model sets of complex potentials for the
interaction between the ground states of H™ and H to-
gether with the 'T} and *Z{Hj adiabatic potentials. Set
A, the complex potentials calculated by Bardsley,
Herzenberg, and Mandl (Ref. 8); set B, the same as
set A complex potentials but with the real part of the
ZZéer" potential modified to give asymptotically the cor-
rect energy states for H~ and H; set C, the complex po-
tentials determined semiempirically by Chen and
Peacher (Ref. 9); set D, same as set C with the real
part of the ZEKHZ' potential replaced by curve D of
Fig. 1; set E, the complex potentials constructed by
combining the real parts calculated by Eliezer, Taylor,
and Williams (Ref. 10) with the imaginary parts calcu-

lated by Bardsley, Herzenberg, and Mandl (Ref. 8);
set F, the complex potentials constructed by combining

the real parts calculated by Eliezer, Taylor, and
Williams (Ref. 10) with the imaginary parts determined
semiempirically by Chen and Peacher (Ref. 9). In sets
E and F, the real parts of the potentials are extrapo-
lated from the published curves at R=3a, (Ref. 10) to
the correct asymptotic energy states for H™ and H.

processes, or at different energy regions. The
complex potentials given by sets E and F, which
are constructed by arbitrary combinations, have
the same difficulties in comparison with experi-
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ments.

Despite these inadequacies and the uncertainties
in the long-range parts of the interaction between
H™ and H, most of these sets of complex poten-
tials should give correct predictions for the gross
feature of the collision system. By a compara-
tive study of these sets of complex potentials, one
expects to obtain further insight into the role of
electron detachment in (H™, H) collisions.

IV. RESULTS AND DISCUSSION

Application of Eq. (3.7) to the description of the
(H™, H) collisions is carried out using the approx-
imate V,(R) - %il“g(R) and Vi (R) - 3iT(R) complex
potentials shown in Fig. 2 for the V,— 3iT', and
V. - 3iT_ decoupled channel potentials in the
gevade - and ungevade-modes of interaction, res-
pectively.

The radial collision wave functions are de-
termined by solving the pair of equations

{a‘z‘iz —-l(fTZQ - 2p[E- Vg(R) +%irg(R)]}gl(g)(R)= 0,

(4.1)

2
{5‘% M) ol - vu<R>+%irumn}zl(“)(m=o,
@.2)

with the boundary conditions

£ (g’u)(R)-ok-lsin(kR— %lﬂ‘foz(g’ U)), as R~ ,
(4.3)

In the numerical calculation, the Numerov meth-
od is adopted for solving the differential equa-
tions. The complex phase shifts are determined
by matching the numerical solutions with the
asymptotical solutions at points outside of the
range of the complex potentials.

A. Electron Survival Probability

For a reaction system with only four energet-
ically accessible reaction paths as indicated by
Eq. (2.1), the imaginary parts of the complex
phase shifts determined from Eqgs. (4.1) and
(4. 2) account entirely for the coupling with elec-
tron-detachment channels. (At energies below
the detachment potential, the collisional-detach-
ment channels are closed and electron detachment
may proceed only through associative-detachment
channels.) These imaginary phase shifts give
rise to the damping of the nuclear motion and to
the energy-dependent exponential factors

pl(g, u) _ expl-2 Imbl(g’ u)] (4.4)

in the expressions for scattering and electron-
transfer cross sections |see Eqs. (4.33)-(4. 36)].

Such an exponential factor has the physical sig-
nificance of being the probability of electron de-
tachment during the collision encounter. Such a
survival probability factor has been suggested by
Holstein?® for the process of dissociative attach-
ment (the reverse process of associative detach-
ment), and later was verified by Bardsley,
Herzenberg, and Mandl. #’

In Figs. 3 and 4, the calculated electron sur-
vival probability against electron detachment is
shown as a function of relative angular momen-
tum 7 for c. m. energies 0.005, 0.05, and 0.5 eV.
It is seen that the six sets of complex potentials
predict different behaviors for the survival prob-
ability. In addition to the dependence on the
imaginary parts of the potential, the calculated
values for pl(g, u) also depend sensitively upon
the changes in the real part of the complex po-
tential when the imaginary parts are held un-
changed.

For the gerade mode of interaction at low en-
ergies we observed that the theoretical complex
potentials (i.e., sets A and B), despite the large
imaginary potential, predict a much smaller elec-
tron-detachment probability than that predicted
by the semiempirical complex potentials (i.e.,
set C). This is because the real part of the
gevade potential in set B (or set A) at large dis-
tances is large, and prevents the low-energy
colliding system from entering into the electron-
detachment region. When the real part of the
gevade potential in set B is replaced by that cal-
culated by Eliezer ef al.,!° as in set E, we find
that the values for pl(g) are reduced significantly,
predicting a much larger electron detachment.
The same replacement of the real part of the
gerade potential in the semiempirical set results
in an enhancement in the values for pl(g). The net
changes in pl(g) appears, however, to be larger
for set B than for set C, and more so as the en-
ergy of the system increases.

100 e 1o Ay
2N / 4
Z 098 ’ 9 108 // 4
3 o 0005 eV i ff oAb
2 N Bt
g 096 - 06 l ;o ——0
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E 092 ——F ozr B,z 0.005 8V
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FIG. 3. Comparison of the electron-survival proba-
bility p; &w [Eq. @.4)] in (H~, H) collisions as a func~
tion of the angular momentum ! at ¢c. m. energy 0.005 eV
for the gevade and ungerade modes of interactions, as
predicted by the six sets of complex potentials (see
Fig. 2).
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FIG. 4. Comparison of the electron-survival proba-
bility pl( 8w [Ey. 4.4)] in (H =, H) collisions as a func-
tion of the angular momentum I attwo c.m. energies for the
gevade and ungevade modes of interactions as predicted
by the sets B-—F of complex potentials (see Fig. 2).

For the ungerade mode of interaction, the
agreement in pl(u), as predicted by the theoret-
ical and semiempirical complex potentials, is
reasonably good at low energies. Significant
changes in pl(u) are again observed when the real
part of the ungerade potential is replaced by that
calculated by Eliezer ef al. These changes are,
however, not as energy-dependent as for the
gevade case.

The I dependence of the survival probability has
been investigated by Chen and Peacher, *® using
the JWKB approximation for small [ values. Their
results, which were calculated on the basis of
the potentials given by set B (and set A), are in
good agreement with our results. We note that
the survival probability approaches unity with in-
creasing angular momentum [ for each given en-
ergy. The rate of approach to unity decreases
with increasing energy. This implies, of course,
that as the energy increases, more partial waves
should be included in the calculation of electron-
detachment probabilities (or cross sections).

The energy dependence of the survival probabil-
ity is investigated for fixed values of . Some of
the results for low ! values are shown in Fig. 5
for set-B and set-C potentials. It is seen that at
very low energies the behavior of the survival
probability, predicted by the two sets of poten-
tials, are essentially the same. Significant de-
viations are found in each I/ value as the energy
is increased. The deviation is larger for the
gevade mode of interaction than it is for the
ungevade mode of interaction. As the energy is
further increased, the survival probability ap-
proaches zero for each 7 value. The rate of ap-
proach to zero depends sensitively upon the po-
tentials adopted in the calculations.
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B. Scattering and Electron-Transfer Differential
Cross Sections

Having obtained the complex phase shifts from
Egs. (4.1)-(4.3), the collision amplitudes due to
each mode of interaction may be easily deter-
mined. Due to the symmetry with respect to the
interchange of the protons in the (H™, H) system,
the angular-momentum quantum number 7 for the
motion of the nuclei is limited to either even or
odd values, according to the nuclear-spin sym-
metry, and the gevade and ungevade symmetries
(the inversion symmetry) of the corresponding
electronic states. The differential cross sections
for the gerade and ungerade modes of interactions
are then given, respectively, by

do-g(l, 3) .
JE - S ¢ )
aa— - 17 0@f, (4.5)
do-u(l, 3) .
v . a, s
ol AR QI (4.6)
with the restricted sums
1
fO0) =55 2o (20+1)
g 2ik leven
ZiGZ(g)
X (e - 1) b, (cosh) , (4.7

1
fO8) = 2, (214+1)
g 20k 1 0aa

SURVIVAL PROBABILITY

CENTER-OF-MASS ENERGY E (eV)

FIG. 5. Energy dependence of the electron-survival
probability p; @ [Eq. 4.4] in H =, H) collisions for
angular momentums =0, 10, and 20 as predicted by
set-B and set-C potentials (see Fig. 2).
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(g)

218
x(e ! —-1>pl(cos0) , 4.8)
1
£ 00) =5 2. (214+1)
u ZZklodd
ml(“)
X <e —1>1>l (cosh) (4.9)

1

3 — E

fu )(9)_2ik (22+1)
leven

(w)

Ziél
b (e - 1>pl (cosh) (4. 10)

where the superscripts (1) and (3) refer to the
singlet and triplet nuclear-spin multiplicities of
the (H™, H) collision system.

Since the gevade and ungerade modes of interac-
tion are degenerate asymptotically, the elastic
scattering and resonant electron-transfer ampli-
tudes may be obtained from appropriate linear
combinations of the collision amplitudes resulting
from the gerade and the ungerade modes of inter-
action. This then gives rise to the interference
in the scattering and electron-transfer differential
cross sections. We have?®

do s {do W9 do 13 g 49
s g u

: 4.11
as i@ Taa  da } , 4.11)

} , (4.12)

dQ T de  do

do 4,3 do L, go 4,3 g (1,3
et J g u
aq

where the interference contribution to the cross
section is given by
do (4,3

79 (4.13)

_ 1,3) 7 (1,3)%
= ZRe(fg 5 ).

The symbol Re denotes the real part of the quan-
tity in the brackets.

For a random distribution of initial nuclear-
spin orientations, the differential cross sections
for any final spin orientation take the averaged
expression for (H™, H) collisions

) do (3)
do do s, et

3
47 da

(4.14)

A comparison of this averaged differential cross
section, predicted by the six sets of complex po-
tentials shown in Fig. 2, is given in Figs. 6-9
for five c. m. energies. The number of partial
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FIG. 6. Comparison of the differential scattering and
electron-transfer cross sections [Eq. (4.14)] for the
(H™, H) collision system as predicted by the sets A, B,
and C of complex potentials (see Fig. 2) at an energy of
0.0005 eV in the c. m. system.

waves to be summed, in obtaining these results,
increases rapidly with increasing energy and de-
pends somewhat on the actual potential.

In Fig. 6, a comparison of the differential scat-
tering and electron-transfer cross section, pre-
dicted by the potential sets A, B, and C, is shown
for a c. m. energy of 0.0005 eV. Itis seen that
set-A potentials, because of the large tail of the
gevade potential, predict a significantly larger
cross section with rapid oscillations. These
rapid oscillations may be removed if the tail of
the gerade potential is reduced, so that it asymp-
totically goes over to the ground states of H and
H~ as in set-B potentials. The behavior of the
differential cross section for set-B and set-C po-
tentials are very similar except that set B, be-
cause of the large splitting between the gervade
and ungevade potentials, predicts somewhat
larger differential cross sections.

As a result of the nuclear symmetry, the dif-
ferential cross sections satisfy (see Fig. 6) the
relation

dog(6) do (n-6) (4.15)

dQ ~  dQ

This permits us to deduce the differential cross
sections, one from the other. We need not,
therefore, present the differential cross sections
over the entire range of the scattering angles.

A comparison of the scattering differential cross
section as predicted by the sets of potentials B—-F,
(see Fig. 2) is given in Fig. 7 for a c¢. m. energy
of 0.005 eV. It is seen that the oscillations in the
differential cross section increase with increasing
energy. Set-B poternitials again predict larger
differential cross sections than that predicted by
the potentials of sets C—F. The change in the
well depth in the real part of the semiempirical
ungerade potential (compare set D with C) does
not give rise to significant changes in the gross
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FIG. 7. Comparison of the differential scattering
cross sections [Eq. (4.14)] for the (H~, H) collision sys-
tem as predicted by set B=F of complex potentials (see
Fig. 2) at an energy of 0.005 eV in the c.m. system.

feature of the differential cross section.

The differences between the imaginary parts of
the theoretical and semiempirical complex po-
tentials do not appear to change the scattering and
electron-transfer differential cross sections at
these low energies. This can be seen from the
comparison of the results between E and F sets
of potentials in Fig. 7. As mentioned before, this
behavior is due to the tail of the real part of
gerade potential, which prevents the low-energy
collision system from entering the electron-de-
tachment region. Consequently, the collision
system may enter the electron-detachment region
only through the ungerade mode of interaction.
The difference between the imaginary potentials
should therefore appear due only to the ungevade
parts. We have shown in Fig. 3 that at this low
energy the ungerade imaginary phase shifts are
large, and the survival probabilities pl(“) pre-
dicted by the two sets of complex potentials are
both very small, thus giving rise to large electron-
detachment probabilities. Their differences are
therefore not noticeable. However, if the imag-
inary parts of the complex potential is completely
removed (i.e., set to zero) from set-E and set-
F potentials, the significant changes indicated by
curve G in Fig. 7 are observed.

Because the splitting between the real parts of
the gervade and ungevade potentials calculated by
Eliezer ef al.'° is larger than that indicated by the
semiempirical potentials, but smaller than that
indicated by the theoretical potentials, set-E and
set-F potentials predict a magnitude for the dif-
ferential cross section which lies between sets B
and C.

As energy is further increased, the collision
system may enter the electron-detachment region
in both modes of interactions. The difference
between the imaginary parts of the theoretical and

MIZUNO AND J.

C. Y. CHEN 187

semiempirical complex potentials becomes sig-
nificant. This shown in Fig. 8. We observe that
set F, with the semiempirical imaginary potential,
gives rise to more damping in the interference
oscillations, and that set E, with the theoretical
imaginary potential, predicts smaller cross sec-
tions at and near the 6=90° collisions.

A comparison of the differential cross section
predicted by B—D sets of complex potentials at
somewhat higher energies is given in Fig. 9. It
is seen that the differential cross section oscil-
lates with increasing rapidity. These oscillations,
which come primarily from the interference be-
tween the gerade and ungerade modes of collisions,
are not symmetric. Part of the asymmetry comes
from the rainbow scattering and the multipath in-
terference in the ungerade mode of interaction.
This is because the real part of the gerade poten-
tial has an attractive portion and changes its sign
at certain characteristic internuclear separations.
The nuclear symmetry also gives rise to inter-
ference which is appreciable at large angles. At
small angles there is also diffraction-scattering
(wave) interference coming from the second term
in brackets of the collision amplitude [see Egs.
(4.7)-(4.10)].

Because the electron is flipping between the two
hydrogen atoms while the collision encounter is
taking place, the electron experiences different
detachment potentials (imaginary potential) ac-
cording to whether it is in the gervade or ungerade
symmetries. Consequently, the oscillation in the
gerade-ungevade interference will be damped with
a different strength on each period of oscillation,.
This effect also accounts for some of the asym-
metry in the oscillation shown in these figures.

To see the effect of the nuclear symmetry, the
differential cross sections for scattering and elec-
tron-transfer are displayed in Figs. 10 and 11
for singlet and triplet collisions [Eqgs. (4.11) and
(4.12)] at c. m. energies 0.005 and 0.5 eV. We

T T T T T T T T T
Ecme0.5eV E n05eV

SETE do, SETF
cosd

5.0~ do,

o

do,
deosf

W/ a

00 I5 30 4 60 75 5 3 4 6 75 90
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FIG. 8. Comparison of the differential scattering and
electron~transfer cross sections [Eq. (4.14)] for the
(H™, H) collision system as predicted by the sets E and
F of complex potentials (see Fig. 2) at an energy of 0.5
eV in the c.m. system.
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have included in these figures only the results ob-
tained from the theoretical and semiempirical
sets of complex potentials (sets B and C). Itis
seen that the singlet and triplet (H™, H) collisions
give rise to different gevade-ungerade oscillations
(Fig. 10) due to differences in the nuclear-sym-
metry interference

fg‘”(e) =fg‘”(7r— 6), f, ()= -f, P r=0),
fg(a)(e) - _fg(a)(ﬂ_ 9), fu(3)(9) =fu(a)(,n_9)_

At higher energies, the difference in the singlet
and triplet gerade-ungerade oscillation pattern
becomes noticeable only at large angles, as
shown in Fig. 11. The diffraction interference
remains unchanged.

For further details of the gervade-ungerade in-
terference, these differential cross sections are
decomposed in Figs. 12 and 13 into the gevade,
ungevade, and their interference contributions
[Eqs. (4.5), (4.6), and (4.13)] at c. m. energies
0.005 and 0.5 eV. As expected, the interference
terms dop™*/dQ oscillate rapidly. Superim-
posed on the regular gervade-ungevade oscillations
in doy #/dQ are oscillations coming from the
diffraction and nuclear-symmetry interferences
and from interference within the ungerade col-
lisions such as the multipath interference and
rainbow scattering. It should be noted that the
presence of a large imaginary potential can ef-
fectively damp the multipath interference and
rainbow scattering. These effects would become
more apparent if the nuclear symmetry were re-
moved. This will be considered in Sec. IVF. By
decomposing the scattering and electron-transfer
differential cross sections into their components,
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FIG. 10, Comparison of the singlet and triplet dif-
ferential scattering, electron-transfer, and electron-
detachment cross sections [Eqs. (4.11), (4.12), and
(4.20)] for the (H~, H) collision system as predicted by
the sets B and C of complex potentials (see Fig. 2) at
an energy of 0.005 eV in the c. m. system.
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FIG. 11. Comparison of the singlet and triplet dif-
ferential scattering, electron-transfer and electron-~
detachment cross sections [Eqs. (4.11), (4.12), and
(4.20)] for the (H™, H) collision system as predicted by
the sets B and C of complex potentials (see Fig. 2) at
an energy of 0.5 eV in the c.m. system.
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FIG. 12. Comparison of the gerade, ungevade,
and their interference contributions [see Eqs. 4.5),
(4.6), and (4.13)] to the singlet and triplet electron-
transfer cross sections for the (H™, H) collision system
as predicted by the sets B and C of complex potentials
(see Fig. 2) at an energy of 0,005 eV in the c. m. system.
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FIG. 13. Comparison of the gervade, ungevade, and
their interference contributions [ see Eqs. (4.5), (4.6),
and (4.13)] to the differential scattering and electron~
transfer cross sections for the (H~, H) collision system
as predicted by the sets B and C of complex potentials
(see Fig. 2) at an energy of 0.5 eV in the c. m. system.
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the diffraction interference at small angles now
becomes more apparent., Itis seen from Fig. 13
that the diffraction scattering occurs in the gerade-
mode interaction at a smaller angle than in the
ungerade-mode interaction.

C. “Differential” Electron-Detachment
Cross Section

The cross section for electron detachment at a
heavy-particle scattering angle 6 (i.e., the angle
between the incident-beam direction and the direc-
tion of the heavy-particle products) can be calcu-
lated from the imaginary parts of the complex
phase shifts. The “differential” electron-detach-
ment cross sections for the gevade- and the un-
gevade-mode interactions are given, with appro-
priate considerations of the nuclear symmetry, by
the restricted sums

1)

4o g 1
—dS,ZL =15t 2, (21+1)2
[ even
(g)
x{1- eJHmGl }plz(cose) , (4.16)
do @)
ed,u 1 5,
—_—t— = —— (27 +1)2
2
an 4k 7 odd
(u)
x{1- ¢ 1mo; }plz(cose) , @.17)
do @)
d
o L (@
[ odd
(g)
-4Imb
X {1 ¢ 0L }plz(cose) , (4.18)
do &)
—%15’2-“*— =$ > (2141
1 even
(u)
x{1- ¢~ mo; }plz(cose) . (4.19)

It is perhaps worthwhile to note that the word
differential for the electron-detachment cross
section does not have the conventional implications
with respect to the scattering angle between the
incident-beam direction and the direction of the
electron detachment. The differential cross sec-
tions given by Eqs. (4.16)-(4.19) represent the
cross sections for total electron detachment at a
fixed solid-angle element df2 for the heavy-particle

collisions. The word differential here refers
therefore to the solid-angle element d2. Such a
differential cross section may be obtained from
the double differential cross section for electron
detachment,

dzoed(la 3)(9’ w, €x(g, u))
) ’

(g,u
dwdex

by integrating over the electron-detachment solid-
angle element dw and by summing (or integrating)
over all the final heavy-particle states A, taking
appropriate account of the energy distribution of
the detached electron associated with each A (by
integrating over de, (&, 1)),

In Figs. 14 and 15 the differential electron-de-
tachment cross sections for the gevade and un-
gevade modes of interaction are shown for c¢. m.
energies 0.005 and 0.5 eV. It is seen that be-
cause of the nuclear symmetry, the cross sec-
tions oscillate almost exactly out of phase with
each other at large angles. The relative con-
tributions to the electron detachment from the
gevade and ungerade modes of interaction changes
significantly with the change in incident energy.
The gerade contributions, because of the long tail
in the gevade mode of interaction, become very
small at low energies, and then, at higher energies,
become comparable with the ungervade contributions.
With further increase in energy, the collisional-
detachment channel becomes open, and the gerade
contribution eventually becomes larger than the
ungerade contributions.

The total contribution to the singlet and triplet
differential electron-detachment cross section is
then given by

doed(va) doed g(1, 3) do ,3)

Q" an * efzbu . (4.20)

The averaged differential detachment cross sec-
tion over final spin state may then be obtained:

doed )

1
a0 "1 an (4.21)

A comparison of this averaged differential elec-
tron-detachment cross section as predicted by the
various sets of complex potentials is given in
Fig. 16 for c¢. m. energies 0.005 and 0.5 eV.

Some of the higher-energy results are shown in
Fig. 9. Due to the absence of the gerade-ungerade
oscillations, the structure in the differential de-
tachment cross section comes from the ungevade-
mode collisions and from the nuclear symmetry and
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FIG. 14. Gevade and ungevade contributions to the
differential electron-detachment cross section for sin-
glet and triplet (H ™, H) collisions [Eqs. (4.16)~(4.19)]
as predicted by the sets B and C of complex potentials

(see Fig. 2) at an energy of 0.005 eV in the c. m. system.

diffraction scatterings. The singlet and triplet
components of the cross section (Fig. 16) are
shown in Figs. 10 and 11.

From Figs. 10 and 11, it is seen that the de-
tachment cross section depends not only on the
imaginary parts of the potentials, but also sensi-
tively on the real parts of the potentials. This
behavior is expected from the observations made
on the electron-survival probability in Sec. IV A.
At higher energies, the dependence on the real
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FIG. 15. Gevade and ungevade contributions to the dif-
ferential electron-detachment cross section for singlet
and triplet (H~, H) collisions [Eqs. (4.16)—(4.19)] as
predicted by the sets B and C of complex potentials
(see Fig. 2) at an energy of 0.5 eV in the c. m. system.
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FIG. 16. Comparison of the differential electron-
detachment cross sections [Eq. (4.21)] forthe (H™, H)
collision system as predicted by the sets A~F of com~
plex potentials (see Fig. 2) at energies of 0.005 and 0.5
eV in the c.m. system.

parts of the potentials becomes less sensitive.

The averaging of the differential detachment
cross section over the final-spin orientation may
also be done for the gervade and ungevade contri-
butions separately:

A A -
ed _17"edg 3 ed,u .22)
ae 4 a9 a1 4n ’ :

do (w do ® do ®)
ed 1 7ed,u 3 "ed,u (4.23)
a4 a9 i a9 ‘

Equation (4.21) may then be rewritten

do do ® do (w)

ed “ed ed (4. 24)

aQ ~ T an tTan

The comparison of the averaged gerade and un-
gerade differential detachment cross sections is
given in Fig. 17 for a ¢c. m. energy 0. 005 eV.
These spin-averaged gerade and ungevade cross
sections are useful for the investigation of isotope
effects (Sec. IVF).
D. Electron-Detachment and Electron-
Transfer Probabilities

Having determined the differential cross section,
the electron-detachment probability P, and the
electron-transfer probability Pe¢ can be calculated
from the relations

(%ea ) (dototal ) , (4. 25)
Pea™an / ao
do do,
o et total \ , (4.26)
Pet‘(d9>/( ao >
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FIG. 17. Comparison of the spin orientation averaged
gevade and ungevade contributions to the differential
electron-detachment cross section [Eqs. 4.22) and
(4.23)] for the (H-, H) collision system as predicted by
the sets B-F of complex potentials at an energy of
0.005 eV in the c. m. system.

wherg dototal/ds’z is the total differential cross
section for the (H—, H) collision system. For en-
ergies below the excitation thresholds of the hydro-
gen atom, the total differential cross section is
given by

Dotal_ % Pt | “%ed . (4.27)
@ dn Tde

Some of the calculated Pgq and Pet are displayed
in Figs. 18-20 as functions of the c. m. scattering
angle 6 for several c.m. energies, and in Figs.
21 and 22 as functions of the c. m. energies for
several c.m. scattering angles.

From Fig. 18 it is seen that the change in well
depth in the real part of the ungevade potential
from sets C to D does not give rise to appreciable
changes in Py and Peq at these low energies. As
noted before, at this low energy the collision sys-
tem may enter the electron-detachment region
only alt')ng the ungerade mode of interaction. To
see the damping effect due to the ungerade imagi-
nary potential, the electron-transfer probability

was calculated using set-E (or set-F) potentials
without the imaginary parts. The result is shown
in Fig. 18 as curve G. The damping due to elec-
tron detachment is clearly very significant in both
the scattering and electron-transfer probabilities.
Such damping, unlike the damping due to coupling
with the H-excitation channels, is of importance
for collisions involving negative ions.

The electron-detachment probability Pegq which
is symmetric with respect to the 90° axis, is
found to peak at 6 =90°. This peaking at 90° be-
comes more significant at higher energies. From
Figs. 19 and 20, it is seen that at 6 =90° the prob-
ability for electron-transfer and scattering, ex-
cept for set-B potentials, is negligibly small in
comparison with the probability of electron detach-
ment. This then suggests that for experimental
study of electron ejection in heavy-particle colli-
sions it would be more advantageous to carry out
the measurement at a large angle with respect to
the beam direction. From Fig. 9 we have seen
that the magnitude of the detachment cross section
does not decrease appreciably with increasing
angle 6.

The energy dependence of the electron-transfer
probability is shown in Fig. 21 for small-angle
collisions. Though the probability of electron de-
tachment is small at these small-angle collisions,
their effect on electron-transfer probability is
already noticeable. The oscillations for Pgt shown
in Fig. 21 do not extend from zero to unity as they
build up with increasing angles. Such damping due
to electron detachment is characteristic of elec-

E10.005 eV

E,70.005 ¢V

7,(0)

Pal)

530 45 60 75 900 15 30 45 60 75 90
CENTER-OF-MASS ANGLE 8 (deqree) CENTER-OF-MASS ANGLE @ (degree)

FIG. 18. Comparison of the electron-transfer and
electron-detachment probabilities [Eqs. (4.25) and
(4.26)] in (H~, H) collision as predicted by the sets B—F
of complex potentials (see Fig. 2) at a c. m. energy of
0.005 eV. Curve G is obtained from set E (and set F)
without the imaginary parts of the potentials.
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FIG. 19. Comparison of the electron-transfer and
electron-detachment probabilities [Egs. (4.25) and
(4.26)] in (H~, H) collisions as predicted by the sets E
and F of complex potentials (see Fig. 2) at a c.m. ener-
gy of 0.5 eV.

tron-transfer problems involving negative ions.
From Figs. 9, 19, and 20, it is evident that the
electron-detachment damping would become more
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apparent with increasing 6. The energy depen-
dence of the electron-detachment probability is
given in Fig. 22. It is seen that in low-energy
regions the probability of electron detachment
does not change appreciably with energy.

It is obvious that if the final nuclear-spin orien-
tations are specified, the electron-detachment and
electron-transfer probabilities may be defined for
each spin multiplicity:

(1,3) (153)
P <d°ed’ ) /(d"toial ) . (4.28)
et~ \ T 4q aQ
(1,3) (1,3)
P _ ooy > / <d°to%a1\ , (4. 29)
et T\ 4dq e/
with
(1,3) 1,3) (1,3) (1,3)
Wil 9% dogf 4oed , (4.30)
ae ade Y ae ‘YT ae

where the singlet and triplet differential cross
sections for scattering, electron-transfer, and
electron-detachment are given by Eqs. (4.11),
(4.12), and (4. 20), respectively.

A comparison of the electron-detachment and
electron-transfer probabilities in the singlet and
triplet (H—, H) collisions is given in Figs. 23 and
24. The differences are significant for low ener-

P, AD P,

€, =07 eV
SET D 7

FIG. 20. Comparison of
the electron-transfer and
electron-detachment proba-
bilities [Eqs. (4.25) and
(4.26)] in (H™, H) collisions

as predicted by B and D

P, AND P

sets of complex potentials
(see Fig. 2) at c.m. en-
ergy 0.7 eV and by the sets
C and D of complex poten-
g tials (see Fig. 2) at c.m.
energy 1.0 eV.

CENTER-OF-MASS ANGLE 8 (degree)

CENTER-OF-MASS ~ ANGLE 6 (degree)
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FIG. 21. Comparison of the energy dependence of the
electron-transfer probability [Eq. 4.26)] in (H™, H) col-
lisions at c.m. angles 2°, 4°, and 6° as predicted by
the sets B and C of complex potentials (see Fig. 2).

gies. From Fig. 23, it is seen that the electron-
detachment probability in the singlet (H~, H) col-
lisions is no longer peaked at 6§ =90°. This is
again related to the fact that, at low energies,

the ungerade mode dominates the detachment. At
higher energies, the difference between the singlet
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FIG. 22. Comparison of the energy dependence of the
electron-detachment probability [Eq. (4.26)] in (H~, H)
collisions at c. m. angles 2°, 4°, and 6° as predicted
by the sets B and C of complex potentials (see Fig. 2).
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FIG. 23. Comparison of the electron-transfer and
electron-detachment probabilities for singlet and trip-~
let (H=, H) collisions [Eqs. (4.28) and (4.29)] as pre-
dicted by the sets B and C of complex potentials (see
Fig. 2) at a c.m. energy of 0.005 eV.

and triplet behavior becomes small.

E. Total Cross Section

The total scattering or electron-transfer cross
section can be obtained from Eq. (4.15) by inte-
grating over d?. The interference between the
gevade and ungevade contributions in Egs. (4.11)
and (4. 12) vanishes on integration. Consequently,
the total scattering and the total electron-transfer
cross section become identical and are simply
given by the sum of the gevade and ungerade con-
tributions.

Gs,et=0g+0u . (4.31)
For any final nuclear-spin orientation Og and %
is given by

0 =%0 Mi3s ® (4.32)

gu ‘‘gu f'gu  ’
n - ZImbl(g)
with ¢ M=—o 33 (2+1)e
& 1(even)
x{sinz[Reél(g)]+sinhz[rmal(g)]}, (4.33)
ar - 21mal(“)
Uu“’=—;2— 22 (@i+1)e
1 (odd)
X{sinz[Reél(u)]+ sinhZ[Imél(u)]} , (4.34)
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FIG. 24. Comparison of the
electron-transfer and electron-
detachment probabilities for
singlet and triplet (H~, H) col-

lisions [Egs. (4.28) and (4.29)]
as predicted by the sets B and
C of complex potentials (see
Fig. 2) at a ¢c.m. energy of 0.5
eV.

contributions to the singlet and triplet collisions
become oscillating with increasing rapidity as
These oscillations, being al-
most exactly out of phase with each other, would
be canceled if the gevade and ungerade contribu-
tions were to be summed with equal weights, Be-
cause the triplet contribution weighs statistically
more than the singlet contribution, the oscilla-
tions are not canceled. This gives rise to the

184 J. MIZUNO AND J.
|0 1 T T T
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06
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02
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47 (g)
o =20 3 (ZZ+1)e_ZIm5l
& 1(0dd)
energy decreases.
x{sinz['Reé () ]+ sinh [Im6 @) 1, (4.35)
o ®=— 27 (2l+1)e
u
1 (even)
x {sinZ[Reﬁl(u) ]+ sinh [Imé (u)]} , (4.36)

In Fig. 25, a comparison of the total scattering
cross section, predicted by set-B and set-C com-
plex potentials, is given., It is seen that, as a re-
sult of the large splitting between the gervade and
ungevade modes of interaction, set B predicts a
much larger cross section than set C. For further
details, the gervade and ungerade contributions
[Eq. 4.32)] to oy ¢t are also included in Fig. 25.
The difference in the magnitude of the cross sec-
tion results primarily from the gevade contribu-
tions.

Because the gerade-ungerade interference term
is absent, the cross section becomes a smooth
function of energy. At very low energies, the
scattering cross section exhibits, nevertheless,
interesting structures, as shown in Fig. 26. To
see the origin of this structure, the gerade and
ungevade contributions to the singlet and triplet
(H™, H) collisions are shown in Fig. 27. It is
seen that the gerade, as well as the ungerade,

structure in the total scattering cross section at
low energies.

640[————T—T— T T
seo <38 .
480k S~ \‘\\\\\\\\
400 I L) 1

3200 R

2401

L e AR ———

N S ™ T a—
00 0! 02 03 04 05 06 07 08 09 10
CENTER-OF -MASS ENERGY Efev)

SCATTERING (ELECTRON-TRANSFER) CROSS SECTION (03)

FIG. 25. Comparison of the scattering (or electron-
transfer) cross section [Egs. (4.31)] and its gevade and
ungerade contributions [Egs. (4.32)] as functions of en-
ergy for the (H™, H) collision system as predicted by
the sets B and C of complex potentials (see Fig. 2) in
the c.m. system.
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FIG. 26. Comparison of the scattering (electron-

transfer) cross sections [Eq. (4.31)] as a function of
energy for the (H~, H) collision system as predicted
by the sets B and C of complex potentials (see Fig. 2)
in the c. m. system.

The total electron-detachment cross section
can be obtained from Eq. (4.21) [or (4.24)] sim-
ply by integrating over d2. We have

(g ()
%i=%d  * %eq (4.37)
. (g)_. (1) s (3)
with g _“Oed,g +3 ed,g (4. 38)
() (1) (3)
Oed _40ed,u +“0ed,u , (4.39)

where the gerade and ungerade contributions to
electron detachment in the singlet and triplet
(7, H) collisions are given by

ot 3 e —4Imﬁl(g)
d De—s 2l+1)41-¢ ’
ed, g k 1(even)
(4. 40)
. { _41mal(“)
g (1)=—2 A (2l+1)1"e }’
ed,u 1 (0dd)
(4. 41)
(g)
-4Imbd
. G- 3 @+1){l-e L},
ed,g 1 (0dd)
(4. 42)
. _41mal(“)
e 2 @l+1{i-e .
’ 1(even)
(4. 43)

The total electron-detachment cross section and
its constituent gerade and ungerade contributions
are shown in Fig. 28 for set-B and set-C complex
potentials. At these energies, set C predicts a
larger cross section for electron detachment than
set B. This is just the reverse situation from the
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FIG. 27. Gerade and ungevade contributions to the
scattering (electron-transfer) cross section [Eqgs.
(4.833)=(4.36)] for the singlet and triplet (H™, H) col-
lisions as a function of energy as predicted by the sets
B and C of complex potentials (see Fig. 2) in the c.m.
system.

scattering cross section. The reason for this be-
havior is again due to the large gerade-potential
tail. As the energy of the colliding system is in-
creased, the gerade contribution to electron de-
tachment for set-B potentials increases rapidly
and pushes the total detachment cross section

up to that predicted by set-C potentials. As en-
ergy is increased further, set-B potentials pre-
dict a larger detachment cross section than do
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FIG. 28. Comparison of the total electron~-detachment
cross section [Eq. (4.37)] and its gevade and ungevade
contributions [Eqs. (4.38) and (4.39)] as functions of en~
ergy for the (H~, H) collision system as predicted by
the sets B and C of complex potentials (see Fig. 2) in
the c.m. system. The curve labeled JWKB and
Langevin are predicted by set-C and set-B potentials
in the JWKB approximation (Ref. 32) and the Langevin
spiral approximation (Ref. 3), respectively.
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set-C potentials., The result of our investigation
of (H™, H) collisions at high-energy regions will
be reported in a subsequent paper.

For comparison, we have included in Fig. 28
the result of previous calculations®-%° using the
Langevin spiraling and JWKB approximations.
The JWKB result was calculated using set-C po-
tentials, while the Langevin spiraling result was
estimated based on set-B (or set-A) potentials.

It is seen that both the JWKB and the Langevin
spiraling approximations give reasonable agree-
ment with the numerical cross section,

In Fig. 29 the very low-energy results for the
electron-detachment cross section are shown. In
this low-energy region the gervade contribution is
negligibly small, and the differences between set-B
and set-C potentials are small. The structure in
the total detachment cross section results again
from the residual oscillations in the ungevade con-
tributions to the electron detachment in the singlet
and triplet (H™, H) collisions,

A comparison of the scattering (or electron-
transfer) and electron-detachment cross sections
for the various sets of complex potentials shown
in Fig. 2 is given in Table I.

F. Isotope Effects

In this section, the isotope effects in the colli-
sional processes are investigated. The basic ef-
fects resulting from the replacement of hydrogen
by its isotopes in the (H—, H) collision system are
kinematical.® 31,32
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FIG. 29. Comparison of the electron-detachment
cross section [Eq. (4.37)] and its constituent gevade
and ungevade contributions [Egs. (4.40)—(4.43)] as
functions of energy in (H ™, H) eollisions as predicted by
the sets B and C of complex potentials (see Fig. 2) in
the c.m. system.
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FIG. 30. Comparison of isotope effects in the elec~
tron survival-probability p; (€W [Eq. 4.4)] as a func-
tion of the angular momentum at a c. m. energy of 0.005
eV as predicted by the sets B and C of complex poten-
tials (see Fig. 2).

The change in the zero-point energies from the
2z {H; and the 'ZTIH, potential wells due to iso-
tope substituting does not give rise to significant
effects in scattering, electron-transfer, and colli-
sional-detachment processes. Its effect on asso-
ciative detachment (or dissociative attachment)
would be significant if the detailed partial cross
sections® are examined. In this work, we investi-
gate the detachment cross sections as a whole with-
out detailed analysis of the final states of the prod-
ucts. The isotope effect due to the zero-point
energy is not expected to be observed.

A large isotope effect comes from the mass de-
pendence of the imaginary parts of the phase shift
which appear in the cross section as the survival
probabilities (see Sec. IV. A). In Figs. 30 and 31
the isotope effect in survival probability is shown
as a function of angular momentum ! for c. m.
energies 0.005 and 0.5 eV. It is seen that the sur-
vival probability as expected decreases with in-
creasing mass. 2,3 The amount of change predicted
by set-B and set-C potentials is in reasonable
agreement.

A comparison of the isotope effects in the differ-
ential cross section is given in Figs. 32-34 for
the theoretical and semiempirical sets of complex
potentials. It is seen that in general the cross sec-
tions are enhanced by the isotope substitutions.

In the case of (H~, D) [or (D™, H)] collisions, the
isotope substitution also removes the nuclear sym-
metry, so that Eq. (4.15) no longer holds. From
Fig. 34, it is seen that the oscillations due to the
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FIG. 31. Comparison of isotope effects in the electron-

survival probability p; (g, [Eq. 4.4)] as a function of
the angular momentum at a c. m. of 0.5 eV as predicted
by the sets B and C of complex potentials (see Fig. 2).

interference between the gerade and ungevade
modes of interactions now become, in the absence
of nuclear symmetry interference, regular at large
scattering angles. For the same reason, the small
oscillation in the differential detachment cross sec-
tion at large angles are also removed. The oscil-
lations at small angles which come, as mentioned
before, from the diffraction scattering, are not
affected by the removal of nuclear symmetry.

To investigate the multipath interference and the
rainbow-scattering effects without the complica-
tion of nuclear-symmetry interference, we have
plotted in Fig. 35 the gerade, ungevade, and their
interference contributions to the (H™, D) collisions
for set-C potentials under two circumstances —
one with and the other without the imaginary parts
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( ,s}EoTr(BD,Hl | Ty (00D
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FIG. 32. Isotope effects in the differential scattering
and electron-transfer cross sections [Eq. 4.14)] as
predicted by complex potential B (see Fig. 2) at an en~
ergy of 0.005 eV in the c.m. system.
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FIG. 33. Isotope effects in the differential scattering
and electron-transfer cross sections [Eq. (4.14)] as
predicted by complex potential C (see Fig. 2) at an en-
ergy of 0.005 eV in the c.m. system.

of the potentials. The very striking damping ef-
fects due to the imaginary parts of the potentials
then become evident. From Fig. 35 it is seen that
the imaginary potential completely removes the
rapid oscillations due to the multipath interference
in the gerade mode of scatterings. The diffraction
interference at small angles remain, however,
unchanged.

In Fig. 36 a detailed comparison of the isotope
effects in the gerade and ungevade contributions
to the differential electron-detechment cross
section is given for set-C potentials. It is seen
that the detachment cross section is not signifi-
cantly affected by the isotope substitution. In this
comparison, the detachment cross sections for
the (H™, H) and (D—, D) systems are averaged over
the final-spin orientations as given, for example,
by Eqgs. (4.22) and (4. 23) for the (H—, H) system.
The nuclear-symmetry interference is seen to
appear for the (H™, H) and (D—, D) systems in both
the gerade and the ungerade contributions to the
detachment cross section. When the nuclear
symmetry is removed as in the (H™, D) system,
the interference structures disappear in both the
gevade and ungevade contributions.

Comparisons of isotope effects in the electron-
detachment and electron-transfer probabilities
are given in Figs. 37 and 38. It is seen that the
probabilities are not appreciably affected by the
enhancement in the differential cross sections
resulting from the isotope substitution.

The isotope effects of the scattering (or electron-
transfer) and electron-detachment cross sections
are given in Table II.
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TABLE II. Cross section (a,).
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Set-B and set-C potentials are given in Fig. 2.

, for example, given by Eq. (4.32) for the (H™,H) system.

, for example, given by Eqs. (4.38) and (4.39) for the

Calculated accounting to Eq. (4.31) with appropriate averaging over the nuclear-spin multiplicities such as

a
b
c

Calculated accounting to Eq. (4.37) with appropriate averaging over the nuclear-spin multiplicities such as

(H™, H) system.
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The empirical pseudopotential method is discussed and applied to a calculation of the spin-
exchange cross section in collisions of Na and Cs atoms. The difference between potential
energy curves for the lowest singlet and triplet states of the Na-Cs system is calculated by
the Heitler-London method, using a Hamiltonian in which the effects of tightly bound electrons
are replaced by a pseudopotential. Wave functions for the free atoms are found by numerical
integration using the pseudopotential, and agree well with the exact valence-electron func-
tions at large distances. The scattering phase shifts are calculated in the WKB approxima-
tion, and the cross section computed from them is averaged over a Boltzmann distribution
of relative velocities. At a temperature of 500 °K, the averaged reduced spin-exchange cross

section is 1.5 x 1071 e¢m?.

I. INTRODUCTION an one-electron system is reasonably legitimate,

since under usual circumstances the electrons in
the closed 1s, 2s, and 2p shells are inert. How-
ever, their presence greatly complicates calcula-
tions, because the wave function of the active, 3s
electron must be orthogonal to the wave functions
of electrons in closed shells, and consequently
must vary rapidly near a nucleus. It becomes
necessary to include core wave functions in many
calculations in which only the valence electrons
are of real interest. In the atomic interaction
problem, one must include the interaction between
the valence electrons on one atom and the core
electrons on the other. It is greatly desirable to
simplify such calculations by removing the core
electrons from the problem. This is accomplished

Knowledge of interatomic forces is of great im-
portance for many problems in astronomy, physics,
and chemistry. If the interacting atoms contain
only a few electrons, reasonably accurate calcu-
lations from first principles are possible. In the
case of heavy atoms, some simplifications must
be introduced. The objective of the present work
is to apply the pseudopotential method, which has
been extensively used in solid-state physics to the
calculation of the interactions of heavy atoms.
Substantial simplifications result. The method is
then applied to the interaction of Na and Cs atoms,
and, in particular, to the calculation of the spin-
exchange cross section.

The general concept of the pseudopotential meth-
od can be explained qualitatively with reference
to an example; to be specific, consider Na. Fre-
quently, one thinks of Na as an one electron atom
even though it contains 11 electrons. The idea of

by the pseudopotential.

To see how this is possible, we note that the
effect of the core electrons on the valence elec-
tron is repulsive. In Na, the energy of the low-
est state of the valence electron is -0. 378 Ry,



