Decays of ⁹⁵Zr and ⁹⁵Nb

S. M. BRAHMAVAR AND J. H. HAMILTON Department of Physics,* Vanderbilt University, Nashville, Tennessee 37203 (Received 15 May 1969)

The 95Zr-95Nb-95Mo decay chain has been investigated with a high-resolution 30-cm³ Ge(Li) detector and a Si(Li) detector and 4096-channel analyzer. The following γ rays were observed for a 95 Zr- 95 Nb equilibrium source (energies in keV and intensities in parentheses): 234.70 ± 0.14 (0.34 ± 0.03), 724.23 ± 0.04 (81.0 ± 1.0) , 756.74 \pm 0.04 (100), and 765.83 \pm 0.04 (218.0 \pm 3.0). β feedings of $(1.0\pm0.1)\%$, (44.2 \pm 0.5)%, and $(54.6\pm0.5)\%$ were calculated for the 234.7-, 724.2-, and 756.7-keV levels in ⁹⁵Nb. The K-conversion coefficients for the 724.2-, 756.7-, and 765.8-keV γ rays were measured by the NPG method to be (1.56 ± 0.14) ×10⁻³, (1.45 ± 0.15) ×10⁻³, and (1.32 ± 0.13) ×10⁻³, respectively.

INTRODUCTION

THE long-lived isotopes 95 Zr (65d) and 95 Nb (35d) L are produced as fission products and are useful in nondestructive analysis of burn-up in fuel elements. It is possible to determine the burn-up by measuring relative γ -ray intensities from different fission products. At the time our work was undertaken, even recent measurements^{1,2} in the decay chain of ${}^{95}Zr \rightarrow {}^{95}Nb \rightarrow$ ⁹⁵Mo exhibited wide discrepancies in the relative γ -ray intensities of the transitions observed. These γ -ray intensity measurements included external conversion studies at relatively poor resolution and Ge(Li) detector studies where the 756.7- and 765.8-keV transitions were not completely resolved. As the intensity ratio of the 724.2- and 756.7-keV transitions in the decay of ⁹⁵Zr is important in the calculation of burn-up in fuel elements, we have reinvestigated this decay chain with a high resolution, 30 cm³ lithium-drifted Ge(Li) detector and 4096-channel analyzer to obtain accurate γ -ray intensities.

With the large volume detector, we also have looked for a weak γ ray at 840 keV reported by Zarubin³ and a 763-keV transition reported by Eissa, Meligy, Farrash, and Girgis.² This later transition was seen rather prominantly in internal conversion spectra shown in Ref. 2. Conversion electron spectra were measured with a Si(Li) detector and K-conversion coefficients measured to clarify this report.² Since our work was completed,⁴ a new determination of the γ -ray intensities has been reported and these results⁵ are in agreement with our measurements.

EXPERIMENTAL PROCEDURE AND ANALYSIS

A fission-produced ⁹⁵Zr-⁹⁵Nb equilibrium source was obtained from Oak Ridge National Laboratory. Be-

* Work supported in part by the National Science Foundation.

L. Broman and S. Boreving, Arkiv Fysik 34, 259 (1967).
 N. A. Eissa, Z. Meligy, A. H. El Farrash, and S. Girgis, Acta

Phys. Acad. Sci. Hung. 23, 67 (1967).
 ³ P. P. Zarubin, Izv. Akad. Nauk. SSSR, Ser. Fiz. 18, 563

(1954). ⁴ S. M. Brahmavar and J. H. Hamilton, Bull. Am. Phys. Soc.

14, 552 (1969).
 ⁶ C. Foin, J. Oms, J. Blachot, and J. Crancon, Nucl. Phys. A123, 513 (1969).

187 1487

cause of the high affinity of zirconium for impurities, a careful search for possible source impurities as well as room background was made. A large volume 30-cm³ Ge(Li) detector and a 4096-channel analyzer were used in this investigation. The spectrometer was calibrated with the following calibration lines from sources of ⁵⁷Co, ²⁰³Hg. ²²Na, ¹³⁷Cs, ⁵⁴Mn, ⁸⁸Y, and ⁶⁰Co: 121.97 $\pm 0.05, 136.33 \pm 0.04, 279 \pm 0.02, 511.006 \pm 0.002, 661.604$ $\pm 0.047, 834.84 \pm 0.05, 897.98 \pm 0.05, 1173.22 \pm 0.03,$ 1274.54 ± 0.05 , and 1332.52 ± 0.03 keV.

FIG. 1. Typical γ -ray singles spectrum of a ${}^{95}\text{Zr}{}^{-95}\text{Nb}$ source taken with a 30-cm³ Ge(Li) detector.

For the energy and intensity measurements, several singles runs were taken for periods ranging 11-24 h separately as well as mixed with standard sources. The peak channel positions of the standard lines obtained from hand calculations as well as from a computer program⁶ agreed very well within 0.2 of a channel or better (≤ 0.05 keV). A computer least-squares fit to a third-order polynomial was performed for each of the runs. The constants thus obtained were used to obtain the energies of the γ -rays in the ${}^{95}\text{Zr} \rightarrow {}^{95}\text{Nb} \rightarrow {}^{95}\text{Mo}$ decay chain. The sets of data used in this analysis were collected under different experimental conditions to in-

⁶ A. C. Rester, A. V. Ramayya, and J. H. Hamilton, Bull. Am. Phys. Soc. 13, 1722 (1968).

		111 CO1 111			9 (a				
Ref. 2	Ref. 1	Energies (k Ref. 5	eV) Ref. 8	Ref. 9	Present work	Ref. 2	Intens Ref. 1	ities ^a Ref. 5	Present work
237.23 ± 0.41	≈235	235.6±0.5			234.70 ± 0.14	8.56 ± 0.52	<0.4	0.6 ± 0.2	$0.34{\pm}0.03$
726.38 ± 1.30	723 ± 1	$724{\pm}2$		724.24 ± 0.06	$724.23{\pm}0.04$	96.6 ± 5.8	77.6 ± 1.3	82.5 ± 1.6	$81.0{\pm}1.0$
757.1 ± 1.30	756土1	758±2		756.87 ± 0.09	$756.74{\pm}0.04$	100土17	100	100	100
762.5 ± 2.0						$7.7{\pm}1.7$			
765.6±1.8	765±1	76	55.83 ± 0.07	$765.84{\pm}0.05$	765.83 ± 0.04	$1000{\pm}270^{ m b}$			218土3
^a In the course of publ	ication, our atter	ntion was directed to ar	nother new meas	urement [see J. E.	^b It is difficult to u	inderstand this large value	e given by Eissa e	t al. (Ref. 2). Fro	om the data in Fig. 2,

a value more like 1:3 is obtained for the 722- and 766-keV transitions. This could be explained if there were a different normalization in Ref. 2 for the 757- and 766-keV transitions. Hiscott, Nucl. Sci. Abstracts **22**, 10 (1968)] of the intensities per decay of the 724.2- and 756.7-keV transitions of **43.5** and 54.5%, respectively. In that work, the 765.8-keV transition from the decay of ⁹⁶Nb was not completely resolved.

FIG. 2. Electron-conversion spectrum for a $^{95}\mathrm{Zr}\text{-}^{96}\mathrm{Nb}$ source with a Si(Li) detector. These data are corrected for γ background.

TABLE II. β branchings and log ft values for the levels in ⁹⁵Nb in the decay of ⁹⁵Zr.

β energy (keV)	β- Ref. 10	branching i Ref. 1	ntensity (Ref. 5	(%)ª Present work	log <i>ft</i> values Present work
364.3 396.8 886.3 1121.0	49 49 2	$55.543.10.5-1.00.4^{\rm b}$	$54.1 \\ 44.7 \\ 1.2$	54.6 ± 0.5 44.2 ± 0.5 1.0 ± 0.1	б.7 б.9 9.8 10.6 ^ь

^a In the course of publication, our attention was directed to another new measurement [see J. E. Hiscott, Nucl. Sci. Abstracts 22, 10 (1968)] of the intensities of the two lowest-energy β groups in the decay of $^{95}{\rm Zr}$ as 54.5 and 43.5%, for the 364.3- and 396.8-keV groups, respectively. $^{\rm b}$ Taken from Ref. 3.

1488

FIG. 3. Electron and γ -ray spectra taken with Si(Li) and Ge(Li) detectors for K-conversion coefficient measurements. The source was an equilibrium ⁹⁵Zr-⁹⁸Nb source with ¹³⁷Cs mixed into the source.

sure no systematic errors entered into the measurements.

For intensity measurements, the area under each peak was obtained first from an analysis by hand of the total number of counts by subtracting an appropriate average background which was nearly flat (see Fig. 1). The total number of counts in each of the peaks was also obtained by using a least-squares routine which fits each of the γ rays to a standard Gaussian shape and fits the background to an *n*th-order polynomial as demanded by the background variations for that particular peak. As a cross check on these two methods, the total number of counts in each peak were also obtained by computer-fitting the γ rays to the standard Gaussian shape and using the average background obtained in the first method by hand calculations. In three separate runs, the deviation from the average of the total number of counts obtained for each of the three strong peaks in all three methods was less than 1% for each individual peak, with two exceptions where it was $\lesssim 2.3\%$ out of the 27 areas determined. A careful calibration of the detector efficiency had been carried out in other work⁷ in this time and the results were used in the present work. A search was made for a highly converted 763-keV transition reported by Eissa et al.² A Si(Li) detector and a 4096-channel analyzer

were used in these studies. In the absence of sufficient resolution to resolve the reported² close-lying K lines of transitions of 763 and 766 keV, accurate measurement of the peak positions relative to that of the accurately known K line of the 757-keV transition was carried out. The Si(Li) detector and the 4096-analyzer system were operated with a spread of 0.36 keV per channel and a 24-h run of a ⁹⁵Zr+⁹⁵Nb was taken. A similar run for a period of 24-h under the same conditions was taken with a 3-mm-thick Al absorber to correct for the γ background. This system also was used to obtain the K-conversion coefficients of 724-, 757-, and 765-keV transitions by using the 662-keV line of ¹³⁷Ba as an internal conversion standard. The method used to measure the $\alpha_{\mathbf{K}}$ is the normalized electron peak to γ -peak method. A mixed source of ${}^{95}Zr + {}^{95}Nb$ and ¹³⁷Cs was used to obtain the relative conversion electron intensities from a 24-h run with the Si(Li) detector and 4096-channel analyzer. This run was followed up by a Al absorber run to correct for the γ background. Then this source was counted on a 30-cm³ Ge(Li) detector and 4096 analyzer system for 8 h to obtain the relative γ intensities.

RESULTS AND DISCUSSION

Accurate Energy and Intensity Measurements

A typical γ -ray spectrum in one of our singles runs is given in Fig. 1. The high resolution of our 30-cm³

⁷ D. J. McMillen, Ph.D. thesis, Vanderbilt University, 1969 (to be published).

Energy	Energy $\alpha_{\kappa} \times 10^3 \text{ (expt)}$		$\alpha_{\mathbf{K}} \times 10^3$ (theor) Sliv and Band ^a			Multipolarity	
(keV)	Ref. 2	Present work ^b	M1	E2	M4	assignment	
235	2350+2005	2210 + 270			2280		
724	1.28 ± 0.13	1.56 ± 0.14	1.32	1.42		E2(M1)	
757	1.42 ± 0.26	1.45 ± 0.15	1.19	1.29		E2(M1)	
766	1.26 ± 0.25	1.32 ± 0.13	1.29	1.30		M1-E2	

TABLE III. The K-conversion coefficient measurements for the 235-, 724-, 757-, and 766-keV γ rays. The first three are in ⁹⁵Nb, and the last transition is in ⁹⁵Mo.

^a S. H. Vegors, R. L. Heath, and W. Hammer (unpublished) cite the graph is of the K-conversion coefficients calculated by Sliv and Band.

 $^{\rm b}$ Normalized to a value of 0.0894 ± 0.0010 for the 662-keV transition in $^{137}{\rm Ba}.$

Ge(Li) enabled us to resolve completely the 756.7and 765.8-keV γ rays in contrast to the earlier work of Broman and Boreving¹ with a small Ge(Li) detector and that of Eissa et al.,2 where photoelectron lines were only partially resolved. The completely resolved lines make it possible to obtain more reliable and accurate values for the intensities as compared to results from partially resolved lines where one has to go through the process of stripping the two γ rays. The primary γ rays of interest in this work occur between 724 and 766 keV and hence, the uncertainty in the relative efficiency correction used to obtain relative intensities is reduced considerably. The average values of the energies and intensities obtained from all our sets of data are given in Table I. Table I also includes the results of other recent measurements^{1,2,5} on energies and intensities. Our energy measurements are in excellent agreement with those of Black and Heath⁸ and Legrand et al.⁹ The intensity ratio of the 724.2- and 756.7-keV transitions falls between the recently measured values of Broman and Boreving¹ and Eissa et al.² There is good agreement between our results and that of Foin et al.⁵ Our intensity on the 234.7-keV γ ray is within the upper limit set by Broman and Boreving¹ but is much smaller than that of Eissa et al.² The results of Foin et al.⁵ are somewhat higher than our results but their error limit is large.

Figure 2 shows the electron-intensity data corrected for γ background. The arrows indicate the peak locations which are separated by 8.10 ± 0.18 keV. This energy is in fact the difference in the K-conversion lines of the 756.74-keV transition in ⁹⁵Nb and the 765.83-keV transition in ⁹⁵Mo (binding energy difference of 1.01 keV). Hence, no evidence was found for the existence of a 763-keV transition. It is difficult to understand the reported data on a 763-keV transition. The transition observed may be an impurity but in any case the conversion coefficient reported does not seem to agree with the figure shown. No evidence was found for a reported³ 840-keV transition. Our upper limit for this transition is $I_{\gamma} < 0.02$. From our accurate intensity values, the β feedings and log *ft* values to the levels of ⁹⁵Nb in the decay of ⁹⁵Zr were obtained. These are given in Table II along with the results of the other studies.^{1,2,5,10} Our principal β branchings are in near agreement with the values of Broman and Boreving¹ and in excellent agreement with Foin *et al.*⁵ The intensity of the 886.3-keV β group to the 235.7-keV level in ⁹⁵Nb was obtained from our γ -ray intensity and an electron intensity calculated from the γ intensity and a theorectical total conversion coefficient ($\alpha_{\mathbf{K}} + \alpha_{\mathbf{L}} + 1.3\alpha_{\mathbf{M}} = 2.9$). There is good agreement on the β feeding of this level as reported here and by Foin *et al.*⁵

K-Conversion Coefficient Measurements

The data taken in these measurements are shown in Fig. 3. The areas under the peaks were measured with a planimeter and were used in the calculations of $\alpha_{\rm K}$ with proper efficiency corrections. The value¹¹ of 0.0894±0.0010 was used for the $\alpha_{\rm K}$ standard of the 662-keV γ -ray in ¹³⁷Ba. The calculated $\alpha_{\rm K}$ values for

FIG. 4. Decay schemes of ${}^{95}\text{Zr}+{}^{95}\text{Nb}$ based on the present work. Intensities of the β groups to the ground state were taken from Refs. 3 and 12. Other information on the decay of ${}^{95}\text{Nb}$ is found in Ref. 13.

¹⁰ C. M. Lederer, J. M. Hollander, and I. Perlman, in *Table of Isotopes* (John Wiley & Sons, Inc., New York, 1967), 6th ed. ¹¹ J. S. Merritt and J. G. V. Taylor, Anal. Chem. **37**, 351 (1965).

⁸ W. W. Black and R. L. Heath, Nucl. Phys. A90, 650 (1967). ⁹ J. Legrand, J. P. Boulanger, and J. P. Brethon, Nucl. Phys. A107, 177 (1968).

the 235-, 724-, 757-, and 766-keV transitions are given in Table III together with internal-external conversion measurements of Eissa et al.2 The theoretical values of $\alpha_{\mathcal{K}}$ given in Table III help us to make the multipolarity assignments for the three transitions.

Decay Schemes

Figure 4 shows the ⁹⁵Zr→⁹⁵Nb→⁹⁵Mo decay chain based on the present investigation. The intensities of β groups to the ground states were taken from Refs. 3 and 12, and other information on the decay of ⁹⁵Nb was taken from Ref. 13. The precise value of energies obtained in this work could serve as additional calibration standards for routine calibration of solid state spectrometers and the accurate value of the intensity ratio of the 724.2- and 756.7-keV transitions is useful in the calculation of burn-up in fuel elements.

¹² L. M. Langer and D. E. Wortman, Phys. Rev. 132, 324 (1963). ¹³ L. B. Church, A. Gaigalas, R. B. Sutton, R. E. Coté, S. Rabov, and C. C. Trail, Phys. Rev. **142**, 690 (1966).

PHYSICAL REVIEW

VOLUME 187, NUMBER 4

20 NOVEMBER 1969

208 Pb(3 He, α) 207 Pb Reaction at 47.5 MeV*

G. R. SATCHLER

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

AND

W. C. PARKINSON

University of Michigan, Ann Arbor, Michigan 48104

AND

D. L. HENDRIE

Lawrence Radiation Laboratory, University of California, Berkeley, California 94720 (Received 1 April 1969)

The absolute differential cross sections for the six lowest-lying levels of 207Pb excited by the ²⁰⁸Pb (³He, α)²⁰⁷Pb reaction have been measured for 47.5-MeV incident energy. A distorted-wave analysis yields relative spectroscopic factors which are apparently not in good agreement with those obtained from the (d, t) reaction. Transitions with large l transfer are strongly favored over those with small l. Further, the theoretical predictions for small l are sensitive to the treatment of the contributions from the nuclear interior. The precise value of l is not easily determined from angular-distribution measurements at this bombarding energy.

I. INTRODUCTION

 ${f B}^{
m ECAUSE}$ of shell closure for both neutrons and protons, $^{208}{
m Pb}$ is a good nucleus for investigation of shell-model states via a single-nucleon-transfer reaction. Results from the ${}^{208}Pb(d, t){}^{207}Pb$ reaction^{1,2} indicate the usefulness of the shell-model description despite the evidence for core-excitation contributions which was obtained from recent measurements³ on the ²⁰⁷Pb(p, p') reaction. Although the (³He, α) reaction has also been used for single-nucleon pickup, it is relatively unexplored for heavier nuclei and at higher bombarding energies. It is, therefore, of some interest to directly compare the results of the two reactions in the lead region. The 208 Pb(3 He, α) reaction has also

been measured recently⁴ at the lower energy of 28 MeV, and we shall compare the results from the two energies.

The (³He, α) data were collected simultaneously with the ³He elastic and inelastic scattering data described in Ref. 2, minimizing the systematic errors to be expected in comparing the two experiments. Since the experimental details were fully described in that paper, only a brief summary is presented here. An energyanalyzed 47.5-MeV ³He beam from the Berkelev 88-in. cyclotron was directed through a thin self-supporting ²⁰³Pb metallic foil and collected in a Faraday cup. Outgoing particles were detected in two cooled Si(Li) counter telescopes. ³He and α particles were separated by a Goulding-Landis particle identifier⁵ and stored in separate groups of a 4096-channel analyzer. Although the statistical uncertainties are rather large, the lack of background counts and large separation between peaks made the data analysis quite unambiguous.

^{*} Research sponsored in part by the U.S. Atomic Energy Commission under contract with the Union Carbide Corporation. ¹ P. Mukerjee and B. Cohen, Phys. Rev. 127, 1284 (1962);
⁶ G. Muehllenehner, A. S. Poltorak, W. C. Parkinson, and R. H. Bassel, *ibid*. 159, 1039 (1967).
² W. C. Parkinson, D. L. Hendrie, H. H. Duhm, J. Mahoney, J. Saundinos, and G. R. Satchler, Phys. Rev. 178, 1976 (1969).
³ C. Glashausser, B. G. Harvey, D. L. Hendrie, J. Mahoney, E. A. McClatchie, and J. Saundinos, Phys. Rev. Letters 21, 918 (1968).

^{(1968).}

⁴ W. P. Alford and D. Burke (unpublished).

⁵ F. S. Goulding, D. A. Landis, J. Cerny, and R. H. Pehl, IEEE Trans. Nucl. Sci. **NS-13**, 514 (1966); Nucl. Instr. Methods 31, 1 (1964).