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where E;„t, is the excitation energy of the intermediate
state in the pp diagram and E;„&'is the excitation energy
of the same particles in the ph diagram. We would have
(85a) = (85b) if Ep-» —— Ep a—nd E;„»'=E;„».Although
these conditions do not hoM in general, we will have

Ep—Hp= (Ep—Hp)' (86)

which can also be written as a transform of the contri-
bution (B2a,) of diagram (a) of Fig. 4 to the pp inter-

under the condition that we have described as high-

lyieg, that is, if each of the energy denominators is
larger than the variation in EI, or E; t,.

Finally, we find that the ph interaction energy con-
tributed by Fig. 4(b) may be written

action energy, following (Ag):

Ez(jk '; I) = —g LJjW( jtekj; IJ)ED(jk; J). (88)

This completes the proof of the theorem that high-lyieg
diagrams contribute to the coeservieg valence effective
interaction 'U, LEqs. (1.5) and (1.6)j.

If the diagram (a) of Fig. 4 has vertices tp and tp

interchanged, then there will be two particle lines
between tp and tp T.hen the "Pauli-correction" (dis-
connected) diagram appears for the pp case, and the
roles of pp and ph are interchanged in the above proof.

Finally, we note that the restriction that the particle
operators A; and 8, must appear owly once each is not
necessary for the proof, since these operators are con-
tained in T", and do not change in the ph transforma-
tion. This implies that our definition of high-lying terms
is somewhat more restrictive than necessary. This has
no practical effect on the calculation of the ~iolaHeg
contributions, however, since conserving terms would
cancel in (2.15).
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The properties of Li' and deuteron —a-particle scattering are studied in an exact three-particle model in
which the neutron, proton, and n particle interact through separable two-body forces. The ce particle is
assumed to be structureless, and Coulomb eRects are neglected. As a representation of the nucleon —n-particle
interaction, a three-term separable potential 6t to low-energy neutron —~-particle scattering is introduced in
the partial waves s1I2, paf2, and p1f2. The s1f2 interaction is taken to be repulsive, while the other two are attrac-
tive. The three-body formalism of Amado is generalized to allow spin-dependent two-body interactions in an
arbitrary partial wave. Numerical solution of the resulting three-body equations gives the binding energies
of the T=0 and T= 1 states of Li6 as well as phase shifts, angular distributions, and deuteron polarization in
d-o, scattering, and also the total cross section for d+0I.—+n+p+a. up to 30 MeV. Most of the calculations
have used only an s-wave n-p interaction, but a limited number have been done with the d state of the
deuteron included in order to assess its importance. Given the assumptions of the model, the agreement of the
calculated quantities with experiment is very good. Some discussion of the results with respect to phe-
nomenological optical-model its to deuteron-nucleus scattering is also given.

I. INTRODUCTION

N recent years, considerable progress has been made
. in understanding the three-nucleon system by the

use of the separable approximation in equations of the
Faddeev type. ' In this approximation a small number of
separable two-body amplitudes are adjusted to fit low-

energy nucleon-nucleon scattering and these amplitudes
are subsequently used as input in some form of three-
body equation. Numerical solution of these equations

* Research supported in part by the National Science Founda-
tion under the University Science Development Program and by
the U.S. Atomic Energy Commission.' For a review, see Three Particle Scattering in Qgantum Me-
chanics, edited by J. Gillespie and J. Nuttall (W. A. Benjamin,
Inc., New York, 1968).

has yielded results in rather good agreement with
experiment but the complexity of the nucleon-nucleon
interaction and complications cf spin have prevented a
really complete calculation from being carried out. What
has been learned from this work is that one may success-
fully employ quite simple two-body interactions if three-
body effects are treated exactly. In this paper we carry
out a similar analysis' for a system consisting of a neu-
tron, proton, and n particle. The spinless nature of the
o. particle reduces somewhat the complications which
hamper a complete treatment of the problem of three
nucleons.

2 A short account of this work appeared in P. E.Shanley, Phys.
Rev. Letters 21, 627 (1968).
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The model of the six-nucleon system is constructed
by assuming that the neutron, proton, and n particle
are elementary particles interacting pairwise through
separable potentials. The large binding energy of the
0. particle and its lack of low-energy excited states are
taken as evidence that, in its low-energy interaction
with nucleons, the 0. particle may be regarded as an
elementary point particle with no internal structure,
although some account of the exclusion principle is
included in the nucleon-o. interaction. The quantities
that are calculated from the three-body model are the
binding energies of the 1 =0 and X= 1 states of I.i' as
well as the phase shifts, angular distributions, and
deuteron polarization in d-n scattering and also the
total cross section for d+n~e+p+a up to 30 MeV.

The analysis of d-0. scattering carried out here may
have some bearing on the optical-model analysis of
deuteron-nucleus scattering. Recent measurements of
deuteron polarization in deuteron-nucleus elastic scat-
tering' have led to the use of various kinds of spin-
dependent optical potentials in an attempt to fj.t the
experimental data. The form of the optical potentials
is based on general invariance arguments4 and the origin
of these interactions in terms of the more fundamental
spin dependence of the nucleon-nucleus or neutron-
proton interaction is not clear. The present model allows
one to study the deuteron cross sections and polariza-
tion that result from various assumptions concerning the
spin dependence of the two-body interactions, for
example, a neutron-proton tensor force. This is discussed
in Sec. IV.

There is considerable previous evidence that the six-
nucleon system may be viewed approximately in terms
of three particles. Such models have been considered by
Hackman and Austern' in a variational approach and
by Gammel, Hill, and Thaler in a distortionless approxi-
mation for d-o; scattering. The ground states of He' and
Li' have been studied7 in separable potential models
similar to the present work. In addition, studies have
been based on the resonating-group method, ' the shell

Z, cr
k, +k~

FlG. 1. Basic two-particle vertex employed in the theory.

' P. Schwandt and W. Haeberli, Nucl. Phys. A123, 401 (1969).
4 G. R. Satchler, Nucl. Phys. 21, 116 (1960).' P. H. Wackman and N. Austern, Nucl. Phys. 30, 529 (1962);

see also B.Barsella, L. Lovitch, and S. Rosati, Nucl. Phys. A117,
638 (1968).' J. L. Gammel, B.J. Hill, and R. M. Thaler, Phys. Rev. 119,
267 (1960).

'H. Hebach, P. Henneberg, and H. Kummel, Phys. Letters
24B, 134 (1967); V. A. Alessandrini, D. Avalos, L. Epele, H.
Fanchiotti, C. A. Garcia Canal, and M. A. Gregorio, ibid. 298,
83 (1969).' D. R. Thompson and Y. C. Tang, Phys. Rev. 179,~971 (1969).
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FIG. 2. Two-body elastic scattering graph showing
the associated orbital angular momenta and spins.

model, ' and an approximate three-body approach"
based on dispersion theory. Comparison of results with
some of this previous work is carried out in Sec. IV.

The three-body formalism used in this paper is one
introduced by Amado. " The necessary generalization
of his method for the problem at hand is given in Sec. II.
Section III contains the details of the necessary two-
body scattering amplitudes and a discussion of the three-
body equations for the six-nucleon problem, their
solution, and the results. A summary and discussion is
given in Sec. IV. Two appendices deal with the calcula-
tion of Born amplitudes and the inclusion of the e-p
tensor force.

II. THEORY

In this section we will present an extension of Amado's
quasiparticle method that is general enough to permit
spin-dependent two-body interactions in an arbitrary
partial wave. For the six-nucleon problem this generali-
zation will be required in the E-a subsystem where both
s and p waves will be employed and also in the e-p
subsystem for the inclusion of the deuteron d state. We
will present here a quite general formulation which will
be specialized for the six-nucleon problem in Sec. III. In
the Amado formalism one assumes that two-body
scattering is dominated by a bound state or quasi-
particle and proceeds by nonrelativistic Lee-model
interactions. This leads to a separable two-body scatter-
ing amplitude. Three-particle scattering consists of a
bound state or quasiparticle scattering from the remain-
ing third particle. In a second-quantized formalism one
requires an interaction Hamiltonian that allows the
basic three-point interaction depicted in Fig. 1. Here
particle 1 with mass nz&, spin s&, and projection 0&

interacts with particle 2 of mass m2 and spin quantum
numbers s2, o-2 in a relative orbital angular momentum
state ), p, to form a quasiparticle of mass M and spin Z,
s-component o, and parity (—1)".A suitable Hamil-
tonian is

&r= Q I'~.-'f~; (q) I'e*(j) (szogsao~
~

so )(Apso
~

Zo )
q, Q

X%'z.(Q)+„.,'[(m&/M) Q+q]+„.,'[(m /M) Q —
elj

+h.c., (1)

9 See, for example, S. Cohen and D. Kurath, Nucl. Phys. 73, 1
(1965).' P. M. Fishbane and J.V. Noble, Phys. Rev. 171, 1150 (1968).

~' R. D. Amado, Phys. Rev. 132, 485 (1963).
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c (rI c + g C (T) C

where

FIG. 3. Pictorial representation of coupled-channel
integral equations.

q = (m2k1 —m1k2) /3II,

cV= m1+m2.

Q =k1+k2,

The sum is also over all discrete quantum numbers.
The Clebsch-Gordan coefficients indicate the sequence
of angular momentum coupling. s~ and s2 couple to the
total spin 8 which is then coupled with the orbital
angular momentum X to give the quasiparticle spin Z.
The 0't and 4' create and annihilate particles of given
spin and momentum and they commute or anticom-
mute for particles with integral or half-integral spin,
respectively. I'1p and f1@are the coupling consta, nt and
form factor associated with the vertex and are chosen to
6t two-body bound-state and scattering data.

Given an interaction governed by Eq. (1), the most
general form of two-body elastic scattering amplitude is
shown graphically in Fig. 2. Here we have combined
two of the above vertices and the cross-hatched internal
line indicates that all bubble insertions have been
summed in the intermediate state. The form of this
two-body amplitude may be obtained from the Hamil-
tonian (1) and the calculation is most naturally done in
a representation in which the spins of the individual
particles are specified. In the center-of-mass system we

obtain

(s1o1, s2O2, k
I t(E) I

s1o1", S~O2,' k')

=g I „-f„; (k),(E)1"„.;.'f, .;.*(k') IT '(lc) I' ~ '(k')

x ($1o1$2o'2
I
so ) (l1t1so

I
+o )

x (s101 $202 I
s'1T') (l'p's'~

I
&1T). (3)

The sum is over ), p, X', p, ', 8, a., 8', 0', &, and 0. The
quasiparticle spin Z plays the role of the total angular
momentum, since the interaction must proceed through
this state. The function rq is the intermediate-state
propagator and its precise form will be given later.

It is more convenient to work. in a representation in
which the total spin or channel spin is specified and the
amplitude in this representation is obtained by adding
the initial and 6nal spins in Eq. (3). In terms of the
initial and final channel spins S and S' we have

(S, S.; k
I t(E) I

S', S,'; k')

(s,o,s,o,
I
SS,)(s,o1's,o

I
S'S,')

O.yO 20 y~O g~

X ($1IT1) $2(TQP k
I
t(E)

I
s1o.1',s2O.2 i k )

r»~f»'(u) ..(Z) r, .s'j, .s s(~')
h.p, h ~pI, Zo

x IT11'*(ft;) I'1,.&'(k') (l1t1ss, I
zo)(l1't1's's, '

I
zo) (5)

from which the partial-wave amplitude may be ex-

m2k' —m1 (k—k')
q=

m1+ m2

—~k—m3(k —k')
q'=

m2+m3

D(k k' 8) =E—k'/2m' —k "/2m1 —(k—k') '/2m, (8)
and the sum is over o.~, 5, 0., 8', O', X, p, X', and p'. As in
the two-body case we want this amplitude in a channel
spin representation which we obtain by adding spins
in the initial and final states

(S, S„k I
J3„.(E) I

S', S,'; k')

(zo$3oa I ss, ) (&'o'$1O.1 I
s's, ')

0010103

X (Zo; s,o; k
I
8-' (E) I

Z'o.'; s1o1,.k'). (9)

S),o)

-k

FIG. 4. Graph for three-body Born term involving the
exchange of particle 2.

tracted

t», 1 s""(&, &'; &) = I'1s'as'(&) Tz(&) I'1 s 'f1 s'(&').
(6)

This amplitude has the expected separability in initial
and final momenta and is suitable for 6tting two-body
data as will be discussed further in Sec. III.

We now move on to the three-body sector. In the
Amado formalism, the three-body equations have the
form of multichannel Lippmann-Schwinger equations
for particle-quasiparticle scattering. If we let c represent
a partition of the initial three-particle state into a given
particle-quasiparticle configuration as well as all other
quantum numbers necessary to specify this state, then
the transition amplitude between two such channels
T„satisfies a set of coupled integral equations shown
pictorially in Fig. 3.The "potential" for these equations
is the single-particle exchange or Born amplitude which
is quite complicated if spin-dependent vertices are
present. The most general type of Born term required. is
pictured in Fig. 4 with all spin labels shown. Here we
are considering a reaction between distinguishable
particles of the form (1+2)+3~1+(2+3) which
proceeds in lowest order by exchanging particle 2. If
k and k' are the initial and final center-of-mass momenta
and E is the total energy, then the Born amplitude for
this process may be calculated in second-order pertur-
bation theory with the Hamiltonian given in Eq. (1).
The result is

(Zo; s, , ; k
I
~„.(Z) I

Z' '; s,~„k')
=g($1o'1$2o2

I so) (~t1so
I
Zo) (s,o9$3o3

I
s o )

X (X't1's'o'
I

Z'o')I')@f1„-s(1t)D '(k, O'; E)
I'1,"-"f1 '(1t') I'1"(i) I'1"'*(1I') (&)

where
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The channel spin amplitude can be decomposed into
partial waves as follows:

(S, S„k
i B„(E)i

S', S.'; &')

TABLE I. Parameters for nucleon-o! interaction. Units are
2&e/v =A' = 1, es (deuteron binding energy) = -', .

(ASS. j
J3f)(t'm'S'S. '

~
JM)

lml, /m/, JM

XB,ts„.(.s.&~&(k, O'; E) FP*(A) I'( "'(A,"), (10)

158.1
500.0
173.2

1.6185
2.4512
1.8364

where l and l' are the angular momenta of the quasi-
particle relative to the third particle in the initial and
final state and J is the total angular momentum. In this
partial-wave representation the Born term and also the
T-matrix elements have no depend. ence on magnetic
quantum numbers and the three-body integral equa-
tions have the form

&a/s, ; vs '"(&, &; E) =A~s, c i s '" (&, &; E)+
(2m) '

c//(//g// 0

I'd/sTcrs, c"/, siii~i(/s, I; E)r, (n; E)

III. Li AND d-a SCATTERING

A. Two-Body Subsystems

In this section we give the separable potential
parameterization used in the calculation of the bound-
state energies of Li, both T=O and T=1 levels, and
the corresponding T=O continuum problem which is
deuteron-n scattering. If we assume isospin conservation
then the isospin of the three-body system is just that
of the e-p pair and the resulting 7=0 and T= 1 three-
body problems are uncoupled and may be treated
separately.

For the isospin zero I-p interaction a complete set of
calculations has been performed with an s-wave inter-
action using the Vamaguchi parameters" that Gt the
deuteron binding energy and the triplet scattering
length. In addition to this a few calculations have been
done in which the d state of the deuteron has been
included in order to assess the importance of this inter-

"Y. Yamaguchi, Phys. Rev. 95, 1628 (1954).

Here, ~, is the two-body propagator but now in the
three-body space. This function is diagonal in all
discrete quantum numbers and a scalar function of n
and therefore requires no partial-wave analysis. In Eq.
(11) all intermediate states c'V'S" that conserve total
angular momentum J and parity are summed. The
calculation of the explicit form of the Born amplitudes
is discussed in Appendix A. Although the above in-
tegral equation is one dimensional, the limiting factor
in its numerical solution is the number of coupled
channels involved, which in turn depends on the
complexity of the two-body interactions. This equation
is applied to Li' and deuteron-n scattering in the next
section.

action. The e-p parameters used for this purpose are
those given by Phillips" and are arranged to fit the
quadrupole moment and percent d state, in addition to
the binding energy and scattering length. For the iso-
spin one e-p system, a single attractive s-wave inter-
action has been used which Gts the singlet scattering
length and effective range. We speak of the e-p inter-
action as proceeding through the d if T=O and through
the Q if T= 1.

Experimental studies of low-energy nucleon-n scatter-
ing have been quite extensive and the phase shifts in the
low partial waves are known'4 and give a basis for 6tting
effective nucleon-n potentials to the scattering data.
At energies below about 10 MeV, the scattering is
dominated by s and p waves and the d-wave phase
shifts are a few degrees in magnitude and may be safely
neglected. Since we have spin-~ —spin-0 scattering, there
will generally be two values of J for each / and we must
include interactions in the states sr/s Ps/s and Pr/s.
Rather than the usual procedure of introducing separate
central and spin-orbit potentials, we choose to fit the
phase shift in each of these partial waves directly with a
separable interaction. In the quasiparticle language one
introduces three quasiparticles Pz~ with the charge-
independent coupling gqs~N+n We have t. hree possi-
bilities for (X, Z), namely, (0, —',), (1, —',), and (1, s),
and F denotes a neutron or proton. Low-energy
neutron-u scattering is dominated by a ps/s resonance at
1.3 MeV and by a broad p&/s level several MeV higher in

energy whereas the experimental s~~~ phase shift
resembles one that would occur in potential scattering
for a system with one bound state present. However,
the E-n interaction in this partial wave is governed by
the Pauli exclusion principle which forbids another
nucleon in the closed 1s shell of the n particle. Other
studies" of this problem have shown that the exclusion
principle has the eGect of introducing a repulsive
barrier at small distances. We take a similar view and
introduce a simple repulsive separable interaction in
this partial wave in an attempt to simulate the exclusion
principle. Alternatively, one could Gt the s&p phase shift
quite well with an interaction attractive enough to
produce one bound state. However, such an interaction
would have the unacceptable features of producing too
many bound states in Li' as well as a spurious stripping

's A. C. Phillips, Nucl. Phys. A107, 209 (1968).
'4 See, for example, B. Hoop, Jr., and H. H. Barschall, Nucl.

Phys. 83, 65 (1966) .
~ P. Swan, Ann. Phys. (N. Y.) 48, 455 (1968);D. R. Thomp-

son, I. Reichstein, W. McClure, and Y. C. Tang (to be pub-
lished. )
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(12), to fit the resonance position and width and still
maintain the phase shift at the experimental values
at higher energy. In this circumstance, fitting the lower
energies was given priority. Also, the s&/2 phase shift
resulting from the repulsive potential returns to zero at
higher energies while the experimental one seems to
approach —x in agreement with a modified Levinson's
theorem given by Swan. " These shortcomings of the
separable fits do not have much eQ'ect on the total
cross section which is shown in Fig. 5(b). Here it is
apparent that the p3t2 resonance completely dominates
the low-energy scattering and that the discrepancies in
the phase-shift fitting are of little consequence in the
total cross section.

45

0 2 4 6.. 8 IO 12 I4
En (Mev)

Fio. 5. Comparison of separable potential results (solid curve)
and experimental neutron-~ scattering (broken curve) for (a)
elastic phase shifts and (b) total cross section. The experi-
mental d, /2 phase shift is from Ref. 14. All other experimental
curves represent the data analysis of Ref. 1b.

channel in d-n scattering. We have chosen the two-body
E-0/ separable form factors to have the functional form

f Z(P) PX/P2y(t' Z)2jk+1 (12)

We have suppressed spin indices since here the total
spin may only be -', . In each partial wave we have two
parameters to fix, the coupling constant F),~ and the
range parameter Pz~. On the energy shell, the two-body
amplitudes are related to the phase shifts by (2m& ——1,
fP= 1)

tgit~& &(k) =$Fg fj, (k)]'rx(E)
=—/16m'(1+n)/ka] exp(ibg') sining,

Z= P(1+a)/njk', n=nz. /m~. (13)

The propagator r~(E) has the form

1 " e'dnL1'PfP(e)]'
(2-)' .&—t-(1+-)/-j"+ ~

rz —& 1W

The upper and lower signs are chosen for repulsive and
attractive interactions, respectively. The basis used for
fitting the experimental data was an effective range
analysis of low-energy e-n scattering carried out by
Pearce and Swan. "The resulting potential parameters
are given in Table I and the quality of the resultant fits
may be seen in Fig. 5(a) where we compare the separ-
able results with the Pearce and Swan phase shifts
which represent the experimental data. In the p waves
it is not possible, with the form factors given in Eq.

1' W. A. Pearce and P. Swan, Nucl. Phys. 78, 433 (1966).

TAm, E II. Possible values of clS coupled to a total angular
momentum and parity J"for some low partial waves.

d~(Z =0) (r= 1) Xp»2 %PI'" +p 1/2

0+
1+
2+
3+
0
1
2

01, 21
21
21, 41
11
11
11 31

00

20

10

00
01, 21
20, 21
21, 41
11
10, 11
ii 31

11
11 12 32
11, 12, 31, 32
12, 31, 32, 52
22
01, 21, 22
02, 21, 22, 42

11
10, 11
11 31
30, 31
00
01, 21
20, 21

"P.Swan, Proc. Roy. Soc. (London) A228, 10 (1955).

B. Three-Body Equations

Having fixed all of the two-body interactions we are
now in a position to solve the coupled three-body equa-
tions given in Eq. (11).We first indicate the extent of
the channel couplings involved. We must evaluate all
partial-wave T-matrix elements T,~q, ./. 8.(~&, where c
indicates the partition of the initial state into a quasi-
particle-particle pair and 1 and 5 denote the relative
orbital angular momentum and channel spin of that
pair, and the primed indices refer to the final state. We
let c=1 denote the state dn or gn for T=O and T= 1,
respectively, and let c=2, 3, and 4 stand for the three
states Nj9"' involving the quasiparticles p&,

x coupled to
nucleon plus u. To study d-o scattering we set c= 1 for
given / and 5 and we must include all final states cV5'
that conserve total angular momentum J and parity, as
well as sum over all possible intermediate states c"l"5".
Table II lists the resulting coupled channels in some low
partial waves for the T=O (dn) and T=1 (gn) cases.
For large J there are nine amplitudes if /= J and 10 if
/= J~1 in the d-n case and there are generally nine
amplitudes in the Pn system. In d-a scattering, only
those amplitudes that couple dn to da (@=1and c'= 1)
are physical amplitudes. The amplitudes for d+n~
N+t' (c= 1, c'= 2, 3, 4) are included only for the pur-
pose of introducing N/' intermediate states and do not
represent physical amplitudes for d+n-N+t', since g
is unstable. To study such processes one would have to
calculate the full breakup amplitude for d+n-+m+ p+a.



187 MODEL OF Li" AND d-o. SCATTERING 1333

In the T=1 case, the quasiparticle P is also unstable,
but here we are only interested in the Fredholm deter-
minant of the equation and not in any scattering ampli-
tude. A zero of this determinant below the three-body
threshold would indicate a T= 1 bound state in Li'.

In the present formalism one can see from Eq. (11)
that the Born function B."&"&-,. & & plays the role of a
multichannel potential which couples the three-body
partial wave channels to one another. In the most com-
plicated case considered above, the Born function is a
10X10 matrix in the discrete indices and since this
function involves the coupling of many angular mo-
menta, its evaluation places an upper limit on the feasi-
bility of a given three-body calculation. For the present
problem there are two classes of Born terms to consider:
one for the stripping process (d or g)+n +X—+P and
one representing the a exchange reaction p+P~+P.
The evaluation of these amplitudes is discussed in

Appendix A.

C. Results
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We will first discuss the T=0 bound state calculations.
These have been performed with e-p forces containing
0, 4, and 7 percent d-state probability. In all calculations
the E-n interaction is that given in Table I. For the
three e-p interactions we find only one three-body T=0
bound state with total angular momentum J= 1+ which
corresponds to the ground state of Li'. The resulting
binding energies are given in Table III.' As is usual in
such systems, the inclusion of the d state decreases the
binding energy although it is a small eGect. ' We
should also make allowance for the Coulomb energy of
the ground state which is about 1.0 MeV. ' Since Cou-
lomb effects have been neglected we should expect too
Inuch binding by 1.0 MeV. Instead we find too little
binding by ~0.3 MeV. In trying to assess the origin of
this discrepancy one wouM expect that the most un-
certain feature of the two-body interactions employed is
the repulsive s-wave E-n interaction. To what extent the
exclusion principle can be simulated by a repulsive
interaction of the form we have chosen is uncertain but
the sensitivity of the ground-state binding energy may
be seen by noting that a fit to the experimental Li
energy, including the Coulomb correction, requires a

TABLE III. Binding energy of Li for three e-p interactions.

% d state

Binding
energy
(Mev)

0

7
Experimental

3.350
3.253
3.164
3.697

"The experimental levels are from T. Lauritsen and F. Ajzen-
berg-Selove, Nucl. Phys. V8, 1 (1966).' With a simpler 37-cx interaction Alessandrini et al. (Ref. 7)
find that the tensor force increases the Li' ground-state binding
energy.
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FIG. 6. Theoretical (solid line) and experimental d-n real phase
shifts for allowed values of Iq versus energy. For each I., the
larger theoretical phase shifts have the larger J. The experimen-
tal points are from Ref. 23 below 10 MeV and from Ref. 25 above.
The open circle, closed circle, and triangle represent J=/+1, l,
and l —1, respectively.

reduction of the s-wave S-o. coupling constant by a fac-
tor of 3.Thus the binding energy is not very sensitive to
the strength of the s-wave E-o. interaction and the
ground-state binding comes mainly from the p-wave
attraction.

For the case of T= 1, two levels are found with the
interactions speciied above. A J=O+ bound state is
obtained at an energy of 3.59 MeV relative to the
ground state. In addition to this, a continuum state is
found above the three-particle threshold with the
quantum numbers J=2+ at an energy of 4.97 MeV. At
this energy the real part of the Fredholm determinant
vanishes, indicating the presence of a three-particle
resonance. Since it is not feasible to search for the
position of the pole of the amplitude in the energy plane,
no estimate of the width of this state has been obtained.
As a check on the interpretation of this zero as a three-
particle resonance, it was observed that the level moves
down in energy and becomes a bound state if the X-n
interaction is artificially made more attractive. In the
other T= 1 partial waves there is little attraction and no
other levels are present up to 10-MeU excitation.
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A point of some interest in spin zero-spin one scatter-
ing is the amount of / nonconservation present in partial
waves with /= 1+1.In our model of d-cx scattering there
is considerable coupling between the partial waves '5»
and 'D» and above the breakup threshold there is in-
elasticity as well and one would like a general and con-
venient way of parametrizing the 5 matrix under these
conditions. Amdt" has recently given a six-parameter
representation which is general, consistent with uni-
tarity, and reduces to the Stapp nuclear-bar phase
shifts'4 in the absence of inelasticity. In d-n scattering
for J=1+, the 5-matrix elements 5~~' ) are related to
the Amdt parameters by

0.4-
0.2—
o'ow & /

-0.4—

IO 15 20 25
. Ed (MeV)

FIG. 13. Theoretical and experimental first- and second-rank
deuteron tensor polarization versus energy at a center-of-mass
angle of 104'. See Ref. 30.

twice the experimental value" of 0.551 MeV. In view of
the uncertainties of the R-matrix analysis, this may be
considered reasonable agreement. A diagram is shown
in Fig. 9 comparing all the theoretical and experimental
T= 0 and T= 1 low-lying levels of I.i',

The theoretical results may also be judged by com-
paring them with experimental angular distributions
and polarization. In order to do so Coulomb eBeets
have been included in the usual procedure'" for com-
bining nuclear and Coulomb amplitudes. Figures 10
and 11 give a comparison of differential cross sections.
At the lower energies the agreement is good but there
are some deviations at 20 MeV, 28 particularly at large
angles. The theoretical results for the first- and second-
rank deuteron polarization'9 are compared with experi-
ment" as a function of energy in Figs. 12 and 13 for
center-of-mass angles of 66' and 104'. As for the diGer-
ential cross section, the agreement tends to be better at
smaller scattering angles. The total deuteron breakup
cross section is also available theoretically and is shown
in Fig. 14 as a function of energy. The agreement with
the available experimental data"" is satisfactory.

Considering the approximations inherent in the
model, the agreement with many diverse experimental
results is quite satisfying and tends to confirm the
experimental phase shift results which are not without
uncertainty, particularly at higher energy.

"P. E. Hodgson, Advan. Phys. 15, 329 (1966}.
'SThe experimental points are the 21.0-MeV data of H. W.

Broek and J. L. Yntema, Phys. Rev. 135, 8678 (1964}."The notation is that of %.Lakin, Phys. Rev. 98, 139 (1955).
'o The(iT») data are from A. Trier and W. Haeberli, Phys.

Rev. Letters 18, 915 (1967); the remaining data are from Ref. 23.
3' G. G. Ohlsen and P. G. Young, Phys. Rev. 136, B1632 (1964) .
32 J. C. Allred, D. K. Froman, A. M. Hudson, and L. Rosen,

Phys. Rev. 82, 786 (1951).
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FIG. 14. Theoretical and experimental reaction cross sections
versus energy. The open circles are from Ref. 31 and the closed
circle is from Ref. 32.

'3 R. A. Amdt, Rev. Mod. Phys. 39, 710 (1967).
34 H. P. Stapp, T. J. Ypsilantis, and N. Metropolis, Phys. Rev.

105, 302 (1957).
"In a simple two-channel system, the eigenvalues of the P

matrix, or equivalently, the eigenphases (mod ~), cannot be
equal in the presence of coupling between channels. See C. J.
Goebel and K. W. McVoy, Phys. Rev. 164, 1932 (1967). If in-
elasticity is also present, such as in the d-n model above the break-
up threshold, the eigenvalues of 5 no longer have unit modulus
and thus the equality of the eigenphases does not imply the
equality of the eigenvalues. In the d-n model the eigenphases
cross at 6 MeV although the eigenvalues of 5 are quite di8erent
there.

Zoo'" = cosp cos2e exp(2i8 ),
52''" = cosp+ cos2e exp(2ib+),

Soy'" = i sin2e expt i(8 +8++a, ) j.
For a nonabsorptive situation p, p+, and e vanish and
we are left with the Stapp parameters 8, 8+, and e. In
our normalization the connection between the 5- and
T-matrix elements is

Sg. ~ '=B~p —Ltka/4''(2+(x) jj~p~

For the coupled state '5»-'D» we have evaluated these
eigenphase parameters and they are plotted versus
energy in Fig. 15. We find that the mixing parameter e

is quite small and the eigenphases do not exhibit the
repulsive behavior" noted by McIntyre and Haeberli. "
The parameters representing the inelasticity are quite
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sizeable, particularly p+ which reflects the large absorp-
tion present in 'D~. In the higher partial waves there is
negligible l mixing in the energy region studied and in all
cases the mixing parameters are less than 1 below 30
MeV.

IV. DISCUSSION

IOOO

te

The results presented in Sec. III show that it is
possible to predict many diverse bound-state and
scattering properties of the six-nucleon system when
viewed in a three-body approximation. For the par-
ticular system we are considering, this is quite plausible.
In d-o. scattering one is dealing with the interaction of a,

rather diffuse and loosely bound deuteron with an cx

particle that is more compact and not subject to low-

energy excitation. Also, in the bound-state problem, the
rms charge radius" of Li' (2.72 F) is considerably larger
than that of the rr particle (1.61 F), indicating that the
loosely bound valence nucleons are responsible for the
large increased spacial extension of I i'. Thus, given the
essential three-particle character of the system, a
theoretical model that takes proper account of two-body
bound states and low-energy scattering resonances and
also treats three-partic1. e states correctly seems to
provide a consistent over-all picture of the problem. Of
course there is a limit to the extent that one can treat
the n particle as an elementary entity and it is of some
interest to compare our results with models in which this
assumption is unnecessary, such as the resonating-group
approach of Thompson and Tang. ' In their work, anti-
symmetry of the six nucleons is properly taken into
account but deuteron breakup and certain spin-depend-
ent interactions are neglected. It is interesting that those
aspects of the respective calculations that overlap give
quite similar results and that neither the phenomeno-
logical treatment of the Pauli principle used in the
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FlG. 15. Calculated d-n eigenphase parameters for J=1+.
The phase parameters are defined in the text.

36L. R. B. Elton, Nuclear Sizes (Oxford University Press,
London, 1961),p. 26.
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FIG. 16. Comparison of d-n angular distributions at 3 MeV for
0 and 4% deuteron d state. The experimental points are from
Ref. 26.

present work, nor the neglect of breakup in the resonat-
ing-group method very seriously affects the major
results of either calculation.

Extensive studies of deuteron-nucleus scattering have
been performed in terms of two-body optical potentials
and a large body of knowledge exists'~ concerning the
shape of the real and imaginary wells as well as more
recently acquired information' concerning possible
spin-dependent terms. It would be useful to extract from
the present three-body calculation an equivalent local
two-body optical potential and to study its relation to
the standard forms. Although this is possible in principle
it would be very complicated to carry out and has not
been attempted. As a substitute, one may compare
some features of the two approaches such as the be-
havior of absorption and the origin of the spin depend-
ence in d-o. scattering in terms of that of the underlying
two-body interactions.

As pointed out in Sec. III, the theoretical absorption
parameters g~ indicate a sizeable reaction cross section
in the high partial waves. This points to a long-range
component in the breakup process that v ould support
the prevalent view that the large spacial extension of
the imaginary optical potential has its origins in
deuteron breakup. The g~~'s also have the characteristic
nonmonatomic dependence on / found in the phenom-
enological studies. It may be seen in Fig. 8 that there is a
tendency for more absorption in even waves than odd.

One further point of interest is the origin of the spin
dependence in d-n scattering. The scattering results
presented in Sec. III arise from a spin-dependent E-n
interaction coupled with an s-wave rs-p interaction.
Thus the d-n spin-dependent effects, such as polariza-
tion, arise solely from the X-m spin dependence. One
might expect that the next most important spin-depend-
ent effects would stem from the rs-p tensor force. To test
this idea a few scattering calculations were performed
with a separable form of this interaction included (see
Appendix 8). Figure 16 shows a 3-MeV d rr angular-
distribution for 0 and 4% d state compared to experi-
ment. The inclusion of the d state produces a small

"For a review, see Ref. 27.
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change in the angular distribution only at large angles
and is in the wrong direction with respect to the experi-
mental points. The effect of the tensor force is to reduce
the phase shifts a few percent but to introduce no
interesting structure in either the d-n cross sections or
polarization. Thus in the present three-body model
the spin-dependent effects in deuteron-nucleus scatter-
ing arise mainly from the spin dependence of the
nucleon-core interaction, or in the usual language from
the nucleon-core spin-orbit potential.

The problem of deuteron breakup in d-cx collisions is
one that could be studied by an extension" of the
methods outlined here. Interest in this problem is
centered on the effect of the final-state S-n resonant
interactions on the breakup angular distributions. It is
hoped that a unitary three-body model of the breakup
process could shed some light on the reaction mechanism

by allowing a theoretical separation between direct
deuteron breakup, and breakup that proceeds by
sequential decay of He' and Li'.
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APPENDIX A: BORN AMPLITUDES

In order to solve the three-body integral equations
of Sec. II we must calculate the partial-wave projection
of the single-particle exchange amplitudes. As an ex-
ample of the general procedure, the a-particle exchange
amplitude for the reaction p (k) +g (—k) —+e (k') +
P(—k') will be calculated. We start by inverting Eq.
(10) for the partial-wave amplitude

8 is, i s (k, k; E) = (2J+1) g (loess
i
JM)

spins of the individual particles are specified,

(S, S„k
~

a„.(Z)
~

S', S.'; k') = g (Zo-,'o„~ SS.)

X (&'o-' ', o„-~ 5'Sg')(Zo. ; -', o„k
~
Bc,.)E)

~

Z'o'; -', o.„;k').

(A2)

It is this amplitude in the individual spin representation
which is most naturally calculated from the interaction
Hamiltonian given in Eq. (1). For the process we are
considering the result is

(Zo. ; —,'o„; k
i
8,. (E) i

Z'o'; —,'o„; k')
1'~'f), '(q) 1'), "f), "(q')

X (~'&'pov
l

Z o )X7, (q) I'„,v'*(F), (A3)

where n is the o;-particle-to-nucleon-mass ratio and

q =k'+k((1+a), q'= k+4'/(1+ n) . (A4)

Since these are three quasiparticles coupled to E+o.,
Eq. (A3) represents six separate channel amplitudes for
c or c'= 2, 3, 4. The form of the vertex functions fq~ has
been given in Eq. (12).

To evaluate the partial-wave Born term we must
insert (A3) into the right-hand side of (A2) and in turn
insert (A2) into the right-hand side of (A1). The
resulting expression is quite complex and must be
reduced to a form suitable for numerical evaluation.
Initially we have a product of four spherical harmonics
but if we take k along the s axis, then we can write the
spherical harmonics of argument q and q' in Eq. (A3)
as the sums"

X X

1'."(i)= Q (2) —2v+1)"'v '~

q(1+a.)

k
X (k') "(X—v0vp

i Xy) Y„v(k'), (A5)
1 A

mm~SzSz~

X (I'm'5'5, '
~
JM)

XJdn fdn. .I p(k) 7, -'*(k')

X(5, S„k
i
B„.(E')

i
5', 5,', k'). (A1)

F~"'*(V') = —,
l Z (2~' —2v'+1)"'(v') '(&) "'

q'), i=p

(A6)

I

The channel spin amplitude on the right-hand side of
(A1) is in turn related to an amplitude in which the

where we have written a, = (2a+1) '". We are then left
with sums of a product of three spherical harmonics
of argument O'. This product can now be combined to a

38 R. Aaron and R. Amado, Phys. Rev. 150, 857 (1966);J. H.
Hetherington and L. H. Schick, ibid. 156, 1647 (1967).

39 N. Austern, R. M. Drisko, E. C. Halbert, and G. R. Satchler,
Phys. Rev. 133, 83 (1964).
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single sum, '"

F t.~'*(k') Y„&(k')V„"*(k')= (4rr) 'vv'/'

(, / L)(, L~)
X g L'(2m+1) '/'!

IM, ZBR (0 0 0)(0 0 Oj

fv' /' L) |'v t. Z )
XI !I;~+(i'). (A7)

(tt' rrt' Mf (tt M 5IZj

The objects with parenthesis are 3-j symbols and the
sums are restricted by! l' —v'! &L&l'+v' and! L v!&—
Z&L+v. The remaining task is to perform the 3-j and
Clebsch-Gordan sums. 4' The 6nal expression is

a„,, , , i~~ (k, O'; Z) = ll'PR'S8'ii'( —1) '+'-'-"

f2~+ 1) 1/2 (2~ + 1) 1/2

X 2 (—1)"+"'+'!
! I ! (1+n)" "'

X (k'/k) "+"'O'O'L(22+1) "'(v'Ol'0! LO) (vOIO! ZO)

X (lOd0! X'—v'0)(ZOd0! X—v0)W(SS'//'; bJ)

S' b S I
XW (X vvdL; XZ) ——,

'
X 2 ~ v' X'—v' X'

X Pg(k, k'; P). (AS)

In the sum over b and d, any integer satisfying the
triangular conditions of the 9-j symbols is included. The
quantity Pz contains the dynamics and may be written
as the partial-wave integral

1 k
Pz(k, k', P) = — dxPg(x)

2 -r (1+n) t/ t/'

r,xf x(&)r,, f,,"(V)
E—k' —k"—(k+k') '/n '

where x= k k'. For the functional forms of the f's we
have chosen t Eq. (12)), the above integral may be
done analytically and the result expressed in terms of
sums of Legendre functions of the second kind and their
derivatives.

We have outlined the procedure used for calculating
the Born term for p+p~n+p. Expressions for the
other Born terms may be obtained using similar
techniques.

40 A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, ¹ J., 1957), p. 63.

See Appendix II and Appendix III of D. M. Brink and G. R.
Satchler, Angular Momentum (Oxford University Press, London,
1962) .

APPENDIX 3: d STATE OF THE DEUTERON

To include the deuteron d state in the quasiparticle
formalism we still have a deuteron pair state with total
angular momentum 1+ but we must add a new coupling
to a d-wave n-P pair as well as the s-wave coupling. The
appropriate interaction Hamiltonian for d~n+P may
be written

& = g P f (V) (-. .—. - I
1 )(~t 1 ! 1 )

aQ

X I'~"*(i)Dr. (Q) Pr/s ..'(-'Q+q) &r/ ...'(-'Q —q)

+h.c., (81)
where the sum is also over the discrete indices and D, I',
and E are held operators for the deuteron, proton, and
neutron, respectively, and the general notation is that
given in Eq. (2) . X is the relative angular momentum of
the n-p pair and may be 0 or 2. For the vertex functions
we choose"

fo(V) = (V'+Po') ' fs(C) = V'(V'+Ps') ' (B2)

The deuteron is taken to have no elementary component
so that the bound-state normalization condition is

1 "n'dnPPo'f (o)n+P fs(o)n$

(2rr) ' (2n&ye„) s
= 1, (B3)

where ~z is the binding energy of the deuteron. Intro-
ducing &q

——2o.q' we can express Fo and F2 in terms of the
percent s and d states I', and I'z by

I'o'= 128'-'naPo (na+Po) 'P„
Fso = 10287r'Po (na+Ps) oPa/(5na+P, ) .

Phillips" gives values of po and ps adjusted to fit the
triplet scattering length, effective range, and quadru-
pole momen. t for Pa= 4.0, 5.5, and 7.0%. To obtain the
correct sign for the quadrupole moment F2 has been
chosen to be negative. The resulting partial-wave two-
body amplitude is

t». (o(k, k'; E) = r„f,(k)r„(g) P, , f„,(k )

where the deuteron propagator ra(P) is given by
"n dn/Fo'fo'(n) +&s f2'(n) ]ra(E)

(2s.) '(&+ea) o (&—2n'+it/) (2n'yed)

In the treatment of the three-body problem with the
deuteron d state included there are two changes. First,
one must use the above propagator (B5) for inter-
mediate d-0. states and second, those Borg. terms which
involve the deuteron (d.euteron stripping and pickup
amplitudes) become a sum of two amplitudes: one for
s-wave and one for d-wave deuteron disassociation.
These amplitudes may be evaluated by the methods of
Appendix A.

4' Y. Yamaguchi and Y. Yamaguchi, Phys. Rev. 95, 1635
(1954) .


