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A theory of the relation between particle-particle (pp) and particle-hole (ph) spectra is developed using
the effective interaction of the Brueckner-Goldstone many-body theory. The shell-model relation of Pandya,
Goldstein, and Talmi is shown to be an approximation to a more general many-particle relation. The main
terms omitted by the shell-model pp-ph transformation are found to be of an effective three-body nature.
The new theory is applied to the case of “Sc(pp) and “#Sc(ph), and gives considerably better agreement
with experiment than does the standard shell-model relation. For example, the root-mean-square deviation
between the predicted and experimental levels of #Sc is 310 keV for the new theory, as compared to 580 keV
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for the shell-model relation,

1. INTRODUCTION

ELATIONSHIPS between energy spectra of dif-
ferent nuclei have been obtained in the context of
the shell model based on the assumptions that (a) the
internucleon potential is strictly a two-body interaction
and (b) nuclear states are given by the jj coupling shell
model (see, for example, Ref. 1). One well-known
relationship of this type is that between a particle-
particle (pp) and a particle-hole (ph) spectrum. This
relationship will be the subject of this paper.

The pp nucleus refers to two particles in the orbit
(jk) outside the closed shell A. The ph nucleus is
obtained from the previous nucleus by adding 2k—1
particles to the orbit k, yielding a nucleus with a
particle in the orbit 7 and a hole k7! in the orbit %
“outside” the new core A’ which has A+ (2k+1)
particles.

The energy levels for both the pp nucleus [denoted
by E;(7k)] and the ph nucleus [£;(jk™)] carry the
total angular momentum J=j+k. We remove from
these energies the binding of the two particles (or ph)
to the core 4 (or A’) as well as the core energy as
follows:

EJzEg.s.—Ery
where

E.(jk)=—[Es(A+jk)+Es(4)

—Ep(A+j)—Ez(A+k)], (1.1a)
E,(jk)=—[Ep(A"+jk)+ Ep(4")
— Ep(A'+j)— Es(A'+E1) ] (1.1b)

The E; so defined are often called the interaction

* Work supported in part by the U. S. Atomic Energy Com-
mission.
11, Talmi and I. Unna, Ann. Rev. Nucl. Sci. 10, 353 (1960).
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energies. The shell model gives the relationship?
By (jk)=— X U IW (jkkj; JI)Er(jk),
I

[I]=214+1. (1.2)
This equation is a linear relation between the two
spectra which can be inverted to give the pp spectrum
in terms of the ph.

We may compare the experimental spectra of two
nuclei, which are considered as pp and ph partners
through relation (1.2), as a test of the assumptions
about the interactions and the purity of the configura-
tions.

The results are shown in Table I for the well-known
case of #¥Cl and “K which has a rms deviation of 80 keV
between the transformed experimental spectrum of 33Cl
using (1.2) and the experimental spectrum of ¥K. In
the “K case, the addition of two 0ds» protons to #Cl
forms a ph nucleus with respect to a “Ca core. The ph
reference energy FE,(jk™) is therefore calculated with
respect to this core, while the pp reference energy E. (jk)
of ¥Cl is calculated with respect to a %S core. How this
change in the core affects the transformed spectrum
when a greater number of particles (>2) is needed to
go from jk to j&! is seen by examining the recently
acquired spectra of #Sc® and #Sc ¢ which have a 9Ca
and #Ca core, respectively.

Table IT shows that the agreement with relation (1.2)
is somewhat worse in this latter case; the level spacing
is not well predicted, although the J ordering is almost
correct. The rms deviation between the predicted and
experimental spectrum is now 580 keV. We exhibit this
breakdown of (1.2) in a useful form, in terms of the

28S. P. Pandya, Phys. Rev. 103, 956 (1956); S. Goldstein and
I. Talmi, ¢bid. 102, 589 (1956).

3 J. J. Schwartz, D. Cline, H. E. Gove, R. Sherr, T. S. Bhatis,
and R. H. Siemessen, Phys. Rev. Letters 19, 1482 (1967).

4 M. Moinester, J. P. Schiffer, and W. P. Alford, Phys. Rev.
179, 985 (1969) ; and (private communication).
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TasLE I. The pp-ph transform T of the spectrum of 8Cl compared
with the spectrum of ¥K (all energies in MeV).

J  Ey(®Cl)  T{E;(3Cl)}  Es(*K) ALy
2 —1.687 1.300 1.363 0.063
3 —0.926 0.536 0.593 0.057
4 —0.376 0.472 0.563 0.091
5 —1.012 1.360 1.453 0.093

multipole decomposition of the spectrum,’ which is dis-
cussed in Appendix A. This decomposition takes the
form [inverting (A3)]

E;(jk)= ; (= 1)L GRNTPW (jRiks; TN ) ( k),

(1.3a)
where

[A]J=2)+1,

and o (k) is the strength of the Ath multipole. The ph
spectrum can be similarly decomposed (as is done in
Appendix A) to complete the comparison:

By (j) = T (— 1)L ]

XW (Gkjk; IN) (— 1M (k). (1.3b)

Equations (1.3) give a symmetrical representation of
the pp-ph relationship (1.2) and its inverse. The Racah
transform in (1.2) becomes the phase (—1)* in the
multipole representation.

Table IIT gives the multipole strengths for ¥Cl and
K, from which we can see that the largest discrepancy
occurs in the A=0 or monopole term. The A=0 row of
Table IV shows the shift in the monopole term for the
“Sc and “Sc case and is seen to be much greater than
the preceding discrepancy of ®Cl and “K. The relative
size of these monopole discrepancies is almost a factor
of 7 between the two cases. It is worth noting that the
relative increase in the number of three-body inter-

TaBLE II. The pp-ph transform T of the spectrum of Sc com-
pared to the spectrum of #Sc (all energies in MeV).

J E;(*®Sc) T{E;(®Sc)} Es(*Sc) AEy

0 —3.200 7.745 6.877 —0.868
1 —2.585 3.193 2.716 —0.477
2 —1.607 1.179 1.347 0.168
3 —1.702 1.245 0.822 —0.423
4 —0.400 0.960 0.453 —0.507
5 —1.682 0.927 0.339 —0.588
6 0.000 0.926 0.197 —0.629
7 —2.575 2.009 1.294 —0.715

5See, e.g., J. B. French, in Proceedings of the International
School of Physics ““ Enrico Ferms,” Course 36, edited by C. Bloch
(Academic Press Inc., New York, 1967).
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Tasre III. The multipole form of the spectrum of “K com-

pared to the multipole form of the pp-ph transformed spectrum
T of 3Cl (all energies in MeV).

A ABCl)  T{A®CD)} oM*K) Aot

0 —0.9198 0.9198 1.0005 0.0807
1 0.1546 0.1546 0.1663 0.0117
2 —0.3905 0.3905 0.3888  —0.0017
3 —0.0408  —0.0408 —0.0477  —0.0069

actions involving the odd particle j between the two
cases is also seven. It had been noticed some time ago,
by Pandya and French, that three-body interactions
would violate (1.2). They also showed that configura-
tion mixing, which they calculated for the #Cl-¥K case
in perturbation theory, also leads to violations of the
relation (1.2).

In this paper, we develop a general theory of the
relation of pp and ph spectra, based on the effective
interaction developed in the Brueckner-Goldstone
many-body theory of nuclei. The present theory isolates
the cause of the violation of relation (1.2), and provides
a direct method of calculating this violation. In the
theory of the effective interaction, configuration mixing
is formally removed from the nuclear wave function,
and is included in the structure of the effective inter-
action itself. In this language, the violation of relation
(1.2) can be traced to the fact that the effective inter-
action between valence particles is no longer a two-body
interaction. We find the leading contributions to the
many-particle interaction which causes the violation of
relation (1.2) are of two types: (i) those which depend
on which closed-shell nucleus is treated as the core and
(i) those that have an effective three-body character.
This latter case is due to configuration admixtures
unique to one end of the valence shell.

We introduce the pp-ph transformation of a set of
numbers M (jk;J) (e.g., energies), forall J (|j—Fk | <

TasrLe IV. The multipole form of the spectrum of %Sc com-
pared to the multipole form of the pp-ph transformed spectrum
T of ©Sc (all energies in MeV).

N a*(*2Sc¢) T {a?(#Sc) } a?(%8Sc) Aot

0 —1.432 1.432 0.895 —0.537
1 —0.095 —0.095 —0.250 —0.155
2 —0.731 0.731 0.761 0.030
3 —0.246 —0.246 —0.223 0.023
4 —0.446 0.446 0.362 —0.084
5 —0.322 —0.322 —0.222 0.100
6 —0.296 0.296 0.223 —0.073
7 —0.101 —0.101 —0.163 —0.062

6S. P. Pandya and J. B. French, Ann. Phys. 2, 166 (1957).
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T<j+k):
TM(jls T) == X L7 IW ks J7 )M (ks ).
(1.4)

An operator which conserves the pp-ph transformation
is one for which the ph matrix elements is given by
(1.4):

GRS T |9 | j5 ) =T{{jk; J | M | jk; )}

In Sec. 2 we introduce the valence effective interaction
U and show that it can be divided into a conserving (c)
and violating (v) part

kY =Eoc+rov;

where U, obeys (1.5).
We can now define the experimental spectral violation
of the pp-ph relationship (1.2) in terms of (1.5):

AE;=E;(ph)—T{E;(pp)}.

(1.5)

(1.6)

1.7

In Sec. 3 we discuss the characteristics of the violating
terms, which contribute to U,. We shall show that
these terms correspond to many-particle contributions
to the valence effective interaction.

In Sec. 2 we define criteria by which individual
Brueckner-Goldstone diagrams for U (or their equiva-
lent terms in a perturbation series) are classified as
belonging either to U, of V,. In Appendix B, we prove
that the pp diagrams which fall into the class U, in fact
are related to specific ph diagrams by the relation
between their matrix elements given by (1.5).

For pp-ph conjugate nuclei discussed above, the
violation of the transformation (1.2) is an order of
magnitude smaller than the average splitting of the
levels. We therefore expect that U, can be treated as a
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F16. 1. The columns represent, in order from left to right,
the experimental spectrum of Sc, the ph-transformed spectrum
of #2Sc. and the corrected spectrum using the RKB and SWTH
matrix elements, respectively, in the matrix calculation.

EFFECTIVE-INTERACTION THEORY

1317

2 T T T T T T
O,
A
A /N —
— // No. y i
3 S~
=0 N~
z \/ -
~<
o
g A -
=z
o /
o] —— Ad* EXPT.
> -3 -
Yo ) X PREDICTED VIOLATIONS
o o—~—o0 Aa
g -4 RKB MATRIX ELEMENTS_|
5
3
_‘5 —
-6 | ! L | ] 1
o 1 2 3 4 5 6 7

MULTIPOLE RANK (X)

F16. 2. The violation of the pp-ph relation (1.2) in terms of
multipoles Aa*: Solid circles are the experimental differences,
and open circles the calculated differences, using the RKB matrix
elements.

perturbation on U,. This is done specifically in Sec. 4
and applied to the conjugate nuclei #Sc and “Sc. The
calculation is done using matrix elements for U, which
have been calculated and published by other groups.
These matrix elements were not available for the #Cl-
K case. The calculation of U, for the Sc case accounts
for the experimental discrepancies, as can be seen in
Tables V-IX and Figs. 1 and 2.

2. TRANSFORMATION PROPERTIES OF U

In this section we investigate the valence effective
interaction U and its separation into U, and U,, accord-
ing to (1.5) and (1.6). A definition of this shell-model
effective interaction, based on a development of the
Brueckner-Goldstone many-body perturbation theory,
has been given by Bloch and Horowitz.” This form of
the interaction among valence particles is energy-
dependent, and may be written

V(Ey) = 2 VILQ/ (Z—Ho) IV}, (2.1)
p=0
where H, is the single-particle Hamiltonian with kinetic
energy 7', potential energy U, and

H,=T+U.
The total Hamiltonian for the system is written
H=T+V,=H+V,
where V, is the free two-nucleon interaction and V=
VzT h[e{‘energy E, in the denominator of (2.1) is given by
L,=Eyt AL,

7 C. Bloch and J. Horowitz, Nucl. Phys. 8, 91 (1958).
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where £, is the sum of the single-particle energies (given
by Hy,) and AE, is the interaction energy of the valence
particles in an eigenstate of U (%,). For example, for
the case of two valence particles 7 and &, in a state of
total angular momentum J, the interaction energy is
given by the matrix element

AE; (jR)=(jk; T | O(L) | jk; ). (2.2)

This approach is reviewed by Brandow® and by Mac-
Farlane.?

Brandow® has also extended the Bloch-Horowitz
formalism to eliminate from the valence effective inter-
action contributions from ‘“unlinked terms” in (2.1).
This linked-valence formalism leads to an expression
for V(Z,) similar to (2.1), from which the interaction
energies AE, in the denominators are removed:

V= 2 VILO/ (BmHo)Whvr  (21)

Brandow has shown that the contributions of AE, in
(2.1) is canceled by the unlinked terms, so that one
may obtain the reduced expansion (2.1") with only
linked-valence terms (denoted by l.v.). The notion of
linked and unlinked ferms comes about through examin-
ing the diagrammatic representation of (2.1) and (2.1")
and associating with each perturbation term either a
linked or unlinked diagram (see Refs. 8 and 10).

For the purposes of this section, the distinction
between the expansions shown in (2.1) and (2.1") is
not important. It will be important, however, in treating
the specific contributions to the violating interaction
(Secs. 3 and 4). In calculating the contributions to U,
we shall use the linked-valence form of the effective
interaction (2.17).

Now we shall consider a specific set of terms of (2.1)
and show that they contribute to the conserving inter-
action UV,. In the process of construction, we shall
demonstrate the essential characteristics which define
the terms of U..

Consider first the terms corresponding to the
“Brueckner ladder diagrams” which for two valence
particles, or valence p and h, have intermediate states
with two particles excited above the valence shell. We
may write the subseries of (2.1) for the two cases

Vs (pp) = 2 Val[0(op)/ (E—Hy)TVale,  (2.3a)

Vs (ph)= 2 Vo{[Q(2p-2h)/(E'—H)IV>}¢,  (2.3b)
q=0
where the projection operator Q (pp) allows no valence

8 B. H. Brandow, Rev. Mod. Phys. 39, 771 (1967).

9 M. H. Macfarlane, in Proceedings of the International School of
Physics ““ Enrico Fermi,” Course 40 (Academic Press Inc., New
York, to be published).

10 J. Goldstone, Proc. Phys. Soc. (London) A239, 267 (1956).
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particles in the intermediate states, and Q(2p-2h) has
the same two particles as in Q(pp), in addition to fwo
valence holes. The subscripts are omitted from the
energies £ and E’ to emphasize that (2.1) and (2.1")
are treated as equivalent in the following.

The terms of (2.3a) correspond to the usual Brueckner
“ladder” diagrams [Fig. 3(a)], which are all linked.
Each term of (2.3b), however, contains both a ph
ladder diagram [Fig. 3(b)] and a disconnected term
[Fig. 3(c)]. This second term is canceled by a shift in
the single-particle potential U of Hy, for the filled-
valence-shell case relative to the empty-valence-shell
case. This absorption of the disconnected diagrams into
the single-particle potential is already present in the
usual form of the pp-ph transformation, to first order
in V, [see (A6)]. We note that this effect has been
included by allowing the single-particle spectrum given
by Hy' in the ph case (2.3b) to differ from that in the
pp case (2.3a).

Because of the differences in the Q operators and
single-particle spectra in (2.3a) and (2.3b), the opera-
tors U (pp) and Vp(ph) are quite distinct. However,
we shall now show that under certain conditions, we can
construct a single operator Up which has the same matrix
elements as each of the operators (2.3a) and (2.3b);
that is,

(jk; J | O | jk; T)={jk; J | Vs (pp) | jk; ), (2.4a)
(Jk5 T | s | jE7Y T)=(jk7%; T |V (ph) | k725 T).
(2.4b)

The first aim in this construction is to find the condi-
tions under which we can eliminate the Q operators in
(2.3), which distinguish the two Up operators. We use
the second-quantized form of V, given in (Al) of
Appendix A:

Vo= > [J1*m;J | Vo | nr; J)

lmnr,J

X[(AlXAm)JX (BnXBT)J:IO) (2'5>

where the 4’s and B’s are the spherical-tensor single-
particle creation and destruction operators, and
(41X An)? creates two-particle states / and m coupled
to total angular momentum J.

The projection operators Q for a specific term in the
series (2.3) tell us which single-particle states are
allowed in the intermediate states, e.g., o, 877, k in
Fig. 3. We may alternatively accomplish the same

(a) (b) (c)

F1c. 3. (a) Third-order ‘“‘ladder” diagram for Up in the pp case.
Upon transformation k—k~1, (a) goes to (b)-+(c). The discon-
nected term (c) is absorbed into the single-particle energy of
particle 7.
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restriction by selecting only the appropriate terms of
the expression (2.5) for the interaction. Then Q be-
comes redundant, and may be replaced by unity.
Explicitly we consider the two subseries of (2.5):

Wi= EBJ [J1"(eB; T | V| jk; T)
a,B,J

XA (AaX Ag)7 X (BiX Bi)” P

+[(A;XAr)7 X (BaXBg) I}, (2.6a)
W= BZH [T 1285 | Va|v8;J)
X[ (AaXAg)? X (B, X B;)" ], (2.6b)

where none of the indices a, 8, 7, or § can be eitherj or k.
We now construct an operator Ugp defined by
Vp=Vot- W1 D, (& W2)d W, (2.7)
q=0

Clearly, this operator has the same valence matrix
elements as in the sense of (2.4a), if we set d=E— H,.
But the operator also has the same valence matrix
elements as Up (ph) [see (2.4b)], if we set d=E'—Hy/'.
We can also use the explicit forms (2.6) to rewrite

the gth term in the series (2.7) in the form

Vp@= X {[(4;X A1) X (B X Bs) M (q)

17
XL(AyXA5)TX (BiXBe)" P}, (2.8)
where M (¢) is a scalar operator
M (q)=[L7T~(jk; I | V2| aB; )
X (d-W) a5 T | Va | ks ). (2.9)
We can recouple (2.8) in the form
Vp@= 2 {[(A;XA)' XN X (BiXBi)’}°, (2.10)

1J,r

where the tensor operator N7, of rank 7, contains M (q)
and the 4 and B operators of (2.8) for «, 8, v, 6, and
the recoupling (Racah) coefficients.

Notice that N contains only creation and destruction
operators, e.g., Aa, Bg for unoccupied single-particle
states. Therefore, in the valence matrix elements (2.4)
only the scalar N° can, in fact, contribute, since in these
matrix elements, we have a ‘“vacuum” for the unfilled
shells; therefore

O] N7 0)=(0| N°| 0)5i0. (2.11)

It follows that for valence matrix elements, (2.10)
reduces to

Vp@ = XI: <0 I NO [ 0)[(Aj><Ak)IX (BjXBk)I]()' (2'12)

Now V@ acts as a two-body scalar interaction opera-
tor in the valence space, of the form (2.5). Following
the argument of Appendix A [see (A8)], we find that
“Vp obeys the pp-ph theorem (1.5).

Therefore, we can use the pp-ph theorem (1.5) for
every term in the Brueckner ladder series (2.3) for
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which d=E'—Hy/~E— H,. This is a good approxima-
tion for intermediate states with energies well above
the valence shells. What is required is that the change
in the energy denominators, from the pp to the ph case,
be small compared to the denominators themselves. We
expect the relative change to be of the order of a few
MeV, so the minimum excitation energy for the approx-
imation to be good would be of the order ~30 MeV
(~2fiw in an oscillator model).

This leads us to separate the intermediate states in
(2.3) into kigh-lying and low-lying states. The former
are defined as those states with (a) two particles excited
outside the valence shells and with (b) excitation
energy Eo— H, larger than some minimum, for example,
2%iw. The low-lying intermediate states violate either
one or both conditions. For the ph case (2.3b), the
high-lying states have two valence holes, in addition to
the excited particles. A term in the perturbation series
will be referred to as either high-lying or low-lying
depending on the intermediate state in that term.

We conclude that, to a good approximation, the
Brueckner effective interaction (ladder diagrams) ma-
trix elements (2.4) obey the pp-ph transform (1.5), if
we include only the high-lying terms. This elimination
of intermediate states close to the valence shell appears
in most practical calculations of Ug. For example, Kuo
and Brown! consider only intermediate states of high
excitation, which are treated as plane waves in calcu-
lating their “bare” interaction. Becker and MacKellar'
have similarly suppressed low-lying states through their
approximate Pauli principle.

Now let us consider more general terms in the valence
effective interaction (2.1). We write

0 (pp) =V (pp)+Vo (PP), (2.13a)

0 (ph) ="V (ph)+Vy (ph), (2.13b)

where the terms in U.(pp) and U.(ph) are related by
(1.5). Again, we shall construct an operator U, which
has the same matrix elements as V. (pp) and U, (ph) as
follows:

(jk; T | e | jk; T )= (jk; J | Ve (pp) | k3 T ),
(G 1|0, | &Y I)=(jk; I | V. (ph) | j&; I).
(2.14b)

(2.14a)

A sufficient condition that a term in U contribute to
U, is that it may be written in the form (2.10), where
N* is a tensor operator of rank 7, which may have
creation and destruction operators for any number of
particles in any state other than the valence states j
or k. Of course, N” must be identical in the pp and ph
cases. Under such conditions, we may again follow the

4T, T.S. Kuo and G. E. Brown, Nucl. Phys. 85, 40 (1966).
( 12 R). L. Becker and A. D. MacKellar, Phys. Letters 21, 201
1966) .
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fi i ,k fsj t, / K* ti 1,
1,%; r,% t,%k--lk-.
i ko o \NK" to

(a) (b) (c)

F16. 4. Diagram (a) is of the general form of a diagram con-
tributing to U.(pp). Upon transformation k—%™1, diagram (b)
contributes to the interaction U, (ph), while (c) is absorbed into
the single-particle energy. Figure 3 is a special example of this
figure.

steps leading to (2.12), and therefore to the transforma-
tion (1.5) of the matrix element of (2.14).

We shall prove (in Appendix B) that terms in U
which obey the following two conditions can be written
in the form (2.10), with constant N*, and therefore are
terms in U,: (a) The condition that a term in U, can be
written in the form (2.10) is equivalent to requiring
that in that term, each particle in a valence shell (7, k)
interacts exactly twice, and between the two interac-
tions no particle is in that valence shell (7, k). We work
in a np formalism so the neutron and proton valence
shells are always distinct. For the ph case, between the
two interactions of the valence hole (&), two (and
only two) %-hole states will be present. See Fig. 4 for
clarity. (b) The second condition mentioned, that N*
must be identical in the pp and ph cases, can be satisfied
to the extent that the energy denominators £— H, and
E'—Hy' are equal. These two conditions are a general-
ization of the definition of kigh-lying which we applied to
intermediate states of the Brueckner ladder terms. Here
we shall refer to a ferm in U which satisfies both prop-
erties (a) and (b) as a high-lying term. We note that the
condition (b) on the equality of energy denominators
can, in fact, always be formally satisfied, since we are
free to adjust Hy and Hy' in the theory. Such adjust-
ments are compensated by higher-order terms in the
violating effective interaction U,.

In Appendix B we give a proof, in terms of Goldstone
diagrams, that these terms, which we have called high-
lying, in fact transform as (1.5), and therefore belong
to V.. Some examples are shown in Fig. 5. Diagrams
5(a).and 5(a’) stand for the Brueckner ladder series
(2.32) and (2.3b), respectively (reaction matrix Ug).
The rest of the figure shows contributions to U, which
are of second order in Up. For each letter, there is a pp
diagram (x) and its ph transform (x’). Note that here
a, B#7, k. We also assume that the excitation energies
of e, B are sufficient, so that all the diagrams are kigh-
lying.

The terms in U which are high-lying contribute to
the violating valence interaction U,, which contributes
to the spectral violation (1.7) by

AE;=(jk™;J |0, (ph) | &4 T)
—T{(jk; J |V, (pp) | jk; T)}. (2.15)

In order to calculate the violating terms in U,, we re-
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order the original series (2.1) in powers of U,:

e(-)v=ro"—L-Oz:=eOCI:Q’/(ZZ—IJO):FOD'{_O(f(-)c:i); (216)
where () now projects only onto low-lying excited states.
We expect to be able to account for U, by the leading
terms of the “perturbation” series (2.16), in those cases
where the experimental | AE; | are smaller than the
order of magnitude of the level splittings, as in the cases
discussed in the Introduction.

In the next section, we discuss the essential charac-
teristics of the leading terms in U,.

3. GENERAL CHARACTERISTICS OF
VIOLATING TERMS

The terms in U, are those which do not satisfy both
conditions in the definition, given in Sec. 2, of high-lying
terms. There are terms (diagrams) which contribute
to U, only because of significant changes in energy
denominators, between the pp and ph cases. There is a
second category of terms (diagrams) which involve
intermediate states containing valence particles (or
holes), but which can only occur at one end of the
valence shell. These latter terms may be thought of as
due to a blocking effect; they appear as contributions
of an effective three-body valence interaction.

The terms in the first of the two categories have the
same diagrammatic structure as the terms in V., and
they would transform if not for the shift in the energy
denominators due to the change in cores. To explain
this more fully, consider diagram (a) of Fig. 6. Its
contribution to the energy in the pp case is

| (Gk; T |0c | aB; T) |2

E;™(jk)=
o ’
Ewy=E;j~Eo+E—Es (3.1)
gl ¥
5
@ ) [&Y) «©)
L] s o B
@y (b!) ()

(d)

()
N8 I o)y
a \J ai B %
(e

[CB] $9]

(£)

F16. 5. (a)—(f) Some of the second-order contributors to the
series expansion for V.. The unprimed and primed diagrams are
related through the ph transformation, the primed being those
that occur in the series expansion in the ph case.



187

and transforming this to the ph case (k—%1) gives

T{EJ(v)(]'k)}zT{l (jk; J [2;] aB; J) |?

which is a well-defined contribution to the ph energy.

If we now consider the corresponding diagram in the
ph case [Fig. 6(b)], a term of similar form to (3.2)
arises but with a different energy denominator, reflect-
ing the change in the single-particle energies:

(gk ;' l VelDagVe Ijk_1§ J)
Eaﬂ+Aa+ AB ’

} , (3.2)

By (i) =

(3.3)

where

Ag= (EJ" E, )ph"‘ (EJ'_ E, )pp;

As= (Ex— Eg)pn— (Ex— Eg)pp-

The contribution to the total correction to the trans-
formed pp spectrum may be put in the form

AE;=E ;0 (jE)—T{E;® (jk)}

__ Aatds T{|<jk;ff'0c|aﬂ;]>l2}, 3.4)
Ea6+Aa+Aﬁ Eaﬁ

where we have combined (3.2) and (3.3) using (A4)
and (A10). We call the coefficient of the transformed
terms the dilution factor. This factor indicates the
single-particle energy dependence of the contributions
due to the low-lying states. It also gives a measure of
the validity of the separation into low- and high-lying
intermediate states; the factor becomes zero for the
high-lying states. For example, Kuo and Brown have
found that intermediate states of excitation energy of
about 200 MeV above the valence shell give the major
contribution to the ‘“dispersion term” in the “bare”
Brueckner interaction [see Eq. (2.3)].1! Since the shifts
in the single-particle energies between the pp and ph
cores are approximately 2 MeV, one expects no more
than a 1%, violating effect from the dilution (3.4).
For this reason, we neglect violating contributions from
the high-lying states and in O,.

The second type of violating diagram occurs in both
the pp and ph case and is a consequence of configuration
admixtures that are unique to one end of the shell.
Consider the ph diagram (a) of Fig. 7, which is a single-
particle excitation. This diagram cannot be obtained by
a transformation of a pp diagram. This is due to the
fact that in the latter case, the core contains no particles

i k i K i K

T aI IB =a a -

Eo-Ho H [V B EgHo [V B Eo—Hg

j k j 3 K :
a) _ (b

F1c. 6. This diagram transforms according to (1.2), but is
low-lying. The energy denominator in the propagator for( a)
is not the same as that for (b) because of the additional interac-
tions that are possible with the extra 2k—1 particles in (b).

EFFECTIVE-INTERACTION THEORY

1321

j K K" kg Kk
.amk—l [:Q(;l m
j K K' k* k-

F16. 7. Three-body character of ph diagrams (a) and (b), in
which only one particle is excited outside the valence shells. (c)
Three-particle term, contained in (a) and (b), where we replace
the &1 line by 2k particle lines (filled shell -—1)

in the % shell, so that the intermediate state may not
have a single k hole. One might also view this as an
effect of the Pauli principle, which prevents putting
two k particles into the state of one % hole.

It is instructive to consider the hole in this diagram
as a filled shell minus one particle. In these terms, the
diagram equivalent to Fig. 7(a) will contain the three-
particle interaction shown in Fig. 7(c). Thus Fig. 7(a)
is seen to include effective three-body terms which
would not be expected to appear in a corresponding
pp diagram. This same argument applies to Fig. 7(b),
so that it also contains effective three-body terms. The
fact that a single-particle excited state contributes to
an effective three-body interaction appears to have been
first recognized by Bacher and Goudsmit.!* Three-body
terms of the form of Fig. 7(c) have also been recognized
by Osnes and by Bertsch®® and their contributions to
the binding energy of nuclei in the Ca-Ni region have
been calculated.

Similar contributions come from pp diagrams which
do not transform into ph diagrams. For example,
diagrams (d) and (f) of Fig. 5 exist for which g=%,
but the transformed diagrams (d’) and (f’) do not
exist in this case. Now the “three-body’” effect involves
two % holes and one j particle, which is also a Pauli-
principle effect.

The contribution of U, to the spectral violation of
the ph relationship (1.2) is calculated as in (2.15).
One computes the matrix elements of the violating
diagrams for the ph case. From these, one subtracts
the transform (1.5) of the matrix elements for the
violating diagrams for the pp case.

We remark, in conclusion, that the three-body terms
discussed in connection with Fig. 7 are the leading
terms in a perturbation expansion of U,. Higher-order
terms will bring in interactions involving even higher
numbers of particles. In fact, the dilution terms dis-
cussed first [Eq. (3.4)] already result from many-body
effects, which appear in the changes of the single-
particle spectra between the pp and ph nuclei.

4. CALCULATIONS AND RESULTS

We now turn to the calculation of the violating terms
in AE; [Eq. (2.15)] for the conjugate pair “Sc(pp)
and “Sc (ph). We have already exhibited the experi-

B R. F. Bacher and S. Goudsmit, Phys. Rev. 46, 948 (1934)
14 E, Osnes, Phys. Letters 26B, 274 (1968).
G, F. Bertsch Phys. Rev. Letters 21, 1694 (1968). ‘.’ g




Fic. 8. (a)-(c) occur in “8Sc and
violate the ph transformation; (a’)
and (b’) occur in 42Sc. The T denotes
that their matrix elements have been
transformed to “Sc. Diagrams (a)
and (a’) violate due to energy de-
nominators, whereas the remaining
diagrams violate because of their
effective three-body character.

mental discrepancies [Eq. (1.7)7] in Table II. We may
compare theoretical results with experiment
in several ways:

'(a) We may compare the calculated values of AEy
with the experimental discrepancies in Table II. This
is done in Table VI.

(b)‘ Alternatively, we may compare calculated and
experimental multipole differences (see Table IV). This
is also done in Table VI (see also Fig. 2).

(c) We may add the calculated values of AE; to the
transformed [by (1.2)7] spectrum of #Sc as indicated
by (2..15), and compare the resulting values to the
experimental spectrum of #Sc. This is done in Fig. 1.
As a measure of the improvement, we compare the rms
deviation between the experimental spectrum and our
theort_ztical predictions to the rms deviation between
experiment and transformed spectrum of #2Sc using only
(1.2). This is done in Table VIIL.

The model for Sc is a neutron and proton in the Ofz»
sh.ell outside a “Ca closed shell. The forms of the low-
lying diagrams considered are shown in (a’) and (b")
of Fig. 8. Diagram (a’) is for the case &, 8=0f12, Ofs,
11{3/2, 1p1/5, with the condition that B5%£0f;2 and con-
trlbl{tes to Eq. (3.4). The case =Fk is shown in (b")
and is separated from (a’) because of its effective three-
body character. Figures 8(a’) and 8(b") give a total of
15 distinct diagrams to the violation of the ph trans-
formation; the remaining low-lying diagrams are at
1ezixst an order of magnitude smaller because they lie a
minimum of 27w away from Ofzs. The single-particle
energy differences are recorded in Table V and are the
same as those used by Kuo and Brown.!

The model for #Sc is one proton particle and one
neutron hole in the Ofy; shell outside a #Ca core. The
diagrams that violate in this case are of the type (a)
in Fig. 8, which correspond to (a’) of the #Sc case, and
(c)fand (b), which have no pp transforms. Diagrams
(c) and (b) contribute an additional nine terms for
6=0f7/2 and a=0f5/2, 1?3/2, 1171/2 of an effective three-
body nature to ¥Sc. The single-particle energy differ-
ences used in this case were obtained using the spectrum

16T, T.S. Kuo and G. E. Brown, Nucl. Phys. A114, 241 (1968).
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of #Sc for the proton differences and #Ca along with
#Cy for the neutron energy differences. We use the
values quoted by Kuo and Brown,® which include iso-
spin effects in ¥Sc by Green.

The contributions of the second-order diagrams of
Fig. 8 to the violation (2.15) are calculated using the
following equations. For *Sc

AE;(a)=— X [ulW (jkkj; nJ)

alBu

X {§ W (jke/B; u)[ jen] 2 (jke/B)}?/ Earg,  (4.1)
AE;(b)= %ﬁ {§Z (= 1)L jRNT2W (ka'k; TN)
X (jhlR) Y Biary  (4:2)
AE; (¢)=V2[ jk] a% (=D T
— (= V)W (kkka! s N\ ) YW (ki JN)
X o (jkjo! YoM (@ kER)/Ejury,  (4.3)

with Eje=E,— Ea. The o are the off-diagonal multi-
pole strengths (A3) of V., which are calculated in the
np formalism.

The contributions of the pp diagrams (a’) and (b")
are simply related to (4.1), as explained in (3.1)- (3.4).

We have taken, as approximations to U, for this
calculation, two sets of two-body effective matrix ele-
ments, which have been calculated by Kuo and Brown?s
and by Shakin et al.,” respectively. Both sets include
the Brueckner ladder interaction Ug; the Kuo-Brown
set is the “renormalized” interaction which adds some
core-excitation effects to Up. These core-excitation con-
tributions, which are calculated to second order in Vs,
may be treated as high-lying, and therefore transform
as O,.

The dilution effect, which is the near-cancellation of
diagrams (a) and (a’) of Fig. 8, has negligible contri-
bution for o/s%i. The remaining calculated terms are
listed under “Perturbation” in Tables VI and VIIL. The
results are given both in terms of the spectral violations
AE; [Eq. (2.15)] and in terms of the corresponding
multipole violations

Aar= )\(488(:)___ (__.1))\+1a)\ (4ZSC),

where o is defined in (1.3).

We have also carried the calculation of the violation
to higher order in U,. An indication that this is necessary
is given in the calculation by Kuo and Brown'® of the
spectrum of “Sc. They found large admixtures into
some of the (fr2)? states, which imply that second-
order perturbation theory may be inadequate.

We have examined this question by including inter-
actions U, in the 2p excited states in Figs. 8(a’) and
8(b’) for the £Sc case. The complete series of such

(4.4)

17 C. M. Shakin, Y. R. Waghmare, M. Tomaselli, and M. H.
Hull, Jr., Phys. Rev. 161, 1015 (1967); and (private communica-
tion).
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TaBLE V. The single-particle energy differences (E;— E,) for both neutron and protons is used in the
calculations of diagrams in both 2Se and #Sc (in MeV).

7 a “Sc 4Sc
0f7/2 (Ej_Ea)n (Ej—Ea)p (Ei—"Ea)n (Ei_Ea)p
Ofsr2 —6.5 —6.5 —8.38 —5.9
1pss2 —2.1 —2.1 —4.48 —4.4
1pu2 -3.9 —-3.9 —6.58 —6.9

TasrLe VI. Comparison of calculated contributions (in MeV) to thc spectral violation [[(1.7) and (4.5)7: (1) for %S¢, second-order
perturbation, (2) for ©Sc, second-order perturbation, (3) for #Sc, matrix calculation, all using RKB matrix elements. The total viola-
tions are given in terms of the differences AE;: (1) —(2) and Ae?: (1) —(3) in (4) and (5), respectively; (6) gives the experimental
values, from Tables ITT and IV.

(1) Pert. (2) Pert. (3) Matrix (4) Pert. (5) Matrix  (6) Expt.
J E;(48) TE;(42) TE;(42) AEy AEy AEy
0 0.789 0.831 1.471 —0.042 —0.686 —0.868
1 —0.636 —0.368 —0.771 —0.269 0.132 —0.477
2 —0.045 —0.095 —0.040 0.049 —0.008 0.168
3 —0.186 0.019 0.069 —0.206 —0.258 —0.423
4 —0.057 0.261 0.366 —0.318 —0.424 —0.507
5 —0.055 0.230 0.356 —0.286 —0.411 —0.588
6 —0.115 0.236 0.461 —0.351 —0.575 —0.629
7 0.351 0.283 0.565 0.068 —0.212 —0.715
N ar(48) (—DMIM(42)  (—1)M1a2(42) Aar Aot Aot
0 0.0 +0.181 +0.330 —0.181 —0.330 —0.537
1 0.157 0.104 0.210 0.053 —0.053 —0.155
2 0.088 —0.050 —0.058 0.138 0.146 0.030
3 0.064 0.010 0.011 0.054 0.053 0.023
4 0.060 +0.056 +0.056 0.004 0.004 —0.084
5 —0.027 —0.076 —0.110 0.049 0.083 0.100
6 0.055 +0.050 +0.102 0.005 —0.047 —0.073
7 —0.146 —0.095 —0.197 —0.051 0.051 —0.062

TasLE VII. Comparison of the experimental spectral violations [[(1.7) and (4.5) ] with the calculated values, using the RKB and SWTH
matrix elements. For each case, the second-order perturbation (1) and matrix calculation (2) results are listed (in MeV).

RKB SWTH

J\ALE; Expt. (1) (2) (1 (2)
0 —0.868 —0.042 —0.686 —0.097 —0.416
1 —0.477 —0.268 0.132 —0.310 0.069
2 0.168 0.049 —0.008 —0.067 —0.372
3 —0.423 —0.206 —0.258 —0.184 —0.145
4 —0.507 —0.318 —0.424 —0.358 —0.269
5 —0.588 —0.286 —0.411 —0.229 —0.134
6 —0.629 —0.351 —0.575 —0.324 —0.385
7 —0.715 0.068 —0.212 —0.013 —0.277

Mt
0 —0.537 —0.181 —0.330 —0.200 —0.252
1 —0.155 0.053 —0.053 0.048 —0.043
2 0.030 0.138 0.146 0.092 0.005
3 0.023 0.054 0.053 0.038 0.026
4 —0.084 0.004 0.004 0.007 0.055
5 0.100 0.049 0.083 0.053 0.028
6 —0.073 0.005 —0.047 0.030 0.020
7 —0.062 —0.051 0.051 —0.033 0.084
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TaBrLE VIII. Comparison of several average quantities (in
keV) calculated using the experimental Sc spectrum and the
“Sc spectrum with corrections. (1), experimental Sc; (2), shell-
model transform (1.2) of ©Sc; (3) and (4), transform (1.2) plus
many-body corrections, using matrix calculation.

8Sc T (*2Sc) T (2Sc) T (*Sc)
Expt. Expt. +RKB +SWTH
rms deviation 580 310 415
(2741)-weighted 584 296 386
rms deviation
Monopole 895 1423 1093 1171
Isospin splitting 6077 6413 6438 6243
(T=3,4)
V1 —40 —3530 —188 ~293
Vo —1560 —2133 —1798 —1854

ladder diagrams is equivalent to the solution of a
secular matrix problem, in the orbital space jk, jo, ak,
and a@. This is similar to the matrix problem treated in
Ref. 16, except that we omit (ge2)? which we consider
“high-lying.” We may compare the result of this calcu-
lation with the perturbation calculation discussed above,
as follows: We diagonalize the matrix and identify the
eigenvalues associated with (fz2)% Since this matrix
includes the o states (a5%£7) which we have eliminated
from our perturbation results, we subtract from these
eigenvalues the eigenvalues of a reduced shell-model
matrix in the space jk, a8 (a7#j, B#k). This difference
of eigenvalues

E;(42)=F;(matrix)— E; (matrix, no je, k) (4.5)

is the energy shift due to the sum of violating diagrams
in £Sc. The contribution to the violation (2.15) is given
by the transform 7TFE;(42) [Eq. (1.2)]. These matrix
results are shown in Table VI for the renormalized
Kuo-Brown (RKB) two-body matrix elements. By
comparison with the second-order perturbation results
listed in the table, we see that the higher-order terms of
the series make considerable difference to the results.
A complete matrix calculation for #Sc using the same
(f-p shell) orbits is neither feasible nor desirable. We
have investigated the summation of series of ph dia-
grams, of the types (a) and (b) of Fig. 8, including
ladders of interactions in the intermediate states,
similar to those which are significant in #Sc. We find
that, unlike the #Sc case, these higher-order terms do
not make a major contribution to the energies E;(48).
Apparently the configuration mixing in #Sc is weak
enough to be described adequately in second order.
This can be understood in part by the fact (Table V)
that the single-particle excitation energies are higher in
S¢ than in #Sc. This holds particularly for the psp.
level, which causes much of the strong admixing in #Sc.
For these reasons, we have used the second-order per-
turbation results for #Sc in Tables VI and VII. We are
investigating further the higher-order structure of #Sc.
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The resulting violations (AE;, Ac*) computed using
both the second-order and the matrix results for ?Sc are
listed in Tables VI and VII, and may be compared with
the experimental values, taken from Tables IT and IV.
It is clear that the matrix results may account for a
large part of the experimental violation. For example,
the rms deviations between the experimental and calcu-
lated spectra of #Sc are given in Table VIII. The 580-
keV rms deviation obtained by simply transforming
(1.2), the #Sc spectrum, is reduced by % for the RKB
calculation and by % for Shakin et al. (SWTH)."

We note that in the calculations, as in the experi-
mental case, the monopole is the largest violating term,
and contributes most to the [/ J-weighted rms deviation
(537 out of 584 keV, experimental).

A way of measuring the quality of all the calculated
multipoles is given as follows: We consider the Ao as
the components of an eight-dimensional vector A. Then
our measure is given by two numbers: the ratio of norms

of the theoretical vector A(f) and experimental vector
Ale):

N=[A@|/|AC)], [A*]|= ; (Aar)?,  (4.6a)
and the scalar product of the normed vectors:
X=A@)-Ae)/|AQ) || Ale) |,
A)-Ae)= 2 A (1)Ac (e). (4.6b)

N is a measure of the magnitude of the calculated
violations, while X is a measure of the direction in the
eight-dimensional space, both relative to the experi-
mental numbers. A perfect fit to experiment is V=X =
1. We weight equally each multipole in (4.6), since the
strengths are normalized to give equal contribution to
the [J]-weighted rms deviation:

|A(e)—A(0) |
= {EJZ [VI[AE;(e)—AE, (t)]z/EJJ e (&7)

It is also useful to separate out the monopole term
and take the remaining multipole strengths as the com-
ponents of a seven-dimensional vector, and calculate

TaBre IX. Values of the quality measures N, X [see Eq.
(4.6) ] calculated for RKB and SWTH matrix elements, given
both including (eight-dimensional) and omitting (seven-dimen-
sional) the monopole term. A perfect fit to experiment would be
N=X=1.

Measure RKB SWTH

With monopole (eight-dimensional)

N 0.659 0.477
X 0.889 0.828
Without monopole (seven-dimensional)
N 0.863 0.520
X 0.488 —0.042
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new values of N and X. Both sets of measures are given
in Table IX, for the matrix calculations with RKB and
SWTH matrix elements. One sees that when one in-
cludes the monopole, the SWTH calculations are a
slightly poorer fit to experiment than the RKB, but
when the monopole is excluded, the SWTH are much
poorer. This is reflected in the signs of the Ao in
Table VII.

Another measure of the quality of the calculation
may be obtained by comparing the average isospin
structure of #Sc and “Sc. We define the [J] average
interaction for fixed isospin 7', for the pp system:

Vr= ; L/1{1=(= 1)T+’}Ef(pp)/§? 11— (=1)™/}.

(4.8)

The difference V (1)—7V (0) gives the average isospin
splitting in “Sc. For ¥Sc we may obtain the [J] average
isospin splitting between the T'=4 (J=0) and 7'=3
(J=1-T) levels, using

E@)—EQ@)=4V(1)—TV(©0)]. (4.9)

[This equation is a special case of Eq. (6-21) of Ref. 18.]
In Table VIII we compare the isospin splitting for Sc
[left-hand side of (4.9) ] with that obtained from the Sc
spectrum [ right-hand side of (4.9)], and find a violation
of (4.9) by 336 keV. By including the violating inter-
action, the effective value of 4[V (1)— 1V (0)] is shifted
by —170 keV for the SWTH calculation, improving the
agreement. However, here the RKB result is in the
wrong direction. In Table VIII we also list the “‘effec-
tive” V(T') for #Sc, defined by Eq. (4.9) (and the
monopole shift).

5. CONCLUSIONS

The theory presented seems to provide a basis for
quantitative understanding of the discrepancy between
the experimental spectrum of ¥Sc and that predicted
by applying relation (1.2) to the spectrum of “Sc. The
agreement which is achieved indicates that the theo-
retically predicted violations are physical effects and do
account for the major portion of the discrepancy. It
should be stressed again that the monopole is the largest
part of the discrepancy. Bertsch® has calculated the
contribution of three-body terms, similar to those of
Fig. 7(c), to the binding energies of the closed-shell
nuclei ¥Ca and *Ni. The additional energy may be
simply related to the Sc contribution to the monopole

discrepancy in our problem, and the numerical results

are in approximate agreement.

We note that the calculated results are sensitive to
the choice of U, matrix elements, and that the RKB
matrix elements lead to generally better agreement with
experiments than do the SWTH matrix elements.

In principle, to improve the calculations, one should

18 J. B. French, in Nuclear Structure, edited by Hossain et al.
(North-Holland Publishing Co., Amsterdam, 1967), p. 85.
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include more intermediate configurations and higher
orders in the interaction V.. This we have done in part
with the matrix calculation for #2Sc. We are investigating
similar extensions in “Sc. However, we foresee the
problem, which also occurs elsewhere in spectroscopy,
that this procedure is not convergent if there are low-
lying configurations involving excitation of many par-
ticles (“collective” states). The Kuo-Brown renormal-
ization was intended to include effects of the latter.
Perhaps this is why we find better agreement in the
signs of the multipoles for RKB than for SWTH, which
has no core polarization. We have seen that the viola-
tion of the relation (1.2) may be thought of as due to
configuration mixing. However, we have also seen that
only particular configurations, which either occur only
at one end of the shell or whose admixed strength
changes with the core, contribute to the violation. For
example, the early calculation by Pandya and French®
of #CI-YK included some of the first kind of terms.
Other configuration mixtures, which we have charac-
terized as high-lying, have little effect on the ph relation.
Conversely, the degree of agreement of experimental
spectra with relation (1.2) is not a measure of con-
figuration purity.

Clearly a similar approach can be applied to other
spectral relations in the shell model, for example, the
transformation of a pp to a hh spectrum. Further work
in this direction is under way, and will be reported in a
subsequent paper.
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APPENDIX A

We discuss in this appendix the multipole form of the
two-body interaction and also the form of the ph trans-
formation in the multipole representation.’ An example
of a calculation of a perturbation diagram is also worked
out, using the multipole formalism.

Consider any two-body interaction which conserves
the total angular momentum J of a system of particles;
this can be written in the second-quantized form

Vo= > [J]V%(Im;J | Vo | nr;J)

imnr,

(A XA,)  (BuXB)TP
[<1+5lm>”2 (1+am)1/2]' (A1)

The operators 4, and B, are the spherical-tensor crea-
tion and destruction operators, respectively, for a par-
ticle in the state z, where » may stand for the orbital
quantum numbers (%, /,7,%). The tensor operator
(41X Am)T creates two particles in the single-particle
states I and m, coupled to total angular momentum 7.
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The normalization is chosen so that the double-barred
matrix element (dbme) of the operator portion of (Al)
in the state (7k)7 is unity for [, n=j and m, r=Fk, with
j#k. The coefficients {jk;J | Vol jk;J) are the con-
ventional two-body matrix elements of V5.

An alternative form of V3, which facilitates the com-
parison of the experimental violation of the ph trans-
formation with those calculated using the results of
Sec. 2, is obtained by means of an angular momentum
recoupling of the operator portion of Vs. This recoupled
version of the two-body interaction is written in (A2)
in its multipole form

wr(In)u (mr)
(160 )12 (14-0,r) 12
(A2)
The expansion coefficients o (Imnr) are the multipole
strengths of tensoral rank A, and the #*(/z) are the

diagonal Racah unit tensors that operate in the single-
particle space such that their dbme is unity:

| w@m’) || m)=0ubmm,

Vo= > [Im\]"2* (lmnr)

lmnr,\

with the single-particle normalization
@)1 || 72) = [ 1]V2 = b1 (241)V2,

The expansion coefficients of (A2) are related to
those of (A1) by means of a Racah coefficient which
determines the angular momentum recoupling involved
in going from the one form to the other:

o (Immr ) = NIm 12 3 (— 1) —I[LT W (Imnr; IN)

X{Im; J | Vo |nr; J). (A3)

This equation relates the multipole strengths to the
standard two-body matrix elements of the interaction
and can be inverted to yield

(P T | Vo [ Ty=[Im JV2 20 INJ2 (= 1)
A

XW (Imnr; IN)o (lmnr).  (A4)
The transformations (A3) and (A4) may be easily
derived using (A1) and the operator form of the Racah
unit tensor in (A2):
w(In) = N2 (A X Bu )M (AS)
The ph transformation can be written in terms of
multipoles if we transform the particle 4,, and B; to
hole operators, using® By= (—1)%4;(h) and 4,,=Bu (h).
Now the pp unit tensor in (A2) may be rewritten, by
commuting A, B, in the form

M (mr) = (— 1) (=) [ [V26,:000.  (A6)

With this replacement of the unit tensor in (A2) the
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two-body interaction take the ph form
Vo= Z (_ 1 )m—r~)\+1|:lm)\]1/2a)\ (lmm’)

Ilmnr,\

Xur(In) o (i) + > [m 1]V (bmnm )u® (In).
(A7)

The extra one-particle term arises from the commuta-
tion of A, with B, and is seen to be a monopole term.
It should be included in the definition of the single-
particle energy U, so that it does not contribute to the
two-body interaction of the particle and hole. For this
reason the one-body part was dropped in our definition
of the ph interaction energy in Sec. 1.

Comparing the first term of (4.7) with (A2) immed-
iately leads to a pp-ph transformation for multipole

coefficients:
o (lmnr ) = (— 1) MM (I~ nr ). (A8)

The recoupling (A4) leads to the more familiar form of
the pp-ph transformation

G TV | g Iy=— 23 [JIW (bmrn; 1T)

X{m; T | Vo | nr; J).  (A9)

Note that odd-A and even-\ multipole strengths trans-
form differently in (A8); with m=r, for even \ they
change sign, for odd they do not.

Diagrams may be calculated using the multipoles
defined by (A2) with the least amount of recoupling.
As an example, consider diagram (b) of Fig. 6; the
interaction V. in this case is replaced by the reaction
matrix Up (see Sec. 2), which can also be written in
forms (A1) and (A2). The latter form for the con-
tributing portions of the two interactions are, from the
top down,

DVtop = ; [ 7N "2 (jaB)u ( jou) - (RB),

Obottom= 2 [ JEN" 1% (aBjk )0 (o) - M (B),
N

so that the matrix element corresponding to this dia-
gram may be written

(7575 T | Vtop (Qap/ Eag)Ovotton | 7K T)
= (Ljk1/Eap) MZW DWW 12t (jkaB) e (aBik)
X (G4 T | ur(ja) - ur (kB) | o[ B (R2)" 1% T)
X a[B(k2)" T T | uM (af) -V (B) | &5 T )-

This expression can be evaluated by decoupling the
spaces, using

(R T | (Ga)- o (kB) | o[B8 (k)14 T)
= (= 1)#~TW (jkow; TN (G || 9 (Geo) || @)
X (E || ur(%8) || B(R2)"; u),
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so that the final result is
(G T | Otop (Qup/ Ea)Vbottom | 75T )
=— 2 [u]W (jkkj; uf){; IN2NES
"

XW (jkaB; uh)a (jkaB) }2Elst.  (A10)

This expression shows that the diagram and its matrix
elements do transform properly, unless, of course, the
intermediate state is low-lying. All the diagrams of
Sec. 3 are calculated using this procedure.

APPENDIX B

In this appendix we shall prove that terms in 9,
designated as high-lying (Sec. 2), do transform by (1.5).
We shall use the diagrammatic form of perturbation
theory, in which one associates diagrams with individual
terms in the perturbation expansion of the diagonal
matrix element of U [Eq. (2.1)] (see Refs. 7 and 8).

Consider diagrams for the pp matrix elements (2.2)
of the form shown in Fig. 4(a), where the blocks
schematically represent the possible interactions in that
given time interval. This kind of diagram is associated
with what we have called a high-lying term in Sec. 2,
if the blocks contain 7o valence lines, and if the denom-
inators are sufficiently large, as discussed. We have also
restricted the diagram to be linked in that there will be
a connection of the valence lines through at least one
interaction. This allows us to use the linked-valence
formalism? (2.1”), which can only be done in a dia-
grammatic formalism. The projection method in (2.3)-
(2.12) does not separate linked and unlinked terms.

The diagram is constructed as follows: At the vertex
fo the interaction V, takes the particle line % into the
block (1), which begins with two particle lines «, 8, and
a hole line 1. We can write this operation as [see
Appendix A, Eq. (A1)]

; (aB; Ly | Va| uk; L1){(So; Jo |

XL (AeXAg)"X (BuXBr)“ ] | &),

where .Sy stands for the coupling of «, 8, and y~* with
total angular momentum J,. Similarly, at vertex 4 we
will encounter a matrix element of the same form as
(B1), but with B; replacing B;. At vertices £, and #,
the particle creation and destruction operators in (B1)
are reversed, and we obtain A; and Ay, respectively.
The matrix element corresponding to the entire diagram
(a) of Fig. 4 will contain four factors of the form (B1),
multiplied by a number of factors corresponding to
interactions in the blocks, and the energy denominators
which give the propagation of the system between
interactions.

Because, by assumption, we are dealing with high-
lying terms, the operators 4 and B, (and also 4; and
B;) occur only once in the expression for the diagram,
and only at the “corner” vertices as discussed above.
It is convenient, in a discussion of the transformation

(B1)
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of particle % into a hole, to bring the operators 4, and
By, together in the expression for the matrix element for
the entire diagram (a) of Fig. 4. This involves implicitly
commuting 4 and Bj over any other operators which
appear (but not over each other), and recoupling the
angular momenta from the forms (B1) so that 4 and
B;, form a unit tensor [see (A4)]:

uwr (kk) =[NT2(Ax X Bi)M.
Then the matrix element can be written in the form
Ep (jk; )= (jk; J | V(D) | jk; J)  (B2a)
= ; [T*Xu* (k) D, (B2b)

where T™ is a spherical-tensor operator of rank A, which
will contain 4;, Bj, and the other operators, matrix
elements, and denominators implied by the structure of
the diagram.
Now consider the matrix elements of the operator
V(D) in (B2b) in the ph state (7, k% I):
(jk5 1| 0.(D) | jk5 1). (B3)
This can be calculated, following the discussion in
Appendix A, by transforming #* (k%) to #* (k&™) using
(A5). The operator (B2b) takes the form [see (A6)]

Ve (D) = ; [T)‘XM)‘ (k—-lk——l)]ﬂ (_ 1))\+1+ [k]lﬂTO_ (B4)

If we take the matrix element (B3) using the separa-
tion (B4), we obtain two terms which can be identified
with Figs. 4(b) and 4(c), respectively. That is, in the
first term of (B4), the order of A; and Bj have been
reversed, corresponding to the interchange of particle
and hole roles at the vertices % and #. The second term
comes from the commutation of 4 and By, and corre-
sponds to the “Pauli correction” (disconnected) of
Fig. 4(c). Since this diagram contributes to the single-
particle energy relative to the new (filled % shell) core,
we do not include it in the ph interaction energy, which
is therefore contributed by the first term in Fig. 4 (b).

The identification of the matrix elements (B3) of the
two terms of (B4) with the ph diagrams in Figs. 4(b)
and 4 (c) is possible only because the same operator 7™
appears in both pp and ph diagrams. That follows from
the fact that only external lines have been altered in
going from Fig. 4(a) to Figs. 4(b) and 4(c). This does
formally change the energy denominators, that is, if, for
some intermediate ‘‘time,” the denominator in Fig.

4(a) is
Ey—Ho=E;j+ Ey— Eint, (B3a)

then the denominator in Fig. 4(b) [of 4(c)] at the same
“time” is

(Eo— Hy) =Ej+ Ey1— (Eint+2E;1)

=Ej—E}c-1"— Eint,, (BSb)
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where Eins is the excitation energy of the intermediate
state in the pp diagram and Ein¢’ is the excitation energy
of the same particles in the ph diagram. We would have
(B5a) = (B5b) if Ej-t=— E;, and Eint' = Eins. Although
these conditions do not hold in general, we will have
Ey—Ho= (Ey—H,)’ (B6)

under the condition that we have described as high-
lying, that is, if each of the energy denominators is
larger than the variation in Ej or Eint.

Finally, we find that the ph interaction energy con-
tributed by Fig. 4(b) may be written

Ep(jk5I)= Z)\: (=1 (GRS T
XX (%) 1 | o5 1), (BT)

which can also be written as a transform of the contri-
bution (B2a) of diagram (a) of Fig. 4 to the pp inter-
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action energy, following (A8):
Ep (jk7%; I)=— 2 [JIW (jkkj; I7)Ep (jk; J). (B8)
7

This completes the proof of the theorem that high-lying
diagrams contribute to the conserving valence effective
interaction U, [Egs. (1.5) and (1.6)].

If the diagram (a) of Fig. 4 has vertices # and &
interchanged, then there will be two particle lines
between # and #. Then the “Pauli-correction” (dis-
connected) diagram appears for the pp case, and the
roles of pp and ph are interchanged in the above proof.

Finally, we note that the restriction that the particle
operators A; and B; must appear only once each is not
necessary for the proof, since these operators are con-
tained in 7%, and do not change in the ph transforma-
tion. This implies that our definition of high-lying terms
is somewhat more restrictive than necessary. This has
no practical effect on the calculation of the violating
contributions, however, since conserving terms would
cancel in (2.15).
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Three-Body Model of Li® and Deuteron—Alpha-Particle Scattering™
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The properties of Li® and deuteron—-a-particle scattering are studied in an exact three-particle model in
which the neutron, proton, and « particle interact through separable two-body forces. The « particle is
assumed to be structureless, and Coulomb effects are neglected. As a representation of the nucleon—-a-particle
interaction, a three-term separable potential fit to low-energy neutron—a-particle scattering is introduced in
the partial waves sis, pass, and pije. The s1/2 interaction is taken to be repulsive, while the other two are attrac-
tive. The three-body formalism of Amado is generalized to allow spin-dependent two-body interactions in an
arbitrary partial wave. Numerical solution of the resulting three-body equations gives the binding energies
of the 7=0and 7'=1 states of Li® as well as phase shifts, angular distributions, and deuteron polarization in
d-a scattering, and also the total cross section for d+a—n-+p-+a up to 30 MeV. Most of the calculations
have used only an s-wave #-p interaction, but a limited number have been done with the d state of the
deuteron included in order to assess its importance. Given the assumptions of the model, the agreement of the
calculated quantities with experiment is very good. Some discussion of the results with respect to phe-
nomenological optical-model fits to deuteron-nucleus scattering is also given.

I. INTRODUCTION has yielded results in rather good agreement with
experiment but the complexity of the nucleon-nucleon
interaction and complications cf spin have prevented a
really complete calculation from being carried out. What
has been learned from this work is that one may success-
fully employ quite simple two-body interactions if three-
body effects are treated exactly. In this paper we carry
out a similar analysis? for a system consisting of a neu-
tron, proton, and « particle. The spinless nature of the
« particle reduces somewhat the complications which
hamper a complete treatment of the problem of three
nucleons.

N recent years, considerable progress has been made
in understanding the three-nucleon system by the
use of the separable approximation in equations of the
Faddeev type.! In this approximation a small number of
separable two-body amplitudes are adjusted to fit low-
energy nucleon-nucleon scattering and these amplitudes
are subsequently used as input in some form of three-
body equation. Numerical solution of these equations
* Research supported in part by the National Science Founda-
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L For a review, see Three Particle Scattering in Quantum Me-
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2 A short account of this work appeared in P. E. Shanley, Phys.
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