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A model for even "superconductor" nuclei is proposed and developed. In this model the ground state is
approximated hy the component of a Bardeen-Cooper-Schrieffer (BCS) state corresponding to a fixed
particle number. The low-lying excited states are then obtained by diagonalizing the nuclear Hamiltonian in
the space spanned by the particle-hole elementary excitations and, for J=O, by the ground state itself.
Expressions for the matrix elements of the electromagnetic operators are also given. In the final section, the
results obtained from this model for some even tin isotopes are compared with the experimental results and
the corresponding results of an ordinary BCS-Tamm-Dance approximation. Thus, we are able to give a
direct evaluation of the effects of the particle-number nonconservation in the Tamm-Dancof7 approximation.

I. INTRODUCTION
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~X exact shell-model calculation for tin isotopes is
.( practically impossible, because of the dimensions

of the problem. In general, the situation does not
change qualitatively if we limit ourselves, as usual, to
consider only a few valence nucleons in a few accessible
subshells, and we treat the remaining nucleons as an
inert core. Consequently, it is necessary to introduce
approximate methods for treating the nucleons in the
extra-core configurations.

The fact that the character of the nuclear forces
contributes to the formation of pairs of nucleons with a
resultant angular momentum J=O, suggests that the
lowest-lying nuclear states must correspond to low
values of the seniority quantum number. This guess
has proved to be correct for the nickel isotopes de-

scribed by a shell model within the identical-nucleon
configurations (2pp&, 1f&~&, 2pi~&) ".' ' Unfortunately,
for tin isotopes this seniority truncation leaves the
dimensions of the problem still beyond the possibility
of using computing techniques. For example, for Sn"
considered as an identical-nucleon system wherein
neutrons occupy the subshells 2d5~2, 1g&~&, 3s&~&, 2d3~&,

1hzpp there are 110 states of seniority zero and over
1000 J=2+ states of seniority 2.' Hence, for nuclei
such as tin isotopes, the low-seniority states should be
approximated. For this purpose the techniques derived
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'S. Cohen, R. D. Lawson, M. H. Macfarlane, S. P. Pandya,
and M. Soga, Phys. Rev. 160, 903 (1967).

3 L. S. Hsu, Nucl. Phys. A96, 624 (1967); L. S. Hsu and J. B.
French, Phys. Letters 19, 135 (1965).

from the BCS theory of superconductivity are a very
powerful tool.

The BCS theory assumes that, at the lowest order,
the ground state of a spherical even-even nucleus can
be approximated by the qua, siparticle (qp) vacuum.
The properties of the low-lying levels are then ob-
tained by conveniently taking into account the residual
interaction between the qua siparticles. Satisfactory
agreement with the experiment is in general attained
by an exact diagonalization of the residual interaction
between all two-qp states. 4 This procedure is known as
the Tamm-Dancoff approximation (TDA). In a more
sophisticated treatment (which we shall refer to as
TDA4), the residual Hamiltonian is diagonalized in
the space spanned by zero-, two- and four-qp excita-
tions. ''' Here we do not mention the random-phase
approximationr (RPA) because it was found that TDA
and RPA gave essentially equivalent results. '

Formally, the Tamm-Dancoff approximations (TDA
and TDA4) provide the advantage of reducing a
problem of several nucleons into a problem of very few
quasiparticles. On the other hand, unfortunately, in the
BCS theory the particle number is not conserved. The
BCS ground state for an even system results in a sum
of components with all possible even numbers of
particles from 0 to the maximum occupation number

R. Arvieu, thesis, University of Paris, 1963 (unpublished); R.
Arvieu, E. Baranger, M. Veneroni, M. Baranger, and V. Gillet,
Phys. Letters 4, 119 (1963); R. Arvieu and M. Veneroni, ibid.
5, 142 (1963); R. Arvieu, E. Salusti, and M. Veneroni, ibid. 8,
334 (1964).
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of the subshells we consider. Only the expectation value
of the number operator is kept equal to the effective-
particle number.

For the excited states, the particle-number non-
conservation introduces spurious components in the
space in which we want to diagonalize the Hamil-
tonian. ' Take, for instance, the ordinary TDA, If we
operate on the BCS ground state with the particle-
number operator and take the part that is orthogonal
to the BCS state, we obtain a 0+ spurious state. This is
the only spurious state which is completely contained
in the TDA basis. Other spurious components which
arise from the successive powers of the particle-number
operator are partially inside and partially outside the
TDA space. Various methods have been proposed and
applied to eliminate the most important spurious states
before the diagonalization. "'"However, their com-

plete elimination by these methods is practically im-

possible.
In order to deal with this difficulty, we suggest a

modification of the ordinary BCS-Tamm-Dancoff
approximation for the extra-core nucleons which per-
mits particle-number conservation in a simple manner.

We shall refer to the components of the BCS state
and the two-qp states, corresponding to a fixed particle
number, as projected states (projected BCS state and
projected two-qp states, respectively). '

We will assume that the ground state can be con-
veniently described by taking a projected BCS state
as a trial function in a variational sense. It is possible
then, by acting on the so-defined ground state with the
nucleon annihilation and creation operators, to in-

troduce particle-hole excitations. We shall assume that
the lowest-lying levels can be suitably obtained by
diagonalizing the nuclear Hamiltonian in the space
spanned by the ground state and by the particle-hole
elementary excitations (for J=O, these states are not
orthogonal to each other).

This permits us to mak. e direct use of a simple
formalism we have described in a previous work. ."
In fact, through the parameters determined by the
ground-state energy-minimization procedure, we can
introduce (in the sense of the Bogoliubov-Valantin
canonical transformation) qp creation and annihilation
operators. These operators automatically define a
projected BCS state and projected two-qp states. The
so-defined projected BCS state coincides exactly with
what we have taken as the ground state. Moreover, it
can be proved that the space spanned by these pro-
jected states is equivalent to the space in which we
wish to diagonalize the Hamiltonian. In other words,

' A complete description of the spurious states introduced by
particle-number nonconservation will be found in M. Grnitro,
A. Riminj. , J. Sawicki, and T. Weber, International Atomic
Energy Agency Report No. IC/68/29, (unpublished).' T. T. S. Kuo, E. U. Baranger, M. Saranger, Nucl. Phys. 79,
5i3 (i966)."P. L. Ottaviani and M. Savoia, Phys. Rev. 178, 1594 (1969).

it is exactly equivalent to "work" with the projected
states or with the particle-hole excitations. Therefore,
we shall call this model a projected BCS-Tamm-
Dancoff approximation (PTDA). It differs from the
projected model applied by various authors' ' to study
nickel isotopes in two respects: First, we determine the
ground-state properties by directly minimizing the
energy of a projected BCS state. Of course, that is more
consistent than solving the BCS equations and then
projecting the required eigenstate of the number
operator from the obtained BCS state. Second, we
make use of a different method for calculating matrix
elements between projected states. This method is
based on the generating-function technique. In Sec.
II we develop the mathematical formalism of the
PTDA, and in Sec. III we derive expressions for the
matrix elements of the electromagnetic operators in
the framework of this formalism. In Sec. IV the model
will be applied to the even tin isotopes with A ranging
from 116 to 124. In these isotopes, 50 protons and 50
neutrons will be treated as an inert core. We shall
limit ourselves to considering the remaining 2P extra-
core neutrons, distributed among the five subshells:
2d5/&, 1g7/&, 3s&/2, 2dsp and 1h»/&, as the only active ones.

a= P Z.sc.tc.+-', P (oP I
V

I YS)c.tc,tc,c„(1)
0; +PALS

where U= V(1, 2) (1—P») is the antisymmetrized
nucleon-nucleon interaction potential and E ' the energy
corresponding to the single-particle shell-model state
y . Here, o. designates all the quantum numbers which
characterize a single-particle state, namely, n=—m,
/„, j, m =a, m (—n—= a, —m ). The operators c t and
c are creation and annihilation operators for a nucleon
in the state p .

We assume that the ground state of the system should
be conveniently approximated by the trial function

I A.&= ( II ~ /P ) I: 2 ('./N. )~-c-'~--']"
I

O) (2)
n&0 n)0

where s = (—)' . It is a projected BCS state (not
normalized) corresponding to 2p particles. The param-
eters I and e are then to be determined from the re-
quirement that the expectation value

&=8.I
&

I A.)/9 ~ I A.)

be stationary. " We shall impose the usual condition
u '+n, '=1. The resulting equations for the n, a,nd n,
coefficients are given in Sec. IV.

~2K. Dietrich, H. J. Mang, and J. H. Pradal, Phys. Rev.
135, 822 {1964).

II. THEORY

We describe an identical-nucleon system by the
standard shell-model Hamiltonian
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Starting from
I P») we introduce particle-hole exci-

tations as

I
&ph(abJ~))= & (j.jh,. 2/2. 2/2//I J~)s.c//tc=

I 42 )
mamp

where ( j,jh, 2/2 2/2//
I
JcV) are the usual Clebsch-

Gordan coe%cients.
We shall suppose that the energies and the wave

functions of the lowest-lying levels can be conveniently
obtained by diagonalizing the shell-model Hamiltonian
in the space spanned by the vectors of Eq. (4) and by
I tP2„) (for J=O, these sta, tes are nonorthogona. l to each
other).

However, instead of start directly from the particle-
hole states for constructing the space which we wish to
diagonalize the Hamiltonian, we shall follow, for our
convenience, a slightly different but equivalent way.

Through the I and e parameters determined by the
minimization procedure of Eq. (3), let us define qp
creation and annihilation operators by a Bogoliubov-
Valantin canonical transformation:

aa =+ace sui/sc —a and aa +aca sa2/ac —a ~ (S)

We shall indicate their vacuum by I Pp&. Starting
from

I Pp&, we can also introduce two-qp states, defined

I
4~~(ab) &

= 2 (j jp ~-~s
I
~~) as"a-'

I &p& (6)
mamp

States (6) are always defined with the ordering a& b, in
order to avoid repetitions. It is seen immediately that
the 2p-particle component of

I pp& coincides with

I p»&, the projected BCS state which we have assumed
as ground state. We shall indicate the 2p-particle
component of state (6) by I $2„,zir(ab) ). As we have
said in Sec. I, it will be referred to as a projected two-

qp state.
Particle-hole states and projected states are not

independent. In fact, it can be proved that

h( a~bj) )= 2/p2/.
I

'/p2—,,~/p/(ab) )+blpg. 2.'
I /p»), (&)

where g.= (2j.+1)'".
It is then evident that we can make use of the pro-

jected states
I $2~) and

I $2„,q2r(ab) ) as starting point.
for constructing an orthonormal basis in the space in
which we wish to diagonalize the Hamiltonian. For
J/0, this construction does not present any difhculty
because the projected two-qp states are already
orthogonal to each other (in this case they directly
coincide with the particle-hole states). The situation
is more complicated for J=O. In fact, for J=O, pro-
jected states are no longer orthogonal to each other.
Full details on the orthonormal basis construction will
be given in Sec. IV. For now, we merely point out
that, starting from the projected states, we can make
direct use of a technique which we formulated in a
previous work for calculating matrix elements. " This
technique is based on the use of the generating func-

tions" for the projected states defined as

8 = 8" 2u

Q2„ I
0

I &2„)= dks —' '(p(z)
I
0

I p(z)), (10)

&A„ I
0

I A, ,,~(«') &

ds z 2" 'X (P(z) I
0

I
its//r(aa'; z) ), (11)

(ys„,~sI(bb')
I 0I y„,, 2r. (aa') &

dh z-2&—'X (Pgsi(bb'; s)
I
0

I Pg pI (aa'; s) ), (12)

where the contour of integration includes the origin.
The generating functions can be expressed in terms

of the c„~ and c operators. In fact, we have

I 4 (s) )= II (N.+s.sv.c.tc .")
I 0)

a&0
(13)

I
&J~(aa'; k) )= p (j.j. ;2/2. 222.

I
JM)

mama ~

X(g. zc 2 s 2/. c —)(N.kc t —s 2/, c .) I P(z)). (14)

If we want to use Eqs. (10)—(12) for the matrix
elements of the Hamiltonian between projected states,
we have to be able to calculate in a simple manner the
corresponding matrix elements between generating
functions. This can be done if we de6ne a new set of
creation and annihilation operators through a s-
dependent canonical transformation

+aCa SaS&aC—a
d t=—,d„= . 1S

SaCa —SaZ'V~C

(~ 2+k22/ 2) 1/2 (2/ 2+Z2~ 2) i/2

The generating function
I P(s)) is the vacuum for

these operators, and
I

fq/2/(aa'; z) ) can be rewritten as

J~ GQ? S

z2Dg//r 2 (aa') —bgp g,g, i/, z (s'—1) ps, 16
(2/ 2+ Z221 2) 1/2 (2/, 2+ k22I, 2) 1/2

where

D,~t (aa') = P (j.j. ; m.~..
I
Jm) d..td. &.

mamai

Transformation of the shell-model Hamiltonian
(1) in terms of the d t and d operators does not
present any difhculty. All we have to do is ob-

"B.F. Bsyman, Nucl. Phys. 15, 33 (1960).

and
14~~(ab; s) &= Z z"+'

I 0»,~~(ab) ) (9)

The functions (8) and (9) have the property that
matrix elements between projected states of any
operator 0 preserving the particle number can be
derived, apart from an identical constant factor, by
using the equations
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serve that the transformation (15) is perfectly equiv-
alent to a 8ogoliub ov-Vala tin canonical trans-
formation if we change u, into u, (u, '+s'v ') " and
v, into sv, (u'+s'v, ') '". Obviously, the operators
d ~ and d reduce, for z = 1, to creation and annihilation
operators for quasiparticles of the BCS theory

I
see

Eq. (5)J. Hence, the trick consists in simply taking
the Hamiltonian that one obtains after the Bogoliubov-
Valatin transformation and before the elimination of

the dangerous terms (by setting the chemical potential
equal to zero), and in changing u, into u, (u, +sov, ')
and v, into sv, (u, '+s'v ') '/'.

The 6nal result is that we can write the transf ormed
Hamiltonian as (i.e., see Refs. 5 and 7)

H = Ho+ Hll+ H02+H20+H40+ H31+H22+H13+ H04)1

(18)
w'here

Ja va &a 1 ~ - 2& va vb fo(aabb)+uavaubvbgo(aabb)

(u 2+s2V 2) (u 2+22V 2)

ga(ua S—va') E- - (ua —2 va ) 'vb f'p(aabb) —uavaub vbg p(aab'b)
Dpp(aa)

u 2+s2v 2 (u 2+s2V 2) (ub2+22vb2)

(19)

(2o)

gauavaK 1 4&uavavbfo(aabb) —ubv/, (2'v, '—u, ')g, (aabb)
Dpp aa),~ 2 z2~ 2

b (u 2+sov 2) (ub2+spvb2)

2 uaubvav4gg(bacd)

$(u 2+s2v 2) (u 2+s2V 2) (u 2+22V 2) (u 2+s2v 2) $1/2

S(uaubuav0 —2 VaVbvau3) gg(bacd)

((u 2+22V 2) (u 2+220 2) (u 2 s2V 2) (u 2 22v 2) ]1/2

(21)

(22)

(23)

(uaubuaug+2 vavbvavg') gg(bade)+4s uavbuavyf g(bade)
H22 ——

3 Dq34 (ba) DJ34(dc).
L(u 2+22v 2) (ub2+z2vb2) (u 2+sov 2) (u 2+22V 2) jl/2

The operators D~u(ab) and D~~(ab) a,re defined as

Ds~(ab) = P&r,~'(ab) )'

(24)

(25)

Dzu(ab) = Q s.(j.jb, —223.2/3I3 I
JM)dp'd. . (26)

m4xmP

f~(abed) and g~(abed) are antisyinmetrized matrix elements of the interaction and are defined, for example, in
Ref. 5.

From Kqs. (10)—(12), (16), (19)—(24) and. using the commutation rules for the operators D, D+, and D (see
Appendix A of Ref. 5), we can derive matrix elements between projected states of the Hamiltonian (18), We find

(A. I
H

I A.)=R'", (27)

(&" I
H

I A. ,~~(ss') )= &»{R20'"($$)—~.u'. LRO' '($) —Ro'"(s))}, (28)

Q'», ~~(ss ) I
H

I
$2&„rbr(tt') )=40{ &au.v, [R202~2(t—ts) —Rooo" (tts) g

J~lu/v/LR20 (sst) —Rop "(sst) j+g.uav g u v [Ep 1 (st) —2R 4 (st)+R02&(st)]}
+by(ss', tt')(Rp'~2(ss')+R, 12~2($$$')+R,12~2(s'$'s) j+R»($$'tt' J') (29)

where

R b(p. ..t) —Qpv 2+ 0Ib—2(ap. ..t)
+-,' Q g. g L2 b. Vf2v(bapa0bb) P '(abp. ~ .t)+u v ubvbg (aabb) P '(abp ~ t) ] (30)—

ab

R2o'(PP'" t) = 2&.u"A''I' '(PP—'" t)

l Z7.{4 " fo( —PP)I" '( PP'" t) . go( PP)L'I"—'(PP'" t) 'I" '( PP'" t)l—l (31)

R»'(pp'" t) =E,'[e„2P(pp'" t) —V.'P '(pp'" t)]-
+2 +7agn '{v 'fo(aaPP) fun'P '(aPP ' 't) VV'I" '(aPP'. ~ .t) j —u,v,uvvvgp(aaPP—)I '(aPP' ~ .t) } (32)—

R»"(pp'qq', J) = ,'P, (pp') P, (qq') {I u —u„u,u, I" '(pp'qq')

+V„V;vovo I" '(pp'qq') fg, (pp'qq')-+4vvu„. vouo. I" '(pp'qq') fs(pp'qq') }. (33)
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Here, Ps (pp') =
I

1—(—) s+'&+'&' (p~p') $ is an antisymmetrization operator acting to the right, and

'5J'($$, tt ) =PJ($$ ')b, ib, ~i~.

II-&o (u'+s'"')
ds 8

(u 2+z2v 2) (u 2+$2v 2). .. (u 2+$2v 2)

The residue integrals P(pq. ~ t) are defined as

1I"(pC" t) =
2 vari

where the contour of integration encircles the origin but
not the points wi (u„/v„), ai (u,/vq), . . . , ai (u,/v, ),
where the transformation (15) becomes singular.

Obviously, there are no contributions from H40,

Ho4, H3~, and H~s ~ A useful expression for the residuum
integrals will be given in Appendix A.

III. ELECTROMAGNETIC- TRANSITION
PROBABILITIES

Since we treat the tin isotope protons as an inert
core, in considering the electromagnetic-transition
probabilities, we are forced to dress the active extra-
core neutrons with an effective charge e,~~. In par-
ticular, we shall be interested in Sec. IV in evaluating
the quadrupole moment of the 2~+ state and the elec-
tric-transition probability from the 2~+ to the ground
state. In fact, for these quantities there are many ex-

perimental results and they supply a simple test of the
collective character of the 2~1 state.

The electric quadrupole operator we shall need is a
spherical harmonic tensor of rank two and a one-body
operator. Any one-body tensor operator T„", where I,
is the rank of the tensor, can be written in the formal-
ism of the second quantization as

T" "= Z ( I
T."

I
t3&"'cs (35)

aP

In our case, we shal l have to deal with matrix ele-

ments of this operator between projected states. For
calculating these matrix elements we can fol 1ow the
same procedure used in Sec. II for the matrix elements
of the Hamiltonian and valid for any operator preserv-
ing the particle number. We start by writing operator
(35) in terms of the creation and annihilation operators
defined by Eqs. ( 15) as follows:

+ 2 sLu. "+(—) 'u."jL».' (a'a) + (—) "D~-.(a'a) 3 }+b~«' Z
(u '+s'v ')

where the reduced matrix element (a'
I I

T"
I I

a& is defined by

&~'
I T." I ~& -7" '( j.~; ~-ts

I j"iu") &a'
l l

T"
I I a& (37' )

Using the expression (36) and Eqs. (10)—( 12), we obtain

&4'&v
I

Tu"
I Av& = bi, o Z 7 v '&a

I I

T'
I I

a&I'v-'(a) (38)

Q2, ,s~(ss')
I
T„"

I P„&= —X
—'

&s I I

T"
I I

s'&Lu, v, + (—) "v,u, .)P '(ss')

—bi,obso7 u v Z 7"-'&a
I I

T'
l l a&l P '(as) —Pv—'(as) 0, (39)

Q2, ,g~(ss')
I
~P

I 42&,~.sr. (tt') )= (J9 i cV'ti
I
I~)

X }b~ ob»b~~ 'g~u~v~(v"u+ (—) 'u" v )I P '(»'t) I'v-'($$'t) 3 &s I I
T"—

I I

s'
&

+b„b, ,b~ „( ) "q.u,v. (v;u, + ( —) "u,', )pP '(tt's—) —Iv-'(tt's) ]&t
I I

Ti
I I

t'
&

+J'( )s+s'P& ($$') Ps—.(tt') [b, ;W (Jj;Xj,;j I') (u u~P~'($$'t) —(—) "v,v,P~'($$'t) ) (t
I I

T~
I I s&]}

+bi ol5Jj' P g,v, '(a,
I I

T'
I I

a& {bq (ss', tt') I' '(ass') bJ(Pgugvg Jgutv g[Pv —'(ast) —2Pv '(ast) +I'v ' (a—st) j}, (40)
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where W(abed; ef) is the usual Racah coeflicient. In the
Sec. IV we shall make direct use of expressions (38)-
(40) in calculating the quadrupole moment of the
2y+ state and the probability for the electric transitions
2g+~0g+. gA

116 118 120 122

Tam. E I. Tin-isotope ground-state energies (in MeV) calcu-
lated from a PTDA for diGerent values of t. The other parameters
are 6xed as E5~2'=0.0, E7g2 =0.20, EIg~ =1.90, E3t2 =2.20, and
EUt2'=1.90 MeV; V0=35 MeV, and r0=2 fm.

XV. NUMERICAL CALCULATIONS AND RESULTS
FOR EVEN TIN ISOTOPES —3.44 —1.23 1.51 4.78 8.53—17.98 —19,78 —21.51 —23. 18 —24. 82—35.18 —43.73 —48. 74 —56.24 —64.23—64. 11 —78.63 —94.53 —111.78 —130.36

—0.555—0.3
0.0
0.5

In treating the tin isotopes we shall assume 50 protons
and 50 neutrons constitute an inert core. Of course,
this is a crude approximation. For example, we know
that the low-lying levels of the even tin iostopes
radiate, and this means that there is no validity in
completely neglecting the proton contribution to the

0.0, E7» ——0.5) gg» = 1.7, Eap ——2.0, and E»» =2.6
MeV. For the other isotopes, we find almost identical
results. This rejects the fact that we are considering
our single-particle energies as solution to the problem
of the core neutrons only.

The residual neutron-neutron interaction we have
used is a conventional 6nite-range force of Gaussian
form, i.e.,

U(r) = —Ue expL —(r/ro) 'j (P,+tP/), (41)
where r=

~
ri —r~

~

and P, and Pt are the singlet-even
and triplet-odd projection operators. Here Vo, ro, and
t are parameters. In this work the values r0=2 fm,
V0=35 MeV, and 3=0.5 were used. These values, as
the single-particle energies, were chosen among various
sets of parameters in order to 6nd a good fit to the
experimental excitation eriergies of the low-lying states
and to the even-even mass differences.

In Fig. 1 we show the 02+ and 2~+ levels of the tin
isotopes with 3 ranging from 116 to 124 obtained from
three different sets of single-particle energies. All the
remaining parameters are kept 6xed. It is evident that
we have to take the 1h»» level low enough if we want to
reproduce the correct trend of the excitations energies
with the mass number. Every time we take the 1h»»
above the 2d3» level the most probable configuration
for the ground state of "'Sn turns out to be that in
which the levels 2d5», 1g7~2, 3s&», and 2d3» are completely
full and the 1h»» is completely empty. This is the
reason why the strong inhibition of the first 2+ state
and the lowering of the excitation energy of the 0&+

occur. In the ordinary Tamm —Dancoff approximation,
this does not happen because the aforesaid conlgura-
tion is strongly mixed with equally important con-
figurations of the nearest nuclei. For case (a) of Fig. 1,
the weight of this configuration is 44% in PTDA and
only 0.04% in TDA.

Ol

2I

0
QJ

UJ

1.5-

'I—

&C
LU

I

22
I

20
I

18 24

NUMBER OF VALANCE NEUTRONS

excited states. However, we shall limit ourselves to
simulating the core excitations by dressing the extra-
@ore neutrons with an effective charge.

We shall suppose that the extra-core neutrons (from
16 to 24 according to the isotope) are distributed
among the following 6ve single-particle levels: 2d5»,
1g7», 3s&~2, 2d3», and 1h»». The single-particle wave
functions we take are those of a harmonic oscillator
with strength constant v=0.450 fm '. For the single-
particle energies, we take the values Z5»'=0.0, E7~2' ——

0.20, &j/2 =1.90, E3» ——2.20, and E»»0 ——1.90 MeV.
On adding to these values the self-energy terms evalu-

,ated for simplicity from a BCS approximation, we
obtain values very similar to those given by Bando or
by Nilsson. '4 For example, for '"Sn we obtain E&~2 ——

"S. G. Nilsson, Kgl. Danske Videnskab. Selskab. Mat. -
Fys. Medd. 29, No. 6 (1955); H. Bando, Progr. Theoret. Phys.
{Kyoto) 38, 1285 (1967),

TARSI.z II. Differences (in MeV) between the tin-isotope
ground-state energies calculated and from the projected BCS
model from the BCS theory, for different values of t. The other
parameters are the same as in Table I.

116 118 120 122 124

—0.90 —0.87—0.16 —0.13
0.64 0.66
1.78 1.75

—0.75—0.06
0.66
1.59

—0.555—0 ~ 3
0.0
0.5

—0.65—0.04
0.61
1.44

—0.82—0.09
0.67
1.68

FIG. 1. Energies (in MeV) of the 6rst 2+ state and of the first
excited 0+ state versus A. The values have been obtained from a
PTDA calculation using three different sets of parameters:
i&)E5/8=0.0, E7/2'=0. 4, Ei/P=&. 9, E3/u'=2. 2 and EU//=2. 4
MeV. V0 ——34 MeV, t=0.5. (b) E5y~' ——0.0, E712' ——0.4, EI120=1.9,
E8/~'=2 2, EU/2'=2. 2 MeV; V0 ——34 MeV, t=0.5. ic) E//2' 0 0, —— .
E7I2'=0.4, Eiq2' ——1.9, E,qp=2. 2, E11~2o ——1.9 MeU; V0 ——34 MeV,
g =0.5.
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TABLE III. Occupation probabilities for the various single-particle levels we consider in the BCS state and in the projected BCS state
(PBCS) . The parameters used are those of Table I with t =0.5.

116
BCS PBCS

118
BCS PBCS

120
BCS PBCS

122
BCS PBCS

124
BCS PBCS

1/2
3/2
5/2
7/2

11/2

0.45 0.47
0.38 0.33
0.83 0.90
0.77 0.84
0.20 0.13

0.55 0.63
0.46 0.47
0.87 0.92
0.84 0.89
0.26 0.18

0.64
0.56
0.91
0.89
0.32

0.76
0.62
0.94
0.93
0.24

0.74
0.66
0.93
0.93
0.40

0.84
0.75
0.96
0.95
0.33

0.82
0.77
0.95
0.95
0.49

0.89
0.85
0.97
0.97
0.44

Here S„(A) is the neutron-separation energy. lf we
wish the even-even mass difference to decrease with the
mass number in order to get the correct saturation
properties, then it is evident from Table I that we
should take a negative value of t. On the other hand,
for negative 3 the mass differences become excessively
small. For t=0.5 reasonable values are obtained.

As the starting point of our numerical work, we have
minimized expression (3) with regard to the param-

B.E.(A) —B.E.(A —2) = 5„(A—1)+5„(A), (42) eters u and v. This leads to the following equation:

2E,'u, v, D.(u—.' v,' =—0, 43)
where for the binding energy B.E. (A) we take the
PTDA ground-state energy with the sign changed. where the quantities E,' and 6, are defined as follows:

A. = ——,
' g g.g,

—'u.v.g, (aacc) P&—'(ac), (44)
a-

E.'=E.'I'" '(c)+ ', Q —
g g

—'v -'j (aacc)I" '(ac)—
a

+ Q g 2j 2p 2g jpO2y 4(gc) I2y 2(gc) 7p (g) p2y 2(c) I2p(c) 7(I2y 2(g)/I2p) p
a

+- gg gJ '(2v, 'vb'f (aabb) L(I'J' '(abc) —I" '(abc))v, (gb) —(I'" '(c) I'"(c))(I"—'(gb)/I'&)v, 7

with
+u,v,uqv~go(aabb) L(P' 4(abc) P" '(abc) )—v, (ab) —(P" '(c) P"(c) )(P~'(ab)/—P")v 7) (45)

(46)

Equations (43)-(45) were numerically solved by an
iteration method. For the calculation of the residuum
integrals we used a code based on the expression given
in Appendix A.

Using the parameters u and m, we derived the ground-
state energy from the expressions (27) and (30). In
Table II we show the differences between the ground-
state energy from the projected model and the cor-
responding quantity from a standard BCS approxi-
mation for various values of the t parameter.

In the BCS approximation, the occupation and non-
occupation probabilities of a single-particle state q

are given by ~,' and u, ', respectively.
In the projected model, these probabilities become

P-.=~'I:I' '(g)/I'"7 (4'I)

P-. =u'I:I'"(g)/I'"7. (48)

In Table III the occupation probabilities from the
two models are compared. It is evident that particle-

"R. C. Barber et al. , Can. J. Phys. 40, 1496 (1962); B. L.
Cohen, R. Patell, A. Prakash, and K. J. Schneid, Phys. Rev.
i35, B383 (1964).

number conservation tends to make the Fermi surface
sharper.

The next point we faced was the construction of an
orthonorrnal basis starting from

I P») and the

I f~„,ger(ab))'s. We have made use of the following
expressions for the scalar products between the pro-
jected states:

(A. I 4.)=I'" (49)

(A. I A. ,~~(ss') )= —b~os.u."P'~'(s) —I'"(s)7, (5o)

($2p, JM(ss ) I 4'2y, JM(~~ ) ) 40gsusvegtut&f

XP'~'(s~) 2I'~ '(s~)+I'~(s~—) 7/bq(ss' g,') I'~'(ss').
(51)

We shouM bear in mind that the projected two-qp
states

I $2~,~sr(ab) ) are always constructed with the
ordering a&b in order to avoid repetitions. For JWO,
the projected states are orthogonal to each other, and
all we have to do to normalize them is multiply by a
constant factor. For J=O, a Schmidt orthonormal-
ization procedure was used. In this procedure,

I fu„)
was taken as the first basis vector. The other basis
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TAsLx IV. In the second column (for any J~) the results of the PTDA for the lowest-lying levels of tin isotopes with A =116, 118,
120, 122, and 124 are exhibited. The third column refers to the corresponding results from an ordinary TDA. The parameters used in
both cases are those of Table I with )=0.5. In the 6rst column the experimental values are listed (refer to the corresponding refer-
ence). All the values are in MeV.

QJx
AQ

0+
Expt PTDA TDA

2+
Expt PTDA TDA

4+
Expt PTDA TDA

120

1.762'

1.75b
2.043'
2.487'

1.872a
2.16b
2.632'

1.80 2. 14
2.73 3.12
2.80. 3.37
4.24 4.01

1.67 2.08
2.67 3.17
3.07 3.30
4.84 4.28

1.58 2.03
2. 73 3.18
3.59 3.41
5.42 4.63

1.64 1.99
2.91 3.12
4. 28 3.75
5.93 5.05

1.84 1.97
3.12 3.09
5.07 4.27
6.37 5.50

1.291~
2. 108'
2.224

1.229.

1.166

1.142

1.28
2.86
3.00
3.07

1.21
2.67
2. 79
3.05

1.15
2.57
2.79
3.25

1 ~ 14
2.57
2.95
3.63

1.13
2.68
3.20
4. 13

1.40
3.23
3.49
3.53

1.38
3.12
3.47
3.55

1.37
3.02
3.37
3.67

1.37
2.91
3.29
3.67

1.38
2.82
3.26
3.86

2.391
2.531'
2.803
3 047a

2. 183'

2.63
3.15
3.23
3.53

2.61
3.15
3.47
3.76

2.40
3.38
3.88
4.09

2. 14
3.78
4.29
4.55

1.94
4.23
4. 74
5.09

2.83
3.49
3.65
3.78

2. 74
3,48
3.85
3.87

2.63
3.55
3.99
4.09

2.50
3.63
4. 18
4.28

2 ~ 37
3.89
4.40
4.58

a D. L. Allan, B. H. Armitage, and B. A. Doran, Nucl. Phys. 66, 481
(1965).

B. L, Cohen and R. E. Price, Phys. Rev. 118, 1582 (1960); 121, 1441
(1961).

vectors were constructed by successively utilizing the
two-qp projected states

I )P2p, 00(aa) ) with j,= 2,
and 2 I $2p, 00 ( 11/2 11/2) ) was not used because only

four of the five projected two-qp states corresponding
to J=O are independent to each other. This result is
evident if we act on the equation

&
I
A)=2p I)p0& 2& 2) 7 I A0(aa)) (52)

with the operator which projects onto a 2P-particle
subspace. So we obtain the result that

g ~...q. I P2„,»(aa) )=0. (53)

Another code was used for diagonalizing the Hamil-
tonian in the so-obtained orthonormal basis. In con-
structing matrix elements, the expressions (27)—(33)
were used. As a result of the diagonalization procedure,
the i-th PTDA eigenfunction with angular momentum
JM is given by

I
+~M '&= 2 a~" (ab)

I 42p, JM(ab) ) (54)

for J/0, and
S

I
+ "'&=&'1a"'

I Ap)+(1 —&'1) Z a(-)"
I Ap(-)) (55)

n=2

for J=O, where

I 4'2p(2) ) c21
I )P2p &+c22

I 4'2p, 00 ( 2 2 ) ),

I Ap(0) & =c»
I &2p&+cb2 I 4'2p, 00(22) )

+" +c I A. , o(-.'l) & (56)

The coefficients c~1, . . ., c55 were obtained through
the Schmidt procedure. The sign over

I )P2p) and

I )P2p, qM(ab) ) means that the vectors have been norm-
alized. The notation of Eq. (54) is intended to remind
one that the 01+ state (the ground state) coincides
exactly with the

I $2p) state, and the successive 0+
excited states do not contain the.

I
)P2p& component. This

is a direct consequence of the minimization procedure
for the ground-state energy, which makes the cor-
relations between

I )p2p) and the
I

)p2p(„))'s vanish. It is
equivalent to what happens in the ordinary BCS-
Tamm-Banco' approximation, where the minimiza-
tion procedure of the BCS-state energy removes the
correlations between the BCS state and the two-qp
states.

As a check, the calculation was made using, as input
for the antisymmetrized matrix elements of the inter-
action, the following expressions:

gg(abed) =4bg(ab, cd),

fz(acdb) =4(40&,.bbd, g gb blab. ). —
These expressions correspond to the Hamiltonian

(57)

H =%2= Pc tc —-,'P (8,08 ()
—b, b()()) c tc()t—cbc„(58)

a aPy8

and must consequently lead to eigenstates with eigen-
values 0) = (2P)'.

In Table IV, we compare the results for the excita-
tion energies from the projected model with the ex-
perimental values and the corresponding results of an
ordinary BCS-Tamm-Dancoff approximation. We can
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TABLE V. Transition probabilities from the 21+ state to the ground state and quadrupole moments of the 2&+ state calculated from
the PTDA and from an ordinary BCS-Tamm-DancoB approximation. The parameters of Table I with t=0.5 are used. All the values
are referred to e,ff 1.

116 120 122

a(Z2) PTDA
TDA

PTDA
TDA

321.07
339.17

5.62
4.48

299.02
327.61

9.93
6.43

263. 54
305.94

12.29
7.47

232. 86
274. 85

11.03
7.34

207.99
235.29

6.34
5.74

see that a satisfactory agreement with the experimental
situation is generally attained, at least, for the lowest
levels. The excitation energies obtained from the
projected model are generally lower than the cor-
responding values from the 3CS-Tamm-Dancoff
model. However, there are several exceptions, par-
ticularly for the heaviest isotopes and the highest
levels. Of course, in order to evaluate the differences
between the energy absolute values in the two models
we have to add the ground-state energy shifts given in
Table II.

It is interesting to observe that there are several
components of comparable size, corresponding to dif-
ferent numbers of particles, which contribute to a
3CS-Tamm-Dancoff state. If we analyze, for ex-
ample, the Tamm-Dancoff states corresponding to the
eigenvalues given in Table IV for "'Sn, in terms of
components with Axed particle numbers, we obtain
that the components corresponding to the particle
numbers 114, 116, and 118 are equally important and
that the components with particle numbers 112 and 120
are in any case not negligible. This is a typical situation
for the BCS-Tamm-Dancoff states and it is quite inde-
pendent from the parameters used and from the iso-
tope considered.

Finally, we have considered the transition proba-
bilities from the 2~+ state to the ground state and the
quadrupole moment of the 2~+ state. In the PTDA,
these quantities are given by

Matrix elements were evaluated by making use of the
expressions (39) and (40) with

T 2 v2P' 2(~) (61)

In Table V we give our values of J3(F2, 2i+—&Oi+)

and of the quadrupole moment of the states 2j+ com-
puted for 2 =116, 118, 120, 122, and 124. Ke also give
the corresponding BCS-Tamm-Dancoff results. It is
interesting to observe that it is impossible to take into
account the effects, of the particle number nonconser-
vation in the BCS-Tamm-Dancoff approximation by a
simple effective charge renormalization. In fact, these
effects act in an opposite sense for the B(E2, 2i+~0i+)
and the Q2,+. While the particle number conservation
increases the quadrupole moments of the 2~+ states, it
lowers the transition probabilities.

APPENDIX

X Q gF (pq ~ t; k,), (A1)

where e is the number of subshells involved and k~,

k~, . . . , k„are zero or positive even numbers. Here

Here we give an useful expression for the residuum
integrals defined by Eq. (34). This expression, which
was used in all our numerical codes, is directly obtained
by the Cauchy theorem.

I (pq ~ ~ ~ t) = ( rI .")

(BE2, 2i+—+Oi+) =-,'-e,)Pa~')'g
I Q a2u)(ss')

p, s&sf

X(42 I
T- '

I 4~,2„(ss') & I' (39)

F.(pq. t; k.) =1,
=v. (v.—1) ~ ~ ~ (v.——',k.+1)
X (~./~. ) "'I:(-;k.)!j-',

if k, =0

if k, /0

Q2,+=e,ii(167r/5) '" g P a o~ (ss') a u&(tt')
s&s~

X$2v,22(ss) I
2'0

I $2v, 22(tt') &

(A2)

and v„=v, (pq ~ t) is defined in Eq. (46) of the main
(60) text.


