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The Brueckner-Goldstone diagrams with four independent hole lines, which give the third term in the
expansion for the ground-state energy of infinite nuclear matter, are enumerated. These diagrams are
grouped in a natural way into 16 distinct classes. Only one of these classes (the four-body clusters) involves
the solution of a four-body equation. Six classes require the solution of the three-body Bethe-Faddeev equa-
tions, and nine classes can be evaluated in terms of two-body matrix elements alone. Exact formal expres-
sions are given for the contribution to the energy from each class of diagrams. In these expressions, all ex-
change diagrams are included, and all energy denominators are clearly defined. Numerical estimates are
made for each class of diagrams, assuming the two-body interaction to be the Reid soft-core potential. The
sum of all contributions is attractive and is about 0.6—1.6 MeV. Most of the uncertainty in this result is
caused by omission of the tensor force in certain diagrams. The implications of these results for the con-
vergence of the energy expansion are discussed.

I. INTRODUCTION

~
~

WIDELY accepted method of calculating the
.I ground-state energy of infinite nuclear matter is

to group the diagrams in the Brueckner —Goldstone'
expansion according to the number of independent
hole lines. ' ' Diagrams with two independent hole lines
(these are just the first-order diagrams) give the first
term in the expansion, three-hole-line diagrams give the
second term, etc. The convergence of this expansion is

roughly governed4' by a parameter ~ that is equal to
the particle density times the wound integral of the
two-body wave function. The magnitude of ~ is one-
fifth to one-seventh for currently fashionable nucleon-
nucleon potentials at normal density. ' The evaluation
of the first-order diagrams requires the calculation of
the reaction matrix (G matrix). This has been studied
by many authors (see, for example, Refs. 6—10) and no
longer presents any serious difficulty. A certain amount
of work has also been done on the three-hole-line
terms. 3 'l Certain four-hole-line diagrams have been
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Energy Commission.
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investigated, but no systematic study has previously
been made of these diagrams. In this paper the results
of such a study are given. The four-hole-line diagrams
are enumerated, and quantitative estimates are made
of their contributions to the binding energy.

The purpose of studying the four-hole-line diagrams
is to find out how well the hole-line expansion con-
verges. The two-hole-line diagrams contribute about
—33 MeV per particle, ' and the three-body cluster
terms give about —1 MeV."The latter figure is sur-
prisingly small. One would have expected to obtain
roughly ~ times the two-hole-line contribution, i.e.,
about 5 MeV. Similarly, one might expect the contribu-
tion of a typical four-hole-line diagram to be ~ times
the two-hole-line term, i.e., about 0.7 MeV. Since there
are a great many different classes of four-hole-line
diagrams, their sum could easily amount to several
MeV. Clearly the four-hole-line diagrams must be
'carefully investigated before the results of the theory
can be trusted to better than 3 or 4 MeV per particle.

Baker and his co-workers'7 have proposed and de-
veloped a procedure for summing the perturbation
series that differs from the hole-line expansion. Nothing
is said here about the relative merits of these two
methods. We simply assume the hole-line expansion to
be correct and study the four-hole-line diagrams.

The present work is applicable only to two-body
potentials that contain a very strong short-range
repulsion, e.g. , the potentials of Reidis and of Hamada
and Johnston. 's For relatively smooth and weak po-
tentials, ordinary perturbation theory in powers of the
potential can be used, and the hole-line expansion is not
needed. Examples of such potentials are the Tabakin

'~ G. A. Baker, Jr. , Phys. Rev. 131, 1869 (1963); G. A. Baker,
Jr. , J. L. Gammel, and B. J. Hill, ibid 132, 1373 (19. 63); G. A.
Baker, Jr., ibid. 140, 89 (1965); G. A. Baker, Jr., and J. Kahane,
J. Math. Phys. 10, 1647 (1969).' R. V. Reid, Ann. Phys. (N. Y.) SO, 411 (1968)."T.Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962) .
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FIG. 1. Diagrams with three independent hole lines.

potentiaP'" and the potential developed by Nestor,
Davies, Krieger, and Baranger" for use in Hartree-Pock
calculations.

A brief examination of the familiar three-hole-line
diagrams will show us what types of four-hole-line
diagrams can be expected to arise. The three distinct
classes of three-hole-line diagrams are shown in Fig. 1.
Figures 1(a)—1(c) are three members of the class of
(infinitely many) three-body cluster diagrams. In a
typical three-body cluster diagram, three particles
scatter out of the Fermi sea, interact among themselves

any number of times, and then fall back into the sea.
Calculating the sum of this class of diagrams therefore
requires the solution of a three-body equation. '

The other two classes of three-hole-line diagrams are
of a completely different type. One of these classes
consists of the hole-bubble diagram I Fig. 1(d) j, and
the other consists of the hole-hole diagram LFig. 1(e)].
The hole-hole diagram has four hole lines, but mo-
mentum conservation in the middle G matrix reduces
the number of independent hole lines to three. Since the
hole-hole class contains only a single diagram, its con-
tribution can be calculated in terms of a small number
of tzvo-body matrix elements. This is in contrast to the
three-body clusters, where summing the series in-

troduces a three-body wave function. Whenever three
particles are excited above the sea, they must be
allowed to interact any number of times, and a three-
body wave function will inevitably appear. But in the

hole-hole diagram, the particles interact two at a time,
and at no point are three particles simultaneously
excited above the sea. So we call the hole-hole diagram
a two-body combination diagram. The hole-bubble
diagram is also a two-body combination diagram. In
practice, the hole-bubble diagram is canceled by the
self-consistent single-particle potential, and the hole-
hole diagram contributes less than 1 MeV per particle.

In a similar way, each class of four-hole-line dia-
grams will be classified as a two-body combination
class, a three-body combination class, or a four-body
cluster class. Two-body combination diagrams involve
only two-body matrix elements. Three-body combin-
ation diagrams involve three-body matrix elements
(obtained by solving a three-body equation) . The four-
body cluster diagrams require the solution of a four-
body equation. In the language of Brandow, ' the two-
body and three-body combination diagrams have more
than one "irreducible compact part, " and the sum of
all four-body cluster diagrams consists of a single ir-
reducible compact part with four external lines.

In Sec. II the four-hole-line diagrams are enumerated,
and formal expressions are given for their contributions
to the binding energy. In Sec. III, we make numerical
estimates of these contributions. The results of the
calculations are discussed in Sec. IV.

II. ENUMERATION OF DIAGRAMS

A. Two-Body Combination Diagrams

Before setting down the two-body combination
diagrams, we describe our notation and make some
preliminary remarks. The G matrix is a two-body
operator defined by

G=v —i(Q/e)G,

where the projection operator Q requires both particles
to be above the Fermi sea, and e is defined by

(2.2)

Here, E„and E, are the single-particle energies of the
plane-wave states p and g, respectively. (Vnless other-
wise indicated, we use u, b, c, . . . , h to label states above
the sea, i,j, , e for states in the sea, and p, g, r, . . . ,
for states that could be either in the sea or above it.)

t—
5

d k

'0 F. Tabakin, Ann. Phys. (N. Y.) 30, 51 (1964)."J.J. MacKenzie, Phys. Rev. 179, 1002 (1969)."C. W. Nestor, K. T. R. Davies, S. J. Krieger, and M. Baran-
ger, Nucl. Phys. A113, 14,(1968).

Fxo. 2. Goldstone diagram to which GTO can be applied. Dia-
grams of this type are summed by means of GTO into the diagram
of class A1.
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FIG. 3. Four-hole-line diagram of class A1.

We see that G and e both depend on the starting
energy W. We use G(in'), e(lrrz) to represent these
quantities calculated with starting energy E&+E .
Also, G(lmrs; a) corresponds to W=E~+E +E„E„—
and similarly for e(&ne; a) .

The symbol g with no indices underneath implies
the summation over all indices of the expression follow-
ing the P. For example, P F(o,, l, p) means the sum
of F(a, l, p) over states o above the Fermi sea, states
l in the Fermi sea, and all states p. But the notation
Q,„P(a, l, p) implies summation over a and p with l

remaining fixed.
Exchange diagrams will be treated by means of the

following useful method of Brandow" and Hugenholtz. '4

Only one Goldstone diagram will be shown from
each group of diagrams that are obtained one from
another by successively exchanging the incoming (or
outgoing) lines in two-body interactions. But in writing
the contribution from this diagram each direct matrix
element is replaced by the corresponding direct-
minus-exchange matrix element. Then a factor —', is
inserted for each pair of equivalent lines. Two lines are
equivalent if they both start at the same interaction,
both end at the same interaction, and both run in the
same direction. For example, in Fig. 1(e) there are
three pairs of equivalent lines —(lm), ( jm), and (ab).

Another useful rule is the following: One Goldstone
diagram can be obtained from another by exchange if,
and only if, the two diagrams are identical in the
Hugenholtz'4 representation.

This method of including exchange is well suited
only for two-body-combination diagrams. Another
method will be used for classes of diagrams involving
three-body and four-body matrix elements.

(b)

FIG. 4. Diagrams illustrating that double counting occurs
when GTQ is applied to Fig. 2.

sgB. H. Brandow, Rev. Mod. Phys. 39, 771 (1967).
'4 N. M. Hugenholtz, Physica 23, 481 (1957}.

In the two-body combination diagrams, we will often
replace a direct-minus-exchange matrix element of G
by twice the direct matrix element. For example, ex-
pression (2.4) contains two direct matrix elements.
But if each is replaced by one-half of the direct-minus-
exchange matrix element, the value of (2.4) is un-
changed, and the result is in accord with Brandow's
rule. When all exchange terms are included, the con-
tribution from any diagram, regardless of whether or
not it is a two-body combination diagram, must
remain unchanged when a direct matrix element of G
is replaced by one-half the direct-minus-exchange
matrix element.

The over-all sign of the contribution of any diagram
is" (—1)"+'+', where h is the number of hole lines, l
is the number of closed loops, and e is the number of
(positive definite) energy denominators.

Many four-hole-line diagrams have more than four

—t6

—t5

—t—9

Fro. 5. Goldstone diagram to which QTO can be applied. Dia-
grams of this type are summed by means of GTQ into the dia-
grams of class A2 ~

hole lines. But after momentum conservation has been
taken into account, the number of independent hole lines
is, by definition, equal to four. We will make extensive
use of the preceding ideas from now on.

The idea of generalized time ordering (GTO) is used
extensively in our discussion of two-body combination
diagrams. The GTO procedure collapses large classes
of diagrams with conventional Brueckner-Goldstone
energy denominators into single diagrams with simpler
energy denominators. A well-k. nown example is the
hole-bubble diagram of Fig. 1(d), in which the GTO
procedure puts the middle G matrix on the energy
shell. Discussions of GTO can be found in Appendix B
of Ref. 8, and on pages 777—778 of Ref. 23.

We must apply GTO to structures such as the one in
Fig. 2, in which the dashed lines represent the two-bocly
potential v. Note that GTO is applied before ladders of
u interactions are summed into G matrices (repre-
sented by wavy lines, as in Fig. 1) . .Each interaction
is labeled by a time t;. We think of time increasing in
the upward direction so that t,& t; simply means that
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FIG. 8. Four-hole-line diagram
of class A3.

sidered to give a contribution, which he calls the
"saturation potential, " to the single-particle potential
energy U(m) of occupied states. Diagram A1 has been
evaluated for nuclear matter by Brueckner, Gammel,
and Kubis and by Kohler an.d for the nucleus 0'
by McCarthy' and by Wong. "We will see later that it
is one of the largest four-hole-line diagrams.

The time restrictions (2.3) include all possibilities
in Fig. 2 that have tz below both ta and t6. New classes of
diagrams are obtained if Iz is allowed to lie above t3 or
36. All of these new diagrams contain bubble insertions
into hole lines. They are exactly canceled by U(m)
and are therefore of only academic interest. So we shall
not write them down.

Class AZ. In order to analyze the structure shown in
Fig. 5, we group the diagrams according to the relative
order of 13, t6, t9. All diagrams with t3& t6& t9 are included
by the time restrictions

(b)(a)

Fro. 6. Four-hole-line diagrams of class A2.

the interaction labeled t; occurs above the interaction
labeled t, .

The topology of Fig. 2 implies that within any one
of the three ladders the time order is fixed, e.g. , we must
have 3~&32&$3. But there is @ lot of freedom for the
relative time orders of interactions in different ladders.
For example, we can equally well have )2&36 or t2&t6,
and each possiblity corresponds to a distinct Gold-
stone diagram. On the other hand, the interaction just
below tj mls' occur below tz. This is necessary in order
that the line m connecting this interaction to tz remain
a hole line and not become an upgoing (particle) line.
Our task is to use GTO to include each Goldstone
diagram contained in Fig. 2 (and in other structures)
exactly once.

Class A1. All diagrams that can be obtained from
Fig. 2, subject to the time restrictions

3y(/6& fg, 34& tg(35, (2.5)

3y& tz& t2, f4& tz& t5)

are assigned to class A1. The GTO treatment reduces
the entire class to the single diagram shown in Fig. 3.
Its contribution to the energy is

(2.6)~z«6&~s, A. «6&4
These diagrams are summed to give Fig. 6(b).

Class A2 consists of the two diagrams in Fig. 6. The
contribution to the energy per particle from Fig. 6(a)
is equal to

—2 'g (1m
I G(lm)LQ/e(lm)g

I
ab)

X(ab I LQ/e(lm) jG(lm) I lm —ml)

X (kn
I

G(nzj) I mj)(mj I G(njz) Pg/e(mj ) j I cd)

X (c& I LQ/e(kn) QG(kn) I
kn —nk). (2.7)

g (Al) = A '—g (gnat
I

G(ttn) LQ/e(As) j I ab)

X (ab
I I Q/e(lnl) jG(lm)

I
its ml)—

X (nk
I
G(nk) LQ/e(nk) 7 I cd)(cd

I [Q/e(nk) j
XG(nk) Ink —kn)(mn I G(~n) I

~n —n~).

Here, 2 is the total number of particles, and W(A1)
is the energy per particle from class A1. This notation
will be used from now on. Note that the GTO has put
all the G matrices on the energy shell.

The factor x~ in (2.4) is necessary because the time
restrictions (2.3) count each distinct Goldstone
diagram twice. For example, the two diagrams shown
in Fig. 4 are rot distinct, but each is counted separately
in the GTO treatment.

Brandow' has emphasized that class A1 can be con-

FIG. 9. Goldstone diagram
to which GTO can be applied.
Diagrams of this type are sum-
med by means of GTO into the
diagram of class A4.

'

4/

and their sum is the G-matrix diagram of Fig. 6(a).
(2.3) All diagrams with either la)t9)te or t9)t3)tq are in-

cluded by the restrictions

-t —-
2

pl& l(a ml

FIG. 7. Goldstone diagram to
which GTO can be applied. Dia-
grams of this type are summed by
means of GTO into the diagram of
class A3.

"K.A. Brueckner, J.L. Gammel, and J. T. Kubis, Phys. Rev.
118, 1438 (1960).

26 H. S. Kohler, Nucl. Phys. A128, 273 (1968) .
'z R. J. McCarthy, Nucl. Phys. A130, 305 (1969).
8 C. W. Wong, Nucl. Phys. A104, 417 (1967).
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FIG. 10. Four-hole-line diagram
of class A4.

&k FrG. 12. Four-hole-line
diagram of class AS. MVV ~uk

The contribution from Fig. 6(b) is the same except that
(knI G(mj) I mj) is replaced by (knI G(kn) I nzj).
Other relative time orders of t3, t6, tg lead to diagrams
with bubble insertions into hole lines and will not be
written down.

Class A3. Applying the time restrictions

tg& t4(tg, t3(t4 (2.S)

to Fig. 7 gives the diagram shown in Fig. 8. This
diagram, which constitutes class A3, gives the simplest
on-energy-shell modification of the potential energy
U(b) of intermediate states. It has been discussed by
Brandow, ' and its contribution is

W(A3) =A ' g (lm
I G(lm) LQ/e(lm) g I

ab) U(b)

X (~&
I I Q/e(~m) )G(~m) I

~m —ml), (2 9)

U(k) = P (nk
I G(nk)

I
f c)(bc

I I Q/e(nk) a
cnk

XG(nk)
I

nk —kn). (2.10)

Time orders different from (2.8) are permissible in
Fig. 7—for example, we could have t~ & t4. However, all
these new time orders lead to four-body cluster dia-
grams, which are discussed in Sec. II C.

Class A4. The diagrams of class A4 arise from the
structure of Fig. 9 with the time restrictions

So class A4 contains the single G-matrix diagram shown
in Fig. 10. Its contribution to the energy per particle is

W(A4) = —A '-' g (lk —kl
I G(kl) [Q/e(M) j I

ad)

X (mn —nm
I G(mn) I bc)

X (cd I PQ/e(nk) ]G(nk)
I

nk —kn)

X (ab I PQ/e(tm) QG(lm) I
lm m2), (—2.12)

where the factor —', corrects for the fact that each distinct
diagram is counted twice in the GTO treatment.

It might be thought that Fig. 10 is a four-body
cluster diagram. However, we de6ne the sum of the
four-body clusters to be the "irreducible compact part
with four external lines" of Brandow. ' Therefore, in any
four-body cluster diagram, there must occur (perhaps
only inside a single G matrix) at least one energy de-
nominator that involves the excitation of four particles
above the Fermi sea. Figure 10 does not satisfy this
requirement because the GTO has put all the 6 matrices
and energy denominators on the energy shell. The
decision about which diagrams are to be called four-
body clusters is not completely arbitrary. The sum-
mation of four-body clusters leads to a four-body
equation of Faddeev type (Sec. II C), and the simple
form of this equation is spoiled if one tries to include
Fig. 10.

Time orders different from (2.11) are possible in
Fig. 9. But all such time orders lead to four-body
cluster diagrams, which are considered in Sec. II C.

Class A5. The time restrictions

4(4(4, t3& t6& t4 (2.13)

in Fig. 11 lead to the diagram of Fig. 12, which forms
class A5. Equation (2.13) covers all possibilities except
for t5& t6, which is included in the three-body combin-
ation class 83 (Sec. II 8).

A new feature appears in Fig. 11.This diagram could
be drawn with the interactions labeled t2 and ts left
out. It is these two interactions that form the ladder
that is eventually summed to obtain the 6 matrix at
the level of the arrow in Fig. 12. If they are left out, the
corresponding 6 matrix does not appear in Fig. 12.
Thus the arrow in Fig. 12 indicates an optionu/ particle-
particle interaction. Class A5 contains two distinct
diagrams; in one, the optional particle-particle inter-
action is included, and in the other it is left out. From
now on, a horizontal arrow, as in Fig. 12, will always
imply an optional particle-particle interaction.

FIG. 1i. Goldstone diagram
to which GTO can be applied.
Diagrams of this type are sum-
med by means of GTO into the
diagrams of class AS.

a

—t—
I

C/g

FIG. 13. Four-hole-line diagram
of class A6. = ~v +m~w~
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—t—
6—t—
5

(C

FzG. 14. Goldstone diagram to which GTO can be applied. Dia- e

grams of this type are summed by means of GTO into the diagram
of class A7.

—t—8
C

—t2—t—6
/

FIG. 16. Goldstone diagram to
which GTO can be applied. Diagrams
of this type are summed by means
of GTO into the diagrams of classes
A8 and A9.

The contribution from class AS is

W(A5) = —A-' Q (&m
I

G(tm) [Q/e(lm) ] I
ab)

X(kn I G(kn) I mc)(E.+Eg+E. E( Ea E—) '— —

X(mcl G(In) I
un —nu&

X ((ab I [Q/e(lm)]G(lm) I
Lm mt)—

—g (ab
I
G(lkn; c) [Q/e(&&n; c)] I

de)
de

X (de
I [Q/e(&m)]G(tm) I

tm —m&)}. (2.14)

fi( tv( $2, $4( $7($5 (2.15)

and leads to the 6-matrix diagram of class A7 shown in
Fig. 15.

The restrictions (2.15) include all diagrams with
either t3)/6)t7, or t6)t3)t7. Thus we have summed
two identical classes of diagrams, and we must insert
a factor ~ into the contribution of class A7 to correct

This diagram, without the optional particle-particIe
interaction, has been discussed previously in Refs. 5
and 25—27.

Class A6. The diagram of Fig. 13, which forms class
A6, arises from a GTO treatment analogous to that of
class AS. Its contribution to the energy per particle is
similar to (2.14) and will not be written down.

Class A7. The diagrams arising from the structure of
Fig. 14 can be classified according to the relative time
order of ta, )6, tv. For each of the six possible time
orders, the GTO treatment sums a class of diagrams.
However, because of the high degree of symmetry of
Fig. 14, these six classes of diagrams are all identical,
and only one of them must be counted. This is done by
using the time restrictions

or this. Thus we obtain

|'i(t6(tg) tv«. (~s. (2.19)

W(A't) =—A '-,' g (&n
I

G(&n) [Q/e(&n) ] I ab)

(ab I [Q/e(lm)]G(tm)
I

tm ml)—

X(t~ I G(tj) [Q/ (tj)] I d)

X(cd
I [Q/e(ki)]G(ki)

I
ki—ik)(im I G( jn) ljn nj ). —

(2.16)

Class Ah'. The diagrams arising from Fig. 16 are
grouped into six classes according to the relative time
order of t5, t6, /9. Only two of the six classes are distinct.
We tak. e these to be the class with 35)/9)36 and the
class with $9& t5& f6.

All diagrams with t5&t»f6 are included by the time
restrictions

ti(16(t2, ta(t9(34. (2.1i)
These restrictions lead to the diagram of class A8
shown in Fig. 17. As usual, the horizontal arrow in-
dicates an optiona/ particle-particle interaction. The
contribution from class A8 is

W(A8) = —A '-', g (tm
I

G(lm) [Q/e(lm) ] I ab)

X (~n I G(tm) I tm&(E+E —E —E )-~

X(ijl G(ttn)
I

&n&&&ab
I [Q/e(ij)]G(ij) Iij ji&

—g (ab I G(&n) [Q/e(&n) ] I ef)
ef

X(.fl [Q/ (V)]G(e) I V-~')}. (2.18)

Class AP. All diagrams that arise from Fig. 16 with
t9) $5) t6 are included by the restrictions

gb
FxG. 15. Four-hole-line, 'diagram

of class A7.
AV ANY'/V

4 f

Fro. 17. Four-hole-line diagram of
class A8.
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The resulting G-matrix diagram of class A9 is shown in

Fig. 18. Its contribution is

W(A9) =A 's g (kn
I
G(kn) I Q/e(kn) g I

cd)

(cd
I I Q/e(lm) )G(lm) I

lm —ml)

X (lm
I
G(kn) I Q/e(kn) g I ef)

&&(ef I EQ/e(~i) 3~(ti) I
ti it)—(V I

G(kn)
I
kn).

(2.20)

One might have expected that the starting energy of the
second interaction from the top in Fig. 18 would be
Et+E, but the GTO treatment gives Es+E„ instead.

Additional Chagrams. There are a number of two-body
combination diagrams that have not yet been con-
sidered. However, all of them contain bubble in-

sertions into hole lines and are therefore exactly can-
celed' ' by U(m) in a self-consistent calculation. Some
of these diagrams arise from new time orders in GTO
structures that have already been written down, and
some arise from completely new structures. Since
these diagrams are of no practical interest, we shall not
explicitly enumerate them.

In order to check that no diagrams have been
overlooked, the terms in the nuclear-matter theory of
Coester, " which is an algebraic formulation and
does not involve diagrams, have been grouped accord-
ing to number of independent hole lines. All two-body
combination terms of the Coester theory are accounted
for by diagrams. A similar check was made for the
three-body combination diagrams and for the four-
body clusters.

B.Three-Body Combination Diagrams

Three-body combination diagrams require the solu-
tion of the same three-body equation as the three-body
cluster diagrams, but no four-body equations appear.
We shall first review the treatment of the three-body
clusters. This will fix our notation and remind the reader
of some ideas that are useful for four-hole-line dia-
grams. Then we will write down the three-body combin-
ation diagrams and give formulas for their contribu-
tions.

A typical three-body cluster diagram ends at the top
with the structure shown in Fig. 19(a) and begins at
the bottom as in Fig. 19(b). In between there can be

FIG. 18. Four-hole-line diagram
of class A9.

a m p n q

(a) (b)

FIG. 19. Parts of a typical three-body-cluster diagram. Dia-
gram (a) shows the last two interactions at the top, and (b) shows
the first two interactions at the bottom.

0, 1, 2, . . . particle-particle interactions. In addition,
the diagrams of Figs. 1(a) and 1(b) are considered to
be three-body cluster diagrams.

We must sum all topologically different diagrams of
the type just described. Neglecting for the moment the
diagrams of Figs. 1(a) and 1(b), we see that every
diagram must end at the top as in Fig. 19(a). This
structure topologically specifies all the particle and
hole lines. For example, particle line a is the one that
participates in the last interaction but not in the next-
to-last interaction. Analogous statements can be made
for p and q. The hole lines are topologically specified by
being associated with specified particle lines, l with a,
m with p, and n with q. As we work. downward from
Fig. 19(a), inserting more and more particle-particle
interactions, particle line a may change its state many
times. However, we shall mean by "line u" the entire
length of this topologically specified particle line.
Similar remarks apply to lines p and g.

Working downwards from Fig. 19(a), we can specify
any three-body diagram by stating which pair of
particle lines is involved in each successive inter-
action. There must be at least two interactions in
addition to those of Fig. 19(a), and the last two at the
bottom must have the appearance of Fig. 19(b).
Because the particle lines are topologically specified by
Fig. 19(a), including every possible sequence of inter-
actions below Fig. 19(a) counts each topologically
different diagram exactly once. '

In the first two interactions at the bottom of the
diagram, the hole lines also participate. It is at this
point, and only at this point, "' that the question of
exchange diagrams arises. There are three points at
which hole lines can end in the bottom two interactions.
The three topologically specified hole lines can be dis-
tributed among these three points in six ways. By
definition, direct diagrams are those in which hole
line l terminates with particle line a, m with p, and n
with q. Thus each direct diagram has exactly three
closed loops. Corresponding to each direct diagram are
five exchange diagrams that are obtained by permuting
the end points of the hole lines at the bottom of the
diagram. This treatment of exchange is completely dif-

"F.Coester, in Lectures in Theoretical Physics (Boulder, 1968),
edited by K. T. Mahanthappa (Gordon and Breach, Science
Publishers Inc. , New York, 1969), Vol. XI.

'OIt is always understood that two successive G-matrix in-
teractions between the same pair of particles do not occur. This
would give a redundant ladder diagram, which is not permitted
in the Brueckner-Goldstone expansion.
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FIG. 20. Diagrammatic repre-
sentation of expression (2.25) of
the text.

—Q (aq f f Q/e(Emn; p) )G(Emn; p) f
rs)

X(rps f
Zz

f
Emn), (2.21),

with two similar equations for Z2 and Z3.
The subscript on Z~ indicates that the first index a

participates in the last interaction. The first two terms
on the right-hand side of (2.21), when combined
with Fig. 19(a), give the contribution of the diagrams
of Figs. 1(a) and 1(b). All other three-body cluster
diagrams are obtained by iterating Eq. (2.21) and the
similar equations for Z2 and Z3. Only the terms of first
order in G in formula (2.21) can have either p or q in
the Fermi sea. All higher-order terms vanish unless p
and q are both above the sea.

After the Bethe-Faddeev equations have been solved
for Zi, the contribution from Fig. 19(a) is combined
with Zj to obtain the energy per particle 8"3 from all
three-body cluster diagrams in the form

Wz ——A ' Q Wz(Emn),
Lmn

Wz(Emn) = g (Em f G(Em) f Q/e(Em) ) f
ab)

&& (bn
f

G(Emn; a) f pq)(apq f
Zi f Emn). (2.23)

In all diagrams generated by (2.23) particle
line a and hole line l form a closed loop, and
so do (p, m) and (q, n) . Thus (2.23) includes
only the direct diagrams. How can the exchange

(2.22)

ferent from the one used for two-body combination
diagrams.

The contribution from all three-body clusters is the
product of the two G-matrix elements of Fig. 19(a)
times the appropriate amplitude for exciting three
particles above the sea. This amplitude will contain
sequences of two or more interactions that begin at
the bottom as in Fig. 19(b). We also insert into this
amplitude two terms of first order in G which, when
combined with Fig. 19(a), will account for the diagrams
of Figs. 1(a) and 1(b). The topmost interaction in this
amplitude must not involve the pair (pq) because this
would give a redundant ladder diagram when combined
with Fig. 19(a) . This amplitude is denoted by
(apq f

Zi
f

Enzn) and satisfies the well-known Bethe-
Faddeev equation" '4

(apq f
Zi f Emn) = (ap f CQ/e(Em) )G(Em) f Em)Ez(q, n)

y (aq f f Q/e(En) )G(En)
f

En)5(p, m)

—g (ap f LQ/e(Emn; q) )G(Emn; q) f rs)(rsq
f
Z,

f
Emn)

diagrams be included' Permuting hole lines l and
m at the bottom of a direct diagram corresponds
to replacing (apq f

Zi
f Emn) by (apq f

Zi
f

mEn) T.here
is also an additional minus sign because permuting
l and m changes the number of closed loops in the
three-body diagram by one. Pursuing this argument,
one 6nds that all exchange diagrams are included by
replacing Z& by Z&~, where

(apq f
Zi"

f
Emn) = g (—1)~(apq

f
Zi

f
E(Emn) ).

(2.24)

The sum is over all permutations I' of the indices
(Emn). Thus all three-body cluster diagrams, both
direct and exchange, are given by formula (2.23) with
Z& replaced by Z&~.

The sign of (2.23) is given by (—1)"+'+'. In a direct
three-body cluster diagram there are three hole lines
and three closed loops. Thus (—1)"+'=+1, and we
have only to consider (—1)'. By iterating (2.21) we
see that every term in Z& has one more energy de-
nominator than it has factors of (—1) . So one factor of
e is always left over in Z&. The resulting minus sign is
canceled in (2.23) by a further minus sign that comes
from the energy denominator in (Em

f G(Q/e) f
ab)

So the final result is a plus sign for expression (2.23) .
In order to draw the three-body combination dia-

grams, we introduce a diagrammatic representation for
certain three-body amplitudes. Our representation is
similar to the compact-cluster diagrams of Brandow, '
but there are differences of detail. The quantity

p (bn
f

G(Enzn; a)
f pq)(apq f

Zi
f

Emn) (2.25)

is represented by the diagram of Fig. 20. The fact that
line a emerges from a notch in the three-body block
indicates that a did not participate in the last inter-
action. This notch could appear at either end of the
three-body block as well as in the middle, and so could
the closed loop labeled n. Formula (2.25) contains Zi,
not Z&~, so that line u is topologically associated with
line l, and similarly for b and ns.

Another useful amplitude, denoted by (abc f

7'
f Emn),

is given by the sum of all three-body diagrams, of
second or higher order in 6, that produce particles
a, b, c and holes l, m, e, with a and Et originating at the

'same point and similarly for (b, m) and (c, n). All
second-order diagrams in I' have the topology of Fig.
19(b), and higher-order diagrams are obtained by
inserting additional particle-particle interactions. We

FxG. 21. Diagrammatic repre-
sentation of (abc f YfEnzrz l.
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g~' a&c di&

n~~
I 1

(a)

isa bri

di&

n!

(b)

Fxo. 24. Part of a typical
diagram of class 81 that is
used to specify the particle
and hole lines topologically.

8

b&& ~re &&a &rg

FIG. 22. Four-hole-line diagrams of class 81.

can obtain V -by subtracting out the first-order terms
from the Z, to get

(pqr I
F

I
lmn)= —2(pqr I

Z~+Z2+Za
I

fmn&

+ (pq I ! Q/e(lm) )G(lm) I
Im&b (r, n)

+ (Pr I ! Q/e(ln) gG(ln) I ln&b(q, m)

+ (qr I ! Q/e(mn) ]G(mn) I
mn&b (p, /) . (2.26)

This expression vanishes unless p, q, and r are all above
the Fermi sea.

The diagrammatic representation of (abc I
F

I lmn)
is shown in Fig. 21. The left-right order of the lines u,
b, c is immaterial, as long as a is associated with /, b

with m, and c with m. The quantity V~ is defined in
analogy with Eq. (2.24) for Z&".

The over-all sign for a three-body combination
diagram is obtained by evaluating (—1)"+'+' for a
direct diagram. The minus signs introduced by exchange
diagrams are always taken into account by using
antisymmetrized matrix elements. The value of

(—1)"+' is always obvious from the topology of the
diagram. To calculate (—1)', note that Z; has one
energy denominator "left over" without an accompany-
ing minus sign but that I" does not. Thus the value of

(—1)' is obtained from the formula for the contribu-
tion of any diagram by including a factor —1 for each
factor Z; and for each energy denominator that appears
explicitly in the formula. These rules have already
been used to obtain the over-all sign for expression
(2.23). We shall use them without further comment in
writing formulas for the three-body combination
diagrams.

This completes our review of the three-body cluster
diagrams. The ideas and notation that have been
developed will now be used to write formulas for the
three-body combination diagrams.

Class Bl. Class B1 consists of the diagrams in Fig.
22 (a) and 22 (b) . In these diagrams there is no op-
portunity to use the GTO treatment. Two of the
simplest diagrams belonging to class B1 are shown in
Fig. 23. In these diagrams, the excitation of three
particles above the Fermi sea occurs only inside certain
C matrices. Diagrams of greater than fourth order
in G will have three particles excited above the sea at
one or more points between G matrices.

To see what the contribution from class 81 is, we
consider Fig. 22 (b) without the optional particle-
particle interaction. The lowest interaction in the
upper three-body block and the topmost interaction in
the lower three-body block are shown in Fig. 24. These
two interactions topologically specify all the particle
and hole lines shown in Fig. 24, except that there is no
distinction between the hole lines l and m. Therefore,
working either upward or downward from Fig. 24, each
diGerent sequence of two-body interactions leads to a
distinct direct diagram. So we obtain the amplitude
Z~ at both the top and bottom, as indicated in Fig. 22.
Permutations of the end points of hole lines at either
the top or bottom of Fig. 22 are included by using
Z~" instead of Z~. However, since Fig. 24 does not
distinguish between 3 and m, the permutation of 1 and
m in both the top and bottom of Fig. 22 leaves the
topology of the diagram unchanged. A factor ~ is
needed to correct for this double counting. So the
contribution from class 81 is found to be

W(81) = —A '-,'Q (lmk
I

Zgt"
I apq)

X (pq I G(lmk) a) I bk&(E.+Eg—E( E)—'—
X I (an I G(lmn; b) I

rs)(rbs
I

Z"
I

bsn&

+(bn I
G(omni a)

I
rs&(ars I

Z&~
I

lmn&

—(ab I G(lm) LQ/e(lm) j I
cd) L(cn

I
G(lmn; d) I rs)

X (rds
I

Z&"
I Emn&+ (dn I G(lmn; c)

I

x(:,Iz;I~

-t2

(a) (b)
(a) (b)

FIG. 25. An illustration of the GTO treatment that leads to dia-
FIG. 23. Two diagrams of fourth order in 6 that are contained grams of class 82. Applying GTO to diagram (a) gives diagram

in class 81. (b), which is a typical member of class 82.
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(b)

Fro. 26. Four-hole-line diagrams of class B2.

F&G. - 28. Goldstone diagram tp
which GTO can be applied. Diagrams
of this type are summed by means of
GTO into the diagrams of classes B4,
B5, and B6.

The first two terms inside the curly brackets of (2.27)
come from Figs. 22(a) and 22(b), respectively, with
the optional particle-particle interaction omitted.
The last two terms inside the curly brackets take
account of the optional particle-particle interaction.

Class M. Applying the GTO to Fig. 25(a), we find
that the time restrictions

33($4( f5 (2.28)

lead to the diagram of Fig. 25(b). The GTO puts the
next-to-top G matrix on the energy shell in Fig. 25 (b) .
Thus no energy denominator involves more than three
particles above the sea, and Fig. 25(b) is therefore not
a four-body cluster diagram. Taking t4(t& in Fig. 25 (a)
does lead to a four-body cluster diagram.

Figure 25 (b) shows one member of the class 32. In a
typical diagram of this class, three particles are excited
above the sea and interact among themselves any
number of times. Then the diagram ends at the top
with two interactions like those of Fig. 25(b). All
members of class 82 are represented by the diagrams
of I'ig. 26.

To write the contribution from Fig. 26(a), note that
the top two interactions topologically specify all the
particle and hole lines. The topmost interaction of the
three-body block is not restricted by the requirement
that redundant ladder diagrams be omitted. Thus the
correct three-body amplitude is F, as is already in-
dicated in I'ig. 26. Permutations of the hole lines Ikey

at the bottom of the diagram are included by using the
antisymmetrized I'~. The total contribution from class

82 is then

W(&2) =& '2 g (lm
~

G(lm) [Q/e(lm) j ~
ab)

X (&&
) G(&&)

( mc)(abc
(

I'~
)
Ne). (2.29)

We have inserted a factor of 2 to take account of
Fig. 26(b), whose contribution is equal to that of
Fig. 26(a) .

Class 83.The diagrams of class 83 are shown in I'ig.
27. Each diagram has a three-body cluster inserted into
the hole line of a two-body ladder. Thus these diagrams
can be taken into account by a modification of the
single-particle potential U(m). ' A simple application
of the GTO puts each three-body cluster completely
on the energy shell.

To obtain the contribution from class 83, note that
all particle and hole lines are topologically specified
by the top two interactions of the three-body insertion
and the lower interaction of the two-body ladder.
Thus Z~ is the correct amplitude to use in the three-
body insertion. Permutation of m, k, and e at the
bottom of the three-body insertion replaces Z& by
Z~~. Permutation of / and m at the top of the two-body
ladder gives a direct-minus-exchange matrix element
of 6 at this point. So we find

W(83) = —A ' g (lm ml
~

G—(lm) [Q/8(lm) g ~
ab)

X (ab [ [Q/e(lm) jG(lm) ) Em)

X [W3"(ekm) +W4~ (mmk) +W,"(km') j, (2.30)

(b)
(a) (b)

LJi

FIG. 27. Four-hole-line diagrams of class B3.

(c)

Fxo. 29. Four-hole-line diagrams of class 34.
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A.i& t9& A.~. (2.31)

This gives a G-matrix diagram of the type shown in
Fig. 29(a). Distinct diagrams of the same type are
obtained by breaking open topologically diff erent

where W3"(lmm) is defined by (2.23) with Zq" instead
of Zg.

Class 84. In Fig. 28 the interactions t~ ~ t9 form a
three-body cluster diagram with two of its hole lines
broken open and the two-body ladder tm ~ .t» inserted
therein. In applying the GTO we group the diagrams
according to the position of t» relative to tj, . . ., t9. A
change of ordering among t~, . . ., t9 gives a diagram
with a different three-body cluster part. Since we will
eventually include all possible three-body cluster parts,
this gives nothing new. So the ordering among tj, . . . , t9

can be kept fixed.
All diagrams with t»&t9 are included by the restric-

tions

FIG. 30. Four-hole-line diagrams
of class 85.

k)i

p&b &san ir j
&iO

pairs of hole lines in a given three-body part. This gives
the diagrams of Figs. 29(b) and 29(c) which, together
with Fig. 29(a), make up class B4.

In any diagram of class 84, all particle and hole lines
are topologically specified by the top two interactions
in the three-body part. All exchange diagrams are
included by permuting the hole lines ljm at the bottom
of the three-body block. So the contribution to the
energy per particle from class 84 is

lid(Il4) =~ ' & (~m I G(lm) I Q/e(lm) ] I ~&)(~&
I I Q/e(&~) jG(&~) I &~)L(&~ I G(tm) LQ/e(lm) 3 I ef)

X (ej I
G(lmj; f) I pq) ( fpq I

Zz"
I mlj)+ ( je I G( jn) fQ/e (j e) j I ef) (ek

I G(lmj; f) I pq)

X(fpq I
Z&"

I mjl)+(jn I G( je) IQ/e(jn) 5 I ef)(kf I G(lnjz; e) I pq)(epq I
Z&~

I jim)j. (232)

The value of the starting energy in the second inter-
action from the top in Fig. 29(a) is unexpected but
follows directly from the GTO treatment.

Class 85. Suppose in Fig. 28 that t» lies between
t2 and t5, i.e., at a level where three particles are excited
above the Fermi sea. Then all interactions below t»
mill be combined into a three-body cluster part that
produces three particle-hole pairs, and all interactions
above t» will be combined into a second three-body
part. The resulting diagrams of class 85 are represented
by Fig. 30. The GTO simply puts the hole-hole inter-
action on the energy shell.

To obtain the contribution from class 85, note first
that the hole-hole interaction topologically specifies
the hole lines l, m, and j except that it does not dis-
tinguish between l and m. We can take the hole lines
to be completely specihed and correct later for the
ambiguity between l and m by inserting a factor of
~. The particle lines are then topologically specified by
terminating at the top of the diagram with specified
hole lines. Subject to this last requirement, every se-
quence of interactions above the hole-hole interaction
is possible and gives a distinct diagram. Thus the

fbi

i

FrG. 31. Four-hole-line diagrams of class 86.

tg&t»&t8. (2.34)

All diagrams of this type are represented by Fig.
31(a), which, along with the similar diagrams repre-
sented by Fig. 31(b), make up class 86.

The particle and hole lines in Fig. 31(a) are topologic-
ally specified in the same way as they are in a three-
body cluster diagram. The contribution of Fig. 31(a) is

—~ ' r, (&~
I

G(&~) I:Q/e(&~) l I «) «m I G(&~)
I

&~)

X(&.+&d Fl &-) 'C(dj
I G(»~j; e)

I pq)

X (cpq I

Z&"
I lmj) —(«

I
G(lm) LQ/e(lm) j I ef)

X(fjI G(~~i; e)
I pq)&epqI Z~" Ilmj)j (2»)

The contribution from Fig. 31{b) is given by the same
expression except that (lm

I
G(kn) I ke) is replaced by

(lm
I

G(lm) I
kn).

Other classes. All additional classes of three-body

upper three-body block gives (fmj I

I't
I
abc). Since all

particle and hole lines are now topologically specified,
every sequence of interactions below the hole-hole
interaction must be included. This gives a factor
(abc

I

F'
I

knj ) The que.stion of exchange arises only in
terminating the hole lines at the bottom of the dia-
gram. Thus we get

W(as) =Z- —;g (fmq I
l t

I
of e)

X(~~
I
G(lm) I im)(abc I

I"
I
l~j). (233)

Class 86. The final class of diagrams obtainable
from Fig. 28 comes from time orders with t~&t»&tg.
All such diagrams are included by the restrictions
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FIG. 32. One of the two possible
ways of starting a four-body-
cluster diagram. The other way
is shown in Fig. 19(b).

combination diagrams that we have been able to find
contain bubble insertions into hole lines. They are
canceled by U(m) and will not be written down.

/IEC

a m b n p

Fxo. 34. Diagrammatic repre-
sentation of the first of two ways
of deexciting the particles in a
four-body-cluster diagram.

C. Four-Body Cluster Diagrams

In a typical four-body cluster diagram, four particles
are excited above the Fermi sea, interact any number of
times, and finally fall back into the sea again. The sum
of all four-body clusters gives Brandow's irreducible
compact part with four external lines. ' The distin-
guishing feature of these diagrams is that each one
contains somewhere, possibly only inside a single G
matrix, an energy denominator involving the excitation
of four particles above the Fermi sea. This is not true
of any two- or three-body combination diagram, either
because at no point are four particles excited above the
Fermi sea, or because of modification of the energy
denominators by GTO.

Four particles can be excited above the Fermi sea in
two quite different ways. If the first two interactions
are as shown in Fig. 19(b), then the three excited
particles can interact among themselves any number
of times before a fourth particle is excited. If the first
two interactions are as shown in Fig. 32, then we can
have an alternating sequence of interactions cd, ub, cd,
ab, . . ., after which one of the pair a, b must interact
with one of the pair c, d. After interacting among them-
selves any number of times, the four particles can be
deexcited in two di6erent ways that are analogous to
the two diGerent types of excitation.

if the diagram begins as in Fig. 19(b), then the first
interaction involving a fourth particle will usually be
as shown in Fig. 33(a) . But it may instead be as shown
in Figs. 33(b) or 33(c). In this latter case we have four
particles above the Fermi sea only inside the v-matrix
ladder that gives the G matrix of Figs. 33(b) or 33(c) .

Having described the diagrams to be summed, we
proceed to derive a formula for their contribution.
The first step is to specify topologically the particle and
hole lines by means of the interactions that deexcite
the particles at the top of the diagram. As we have
pointed out above, there are two diferent ways of de-
exciting the four particles. The first way is shown in

Fig. 34. The lowest interaction in Fig. 34 topologically
specifies the particle lines p and g. Lif only three par-
ticles are excited below the level of Fig. 34, then the
lowest interaction of Fig. 34 Inust be replaced by
Figs. 33(b) or 33(c). In Fig. 33(b), we have p=rr
In Fig. 33(c), we have g=k.j Particle lines u and b are
specified as the remaining two particle lines, but this
does not distinguish between a and b. We shall proceed
as if all the particle lines were topologically specified
and insert a factor of 2 because of the ambiguity
between a and b. The hole lines are topologically
specified by terminating with specified particle lines at
the top of the diagram. Having specified the particle
lines by the G-matrix interaction of Fig. 34, we obtain
a distinct diagram from every sequence of interactions
above this G matrix. Thus the contribution from Fig.
34 is

', (le
~

F—t
~
abc)(ck

~
G(lmnk; ab)

~ pg). (2.36)

The second way of deexciting the particles is shown in
Fig. 35(a). The lowest interaction specifies which pair
of particle lies are p and g but does not distinguish
between p and g. This ambiguity will be corrected for
by a factor of —',. Assuming p and g to be specified
topologically, we see that u and b are topologically
specified by the upper two interactions of Fig. 35(a).
The hole lines are then topologically specified by
termininating with specified particle lines.

If only three particles are excited below the level of
Fig. 35(a), then this figure must be replaced by Fig.
35(b), in which p= ri, or by a similar diagram in which
g=k. In Fig. 35(b) there is no ambiguity between

p and g. But a factor of —,'is still necessary because our
formulas will include not only Fig. 35(b), but also the
corresponding diagram with g =k, and these two dia-
grams are topologically identical (more precisely, they

(a) (b)

/AC

zip

(c)

a n

(a)

FIG. 35. Diagrammatic
representation of the se-
cond of two ways of de-
exciting the particles in a
four-body-cluster diagram.
The difference between (a)
and (b) is explained in the
text.

FIG. 33. Possibilities for the first interaction in a four-body-
cluster diagram that involves a fourth particle. The diagram is
assumed to have started as in Fig. 19ib).
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become topologically identica, l after application of the
GTO, which is described in the next paragraph) .

We have drawn only two interactions above the
lowest 6 matrix in Fig. 35. But there could be any
alternating sequence of interactions ac, bd, ac, bd, . . . .
All these possibilities are summed immediately by using
the GTO. The result is simply to put the upper two 6
matrices and energy denominators of Fig. 35 on the
energy shell. The factor associated with Fig. 35 is
therefore

/ &in I G(ln) LQ/e(ln) j I ac)

X (mk
I

G(mk) I Q/e(mk) g I
bd)

X &cd
I

G(lmnk; ab) I pq). (2.37)

Let us now consider that part of a four-body cluster
diagram that lies below Figs. 34 or 35. Since the particle
lines are topologically specified, a distinct diagram is
obtained from every sequence of interactions that
takes particles from states l, m, e, and k in the Fermi
sea to states a, b, p, and q. Either p or q (but not both)
may be in the Fermi sea. Direct diagrams are defined
to be those in which each hole line begins and ends with
the same particle line. We will derive a formula for
direct diagrams and include the exchange diagrams
later.

We must calculate the appropriate amplitude
&abpq I

C34
I

lmnk) for taking four particles from l, m,
n, and k to a, b, p, and q. The subscript 34 means that
the last interaction must not be between p and q, i.e., it
must involve at least one of a, b. This requirement is
necessary in order to avoid a redundant ladder diagram
when C34 is combined with Figs. 34 or 35. The con-
tribution to (abpq I

Cg4 I
lmnk) of all diagrams that

excite three particles and leave the fourth particle in
the sea is

(abp I
l'

I ~mn)b(q, k)+(abq I
l'

I ~mk)~(p, n). (2 3g)

Sequences of alternate interactions between two dif-
ferent pairs of particles (see Fig. 32) give, after ap-
plica, tion of GTO,

&ap I LQ/e(ln)]G(ln)
I

En)&bq I IQ/e( mk) )G(mk) I mk)

+ &aq I I Q/e(N) )G(lk)
I
lk)

X (bp I LQ/e(mn) jG(mn) I
mn). (2.39)

All additional contributions to (abpq I C34
I

lmnk) are
grouped into five classes, according to which pair of
a, b, p, and q (other than pq) participates in the last
interaction. In this way we obtain the following equa-
tion for C34.'

&abpq I
C34

I
tmnk) = &abp I

l'
I Lmn)b(q, k) + (abq I

l'
I Imk)b(p, n)+ (ap I [Q/e(ln) )G(ln)

I
tn)

X&bq I I Q/e(mk) jG(mk)
I mk)+&aq

I LQ/e(lk) gG(lk) I Ek)&bp
I IQ/e(mn) jG(mn) I

mn)

—p &ab I CQ/e(lmnk; pq) jG(lmnk' pq) I
r~) &r~pq I C»

I
Lmnk)

rs

—2 (ap I LQ/e(~mnk; bq) 3G(lmnk; bq) I rs)(rbsq I Ci3
I
Lmnk)+3 similar terms. (2.40)

There are five similar equations for the other five
amplitudes C;;. These six coupled equations are the
four-body analog of the three-body Bethe-Faddeev
equations (2.21). So the equations represented by
(2.40) will be called the four-body Bethe-Faddeev
equations.

The contribution to the energy from all four-
body cluster diagrams is obtained by combining
&abpq I

C,4
I

lmnk) with the sum of (2.36) and (2.37).
All exchange diagrams are obtained by permuting the
hole lines at the bottom of the diagram. This cor-
responds to replacing C34 by C34~, which is defined in
analogy with (2.24). The energy per particle from all
four-body cluster diagrams is therefore given by

W, =A—'-,'g I &lmn
I
1"

I abc)b(r, k)

+ &ln I G(ln) PQ/e(Ln) g I ac)

X &mk
I

G(mk) LQ/e(mk) j I br)}

X&cr I G(lmnk; ab)
I pq)

X &abpq I
C&4"

I
lmnk) (2.41).

To evaluate t/t/'4, one must first solve the three-body
Bethe-Faddeev equations to obtain V. Then the
four-body Bethe-Faddeev equations are solved for C34,
and the calculated values of C34 and I' are put into
(2.41) .

Formulas for four-body cluster diagrams have been
given by Lawson and Sampanthar" and by Kuriyama. 32

The formalism developed in the present paper divers
somewhat from both of these earlier treatments.

Lawson and Sampanthar define a four-body wave
function p —P&'4& that contains alt diagrams of first or
higher order with the last interaction rot between
particles 3 and 4. This wave function contains our
C34 and a great many additional terms. For example, it
contains all sequences of interactions among particles
1, 3, and 4 in which the last interaction is not between
3 and 4, and in which particle 2 remains undisturbed
in the Fermi sea. These terms do not appear in C34.

Lawson a,nd Sampanthar also use a slightly different

3~P. A. Lawson and S. Sampanthar, Nucl. Phys. A106, 669
(~968)."A. Kuriyama, Progr. Theoret. Phys. (Kyoto) 40, 301 (1968).
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definition of four-body clusters. For example, they
include our class A4 among the four-body clusters.

Our formulation seems to have several advantages
over that of Lawson and Sampanthar. First, our use of
GTO in connection with Fig. 35 and Eqs. (2.37)
and (2.39) makes our treatment simpler than theirs.
Second, Lawson and Sampanthar's equation (24) for
the energy, although formally exact, might produce
some unnecessary error in a numerical calculation.
In this equation, the contribution from terms of
@—f&'4& in which either particle 1 or particle 2 remains
in the Fermi sea is identically zero. However, when
these terms are explicitly evaluated in a practical cal-
culation, in which approximations must always be
made, they will usually turn out to be nonzero and thus
produce some error. The wave function C34 used in
the present formalism contains no superfluous terms"
of this sort. Third, our forrnal expressions are more
explicit with respect to starting energies and exchange
diagrams than those of Lawson and Sampanthar.

Kuriyama" defines a four-body wave function $34i'&

which consists of all corrected diagrams of third or
higher order in which the last interaction must involve
particles 3 and 4 and no other pair. This wave function
is clearly quite different from our C34 and from Lawson
and Sampanthar's p —P&'4&. Kuriyama defines the
Pauli operator Q;; to require that at least oee of the
particles i, j be above the Fermi sea. The usual defin-
ition of Q.;;, which is used in the present work, requires
both particles i and j to be above the sea. Kuriyama's
use of a different Q allows many summations that would
ordinarily run only over particle states to run over
hole states as well. Hence many terms are included that
do not correspond to diagrams in the Srueckner-
Goldstone expansion. This is certainly undesirable, but
in a practical calculation it might introduce only a
small error. A more serious consequence of Kuriyama's
definition of Q is that his formula (2-9) for W4 excludes
all diagrams that end at the top as in our Fig. 35.
Therefore, it is believed that the formulation given in
the present paper is preferable.

III. NUMERICAL CALCULATIONS

A. Preliminary Remarks

Before estimating the contributions from specihc
diagrams, we state some of the ideas, assumptions, and
notation that will be used in making such estimates.
All numerical work is done with the Reid" soft-core
potential at normal density (4 = 1.36 F ') . The single-

particle energy spectrum is taken to be

We use units in which (fP/M) =1, where M is the
nucleon mass. Then 1 F 2 is equivalent to 41.47 MeV.
The choice of pure kinetic energy for intermediate-
state energies is a sensible one in a scheme where
three-body cluster diagrams are to be calculated
explicitly. 4

The spectrum (3.1) gives

U= —66 MeV, (3.3)

y=exp(iko r)x„,.s,

(3.5)

where P is the unperturbed two-body wave function,

P is the correlated Bethe-Goldstone wave function,
and f is the "defect function. " The partial-wave ex-
pansion for P is

P(ko, r) = g iz)47r(2L+1) ]'"

X (LSOnss
~
Jms) r 'uzz ~s(ko, &)'Jjzzz (ko, r), (3 6)

where mg is defined relative to the polar axis ko. Here
ul, ~. is the correlated wave in channel L' due to the
unperturbed wave in the entrance channel I. In singlet
states, and in triplet states with J=I., only I'=I
is possible. But, because of the tensor force, in triplet
states with L=J 1, we can have —L'=L or L+2, and
when L=J+1 we can have L'= L or L—2. The partial-
wave expansions of P and t are the same as (3.6)
except that uzz, s is replaced by 8(L, L')rj z, (kor) and

by Xzz =8(L, L')rjz(d'or) uzz; 8, r—espectively.
Using Gp= eP, one obtains for matrix elements of G

the result' (ms and ms' are both defined relative to the

where U)is the average single-particle potential energy
for occupied states. A detailed calculation' using this
spectrum as input gave an output U of —65 MeV.
The value m*=0.6 agrees well with self-consistent
values obtained by Sprung. "Thus our spectrum below
the Fermi sea is very nearly self-consistent. Any
inaccuracies due to lack of self-consistency will be
negligible.

All the required two-body wave functions and
matrix elements of G are calculated by a method in-

vented by Kallio. ' The only approximation in this
method is the use of the angle-averaged Pauli oper-
ator, " which produces only very small errors. "'
Using the notation of Ref. 6, we define

m*= 0.6, Aj = —81 MeV.

E(k) =-',k'

= (1/2m*) k'+Xi, k(4 (3.1)

(3.2)

"D.W. Sprung (private communication).
34 G. E. Brown, G. T. Schappert, and C. W. Wong, Nucl. Phys.

SO, &91 (1964).' E. J. Irwin, Ph. D. thesis, Cornell University, 1963 (unpub-
lished) .
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polar axis ko)

(ksms' j G
j koSms) = g i~L'[4n. (2L+1)Jl'

JL,u
X (L'Sms ms—'m's

j Jms)

X(LSOms j Jm, ) Y.,„. ..(i, i,)G..»(k, k,), (3.7)

O.R

O. I

rjz, (kr)GLz, »(k ko) =4
L,II

X(JL'S
j s(r) j

JL"S)uLL"~ (ko, r)dr. (3.8)

The Fourier transform of f will also be needed. It is
given by

Sm, jg(k„S,m,))= P 'L-"[4 (2L+»yo

"0.2

-0, 5

FrG. 36. Two-body defect functions for the Reid soft-core po-
tentia}. The curves labeled XO are for the '50 entrance channel.
The curves labeled y02 represent the D-wave component in the
3S~ entrance channel. The solid and dashed curves are for relative
momenta of 0.2 and 1.2 F ', respectively.

X (L'Sms —ms'ms'
j Jms)

X (LSOms j Jms) YL o o (k, ko)xzz, (k, ko), (3.9)

The average over spin and isospin is seen from (3.13)
to be

xz,z, (k k) =4~ rj L (kr) x«(ko, r) dr (3.1.0) (g„„)s,r, .——p Q v(LSJ) Q 4x
JIS L,I

[xLL "(ko, r) 1'«,
0

Here, m~ and mq' are both defined relative to kp. By
using the relation' g= (Q/e) Gp, one can show that

Xzz, »(k, ko) = [Q(k E)/(k'+p') )GLL»(k k ), (3.11)
where E is the total momentum of the interacting pair,
and Q(k, E) is the angle-averaged Pauli operator,
The excitation energy of a state with relative mo-
mentum k is k'+y2 (this defines yo). For numerical
work, (3.11) is more useful than (3.10) .

In our notation, a state such as j mrs) or j i „)
contains a plane wave in the center-of-mass coordinate
R as well as a normalization factor 0 ', e.g.,

(3.15)

v(LSJ) ro g [1 ( 1)L+s+r j(2J+1)(2T+1
T=0,1

(3.16)

where p=A/0 is the particle density. Using the single-
particle spectrum (3.1) at kJ ——1.36 F ', formula
(3.15) has been averaged over momenta to obtaino
~=0.135 and ~=0.193 for the Reid" soft-core and
hard-core potentials, respectively.

An important fact' that we will use later is that 90%
of expression (3.15) comes from the S-wave entrance
channels. Thus it is often a good approximation in
formulas containing xL,I. J~ to retain only terms with
L,=O. The D-wave component gp2" in the 'S~ entrance
channel is very important. We have found that this
component alone contributes to ~ about 50%%uo of the
total.

A second very useful fact is that the S-wave en-
trance-channel functions xoL in (3.15) depend
very little on the initial momenta of the two states
m, e. This is shown in Fig. 36. The Sp defect function
Qpp =XQ and the induced D wave xp2"—=

Xp~ in the 'S~
entrance channel, are both plotted against r for two
quite different relative momenta, ko ——0.2 F ' (solid
curves) and ko ——1.2 F ' (dashed curves). In each case
E was put equal to its rms value consistent with the
given value of kp. The function xpp" —=xpp is not shown
but is very similar to gp.

In view of the above discussion, it is clear that
f( „ is nearly independent of the momenta of m, m.

Figure 37 shows a plot of the spin-isospin average of
I(: „against the relative momentum kp. It is clear that
deviations of ~ „from its average value by more than
5% are highly improbable. We will make repeated use
of the fact that ~ „is nearly constant.

A number of four-hole-line diagrams contain optional

j mm)=Q 'exp(iK R) j kosms) (312)
Thus the matrix element (fi, i j f~n —|„),which will
arise later on, is given by

0 jl=.-t--)=f1-' Z "[1-(-1) "')
JI,I,I

X [4~(2L+ 1)$'' (L'Sms ms ms'
j
Jms)—

X (LSOms j Jms) YL .—. (k, ko)

X47r Q xL'L' "(k) r) x«"»(ko, r) «& (3.13)
L,II

where j mn) is given by (3.12), and the corresponding
quantum numbers for j kl) are K, k, S, ms', with ms
and mq' defined relative to kp. Each two-particle state
is assumed to have a definite isospin 2'. The effect of
the exchange term on the left-hand side of (3.13) is to
give the factor [1—(—1) +s+rj which selects the
states that are permitted by the Pauli principle.

The expansion parameter f~, is de6ned to be the
average over occupied states m, e of the quantity

(3.14)

K „=A (mrz j G(mm) G(mio) j mm &m)—
em+ erne

=A (1mn j t mn f ntn)~—
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O. I6

0.I4

O. I2

particle-particle interactions. Suppose that J4 ~ is the
contribution obtained without the optional particle-
particle interaction, and that F2 is the contribution
obtained when this interaction is included. Then S'~
contains a factor G/e relative to Wi. This G matrix is
taken between highly excited states and is usually
positive. The additional energy denominator gives a
minus sign. Hence 8'~ cancels part of 8i. This moti-
vates us to introduce a reduction factor r defined by

Wi+Ws ——«Wi. (3.17)

Let us estimate this reduction factor for class AS.
Omitting a common factor, we find from (2.14)

W=Q(i l b)(E+E+E, E E E) —'——

X(ab lf',„-f.,), (3.»)

W =- 2 (~i. I a»(E.+Eo+E. E. Ei E.)-—-
cMe

X(abl G(Eke; c) [Q/e(lkn;c)g l de)(dcl ii —i i).

(3.19)

Let
l ™)have relative momentum 1 o and spin-isospin

quantum numbers SmsTT3, while the corresponding
quantities for

l
ab) are I' Sms'TTo. Then the matrix

elements in (3.18) can be obtained from (3.9) [in-
cluding an exchange term as in (3.13)], and the sum
over ab becomes an integral over k. Expression (3.18)
depends on the direction of k through the spherical
harmonics that come from (3.9) and through the re-
quirement that a= tsK,o+k and b= —',K,o

—k both lie
above the Fermi sea, where K ~

——KE =K. Our treat-
ment of this last requirement is analogous to our use of
the angle-averaged Pauli operator: We average over
directions of k and insert a factor Q(k, E). This
allows us to bene6t from the orthogonality of the
spherical harmonics, which in turn greatly simplifies
the sum over spin and isospin. After summing over all

I

0 0.25 0.5 0.7'5 I.O

ko kp

FIG. 37. Curve labeled ff shows the dependence of & „on the
relative momentum kp of states m and e. The left-hand vertical
scale is used. The horizontal dashed line represents the average
of s over m, N. The curve labeled P(ko) gives the probability
of ending two occupied states m, e with relative momentum kp.
This curve is in arbitrary units and goes to zero at kp=0 and
kp=kg.

spin and isospin quantum numbers, we obtain

d'k
Wi=16 Q v(LSJ), [ iz's(k, ko)g'

Sm8, TT3 (27r)'SJILi

X Q" ', (3.20)
ks+&s '

yss=4E,o'+E, Eo—E—i—E„. (3.21)
In (3.19) the sum over de can be evaluated by closure
to give (i,o l ii- t —i), where f,o must be calculated
with the starting energy (E&+E~+E„E,). —Pro-
ceeding in the same way as for (3.18), and using (3.13),
now gives

SmB, TT3
Ws= —16 Q v(LSJ)

Xyr.r:' (k) ko)BLL' (k, ko) ', (3.22)
Q(k, E)
ks+ 2

~LL' (k ko) 4~+ gL'L" (k «)QLL" (ko «)~«.

(3.23)

Note that we would have Wi+Ws ——0, i.e., a perfect
cancellation, if x".'s(k, «) were replaced in (3.23) by
B(L', L")rj z, (k«) This re.placement is exact inside the
core radius (if any), but it is wrong for larger «.

In accord with our earlier discussion, we included
only terms with I.=O in the numerical evaluation of
(3.20) and (3.22), and we calculated only for one
value of ko, namely, ko ——~kg ——0.68 F '. To obtain a
reasonable value for y3', note 6rst that K,~

——K~ so that
-'E,os=-'(1+m)'= st(ts+m'+1 m).

On the average, 1 I is zero, and the average value of
P is 0.6k+ . So we replace 4E'~p by 0.3k+ . The mo-
mentum of c is restricted by- momentum conservation
to be between kg and 3k~. Taking c= 1.5k' gives
E,=1.125k~s. Finally, we put (E&+Ei+E„)=3E,
where E= —43 MeV is the average single-particle
energy for the spectrum (3.1).Thus we get

y 2= 1.425k'' —3E=5.7S F (3.24)

m4

FIG. 38. Various functions of relative momentum k that arise
in the calculation of the reduction factor for class AS and are
defined in the text. The horizontal axis represents k in units of
F . The dimensions of the vertical axis are F'. The function
kyp(k, kp) is not shown but is very similar to kgpp.
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There is no need to treat &3' more carefully. Note that
this off-energy-shell value of F32 is also used in cal-
culating the function xr, r, ~s(k, r) that appears in
(3.23). The defect functions with initial relative mo-
mentum kp were calculated using the on-energy-shell
value of p' appropriate to the spectrum (3.1), given by

(a) (b)

wwQ

(c)

TABLE I. Values of various parameters defined in the text.

kp

U

r
8'3
~shh

1.36I' i
—66 MeV
—43 MeV

0.135
0.8

—1.1 MeV
—0.34 MeV

y'= 22 i—ko' jzzz*+—E'(1—1/zzz*) . (3.25)

In order to simplify the function Q(k, E) in (3.20) and
(3.22), we took %=0. For the on-energy-shell wave
functions we then find y'= 3 14 F ' from (3.25) .

The p's and 8's, multiplied by k, are plotted against
k in Fig. 38. The product gp28p2 is much smaller than
(x02)' for most values of k. This means that the D wave
induced by the tensor force produces very little can-
cellation between (3.20) and (3.22). But the can-
cellation in the 'Sp state is appreciable, as is that in the
S wave of the 'S~ entrance channel.

The reduction factor calculated from Bp2 and xp2

alone is 0.94; from Bpp and xpp alone it is 0.48; from
Bp and xp alone it is 0.53. The complete reduction factor
r comes to 0.80. Thus the optional particle-particle
interaction in class AS produces a 20%%u~ cancellation.
Another interesting quantity is the average value of
t'z'+yzz, defined as the ratio of (3.20) [calculated
without the factor (k'+yzz) 'j to (3.20) as given. The
result is 530 MeV.

Ke have now set down enough formulas to permit
an accurate evaluation of the two-body combination
diagrams. Our treatment of diagrams that require a
detailed knowledge of the three-body functions Z& and
I' will be much less accurate. We will completely ignore
the tensor force and use the approximation of Ref. 12,
which gives Z& as a polynomial of two-body correlation
functions. This result was derived for a potential with
a hard core, but we will use it for our qualitatively
similar potential with a Yukawa core. Also, we use only
the S-wave components of the two-body correlation
functions that appear in the formula for Z~. Our results
will be of the correct order of magnitude for central
forces, but we cannot claim high accuracy. And ad-
ditional uncertainty is introduced by our omission of
the tensor force. Similar approximations will be made in
the evaluation of the four-body clusters.

We will need in the numerical work the contributions
8 3 and 5 3""from the three-body cluster diagrams and
the hole-hole diagram, respectively. For 8'3 we take the
results of Dahlbiom (using the Reid hard core potential)-

FIG. 39. Exchange diagrams corresponding to the direct
diagram of Fig. 1(d).

that are quoted by Rajaraman and Bethe."The sum of
various terms in TV3 quoted near the end of Sec. 6 of
their paper is —1.1 MeV. We calculate 8'3"" in the
present paper to be —0.34 MeV. We conclude our
preliminary remarks by listing in Table I the values of
various parameters used in the numerical work.

B. Hole-Hole Diagram

We now calculate the contribution from the hole-hole
diagram of Fig. 1(e). This diagram has only three in-

dependent hole lines. But it has not been carefully cal-
culated before, and we need to know its size in order to
estimate some of the four-hole-line diagrams.

The contribution to the energy per particle of the
hole-hole diagram is

P'a""——3 'z P Q;.„[t & t &)(—tzrz
~
G( jzz) [ jzz). (3.26)

Ke first make a rough but simple estimate of this
expression. This will serve to introduce ideas that will
later be used in making rough estimates of four-hole-
line diagrams.

The first requirement for our rough estimate is an
approximate way of including all exchange diagrams.
We assume a spin-independent central potential. Since
a typical intermediate-state momentum is much larger
than a typical momentum in the Fermi sea, we may
approximate all hole rnomenta by zero. Kith these
simplifications, it may happen that the contributions
from the various exchange diagrams differ only in sign
and in the statistical weight due to spin-isospin sum-
mations. This is the case when the exchange diagrams
are obtained by permutation of hole lines at the top or
bottom of the diagram, ' "" as in the three-body
combination and four-body cluster diagrams. It is also
true for two-body-combination diagrams whenever all
exchange diagrams can be obtained by exchanging
hole lines in various two-body interactions. For example,
under exchange the spatial part of the matrix element
(00

~

G
~
k—Ir) is unchanged, and the only possible

change is in the spin-isospin part. We assume that one
of these favorable situations occurs. Then diagrams
that differ by an odd number of closed loops will differ
in sign. And the number of independent spin-isospin
summations is equal to the number of closed loops
because, for a spin-independent central potential,
every line in a given closed loop must have the same
spin and isospin. Since there are four spin-isospin
states for a nucleon, reducing the number of closed
loops in any diagram by one multiplies its contribution
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FIG. 40. Taro intersecting Fermi spheres that are used in the
calculation of phase-space factors. Each sphere has radius kp,
and their centers are separated by a distance IC.

by —4. Arbitrarily choosing one diagram as the direct
diagram, we can write the total contribution from all
the diagrams as a statistical weight times the contribu-
tion from the direct diagram alone. This statistical
weight is the sum of the statistical weights of each of
the individual diagrams. By definition, the statistical
weight of the direct diagram is unity. Diagrams with
one less closed loop have a weight of —~, those with
two fewer loops have a weight of ~6, etc.

These ideas have been stated and used by Rajara-
man. "As a simple example, take the direct diagram
to be that of Fig. 1(d), and let the exchange diagrams
be those of Figs. 39(a)—39(c). The statistical weights
of the four diagrams are 1, —4, —4, +—,'6, respectively.
Thus the sum of all four diagrams is approximately &'

times the direct diagram.
Having discussed the inclusion of exchange in our

rough estimates, we consider next the approximate
summation over states in the Fermi sea. After mo-
mentum conservation has been taken into account,
each four-hole-line diagram involves four summations
over occupied states. In the approximation of zero hole
momentum, all dependence on hole momenta is ne-
glected, and each summation over momenta in the
Fermi sea simply gives a factor ~~A. Each independent
spin-isospin summation gives a factor of 4, but it must
be remembered that the number of independent spin-
isospins is equal to the number of closed loops. For
example, the summation over occupied states for a
four-hole-line diagram with only two closed loops gives
a factor &'&A'.

A complication that often arises in summing over
occupied states can be illustrated by means of the
hole-hole diagram. In expression (3.26) we can allow j
to be determined by momentum conservation and sum
over 1, m, and n in the Fermi sea, subject to the re-
striction

~ j (=~ 1+m—n ~(k~. This amounts to sum-

ming independently over 1, m, n and then multiplying
by the phase-space factor

f= (x7rkp') 'Jdldmdn,
~
1+m—

n~ (4. (3.27)

To compute f, we introduce the relative and center-of-
mass variables

K=1+m, k, =-', (I—m), k=-,'( j—n). (3.28)
3' R. Rajaraman, Phys. Rev. 129, 265 (1963).

Q;„~ i-,„)=4~/3a (3.30)

and we will often use this approximation.
The same ideas can be applied to matrix elements of

G between low-lying states. The contributions from odd
states tend to cancel out in such matrix elements, and
exchange simply gives a factor 4 for even states. Thus
we have

U —,'p6. (3.32)

This leads to the approximation

(i~
~
G

~

jm)=fl-~@=4@/3~ (3.33)

for an average matrix element of G between states of
low momentum.

We now have the ingredients necessary for rough
estimates of four-hole-line diagrams. We will illustrate
their use by making a rough estimate of the hole-hole
diagram. There is only one exchange diagram in ad-
dition to the direct diagram of Fig. 1(e), and the total
statistical weight is 1—~=4. The direct diagram has
three independent summations over occupied states
but only two closed loops; hence these summations give
a factor ~~A'. The restriction

~
1+m—n ~(k~ intro-

duces the phase-space factor —,'. The matrix elements

Q; ~ t ~ ) and (lm (
G

~ je) that occur in the direct
diagram are replaced by formulas (3.30) and (3.33),
respectively. Combining all these factors with the
factor —', A ' that already appears in (3.26), we obtain

3 A'1 4~ 4Ugl hh~ A—1

2 4 4 33A3A'
Wg""~~~V/18= —0.48 MeV. (3.34)

The effect of the tensor force will be largely included in
this formula by using the correct values of z and U,
calculated with the tensor force included.

Approximate formulas such as (3.34) are extremely
useful. They give an idea of the numerical importance
of a diagram without tedious calculation. Further-

For a given K, the tips of the vectors k and ko can vary
independently over the intersection of the two spheres
shown in Fig. 40. Each sphere has radius kp, and their
centers are a distance E apart. Using these new vari-
ables, it is easy to obtain the result f=34/105, which
for all practical purposes becomes f= ~~.

In making rough estimates, we will often replace
matrix elements by their average values. Consider the
matrix element (i;„~ f& ), which is approximated by
0 'ft'dr when the slight dependence of t on the initial
momenta is neglected. This last integral is related to ~.
Since we assume a spin-independent central potential,
and since only 5 waves are important for a, exchange
gives a factor 4 and we get

,'p JPdv. .— (3.29)
It is now clear that
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more, although the numerical factor 1/18 is only a
rough approximation, the result that lV3"" scales as
~U should be reliable. Hence an accurate calculation
of 8'3"" with a given two-body potential at a given
density can be extrapolated to other two-body po-
tentials and to other densities. To make the extrapo-
lation one has only to know the values of ~ and U
for the new potential or density.

Having described the methods to be used in making
rough estimates, we turn to an accurate calculation of
WP". Each of the two matrix elements in (3.26) is
written, as a sum of partial-wave contributions by using
(3.7) and (3.13). All the dependence on the directions
of the relative momenta k, ko /define by (3.28) 7 is
now contained in a factor of the form

*(k, ko) I'. (k, &o) .
We average over the angle between k and ko to get
8(l, l')b(m, m'). Then the orthogonality relations for
Clebsch-Gordan coefficients can be used to greatly
simplify the formula. The Anal result is

W8" =-'p '(2') ' dKdkdko Q 16m(LSJ)
LSJ

X Q Gi.z ~s (k, ko) Q 4m

X xr, I, ~s(k, r)xr,z; ~s(ko, r) dr (3.35).

Averaging over the angle between k and ko is only an
approximation, as can be seen from Fig. 40. The trouble
is that the vector k, for example, is not free to point
in any direction unless its magnitude is less than
kr ',E. However, if—ei—ther

~

k
~

or
~

ko
~

is less than
kp —-,'E, the angle averaging is justified. The angle
averaging is exact in 74% of the available phase space
and is probably quite a good approximation in the
remainder. So we do not expect any serious error from
this source.

I,et us now consider what values of L, L', L" are im-
portant in (3.35). Terms with L=L'=0 and L"=0, 2
are clearly important. Terms with L=O, L'=2 are
negligible because the defect function y is so small in
the 'Dz entrance channel. This was checked by cal-
culating the sum over L" of the spatial integral ap-
pearing in (3.35). We took k=kr in order to make
x~z, .(k, r) as large as possible. For all values of ko, the
result was about 1% of that obtained with L=L'=0.
Thus terms with L=O, L'=2 are negligible, and so,
therefore, are terms with L= L'= 2.

The only possibility remaining is L=L'= j.. The
P-wave defect function is not negligible, the P-wave
contribution to ~ being 10% of the S-wave contribu-
tion. But the P-wave matrix elements G~~ are some-
times positive and sometimes negative (depending on
J, S) and tend to cancel out. The extent of this can-
cellation was tested as follows: First, we replaced

v(1SJ)G»~ (k, ko) by the contribution of that par-
ticular P-wave entrance channel to the 6rst-order
binding energy (Table 6 of Ref. 6). The sum over L"
of the integral of (x~r, ~s) ' was then estimated by using
the contribution to ~ from that particular entrance
channel (Table 6, Ref. 6). These two numbers were
multiplied together for the 'P~, 'Po, 'P~, and 'P2 entrance
channels, and the results were sumlned. The final
result was 200 times smaller than the corresponding
result for L=L'= 0. Ke conclude that it is an excellent
approximation to include only terms with L=L'=0 in
(3.35) .

Since the defect functions in the S-wave entrance
channel are nearly independent of the initial relative
momentum, the integral of the product of two x's in
(3.35) was replaced by a constant, independent of k
and ko. Allowing k and ko to range independently from
0.1 kg to 0.9 kp, we found that the value of this integral
remained constant to within 16%.For k and ko between
0.3 kr and 0.7 kr, the variation was 8%. We actually
used the average over ko of the value obtained with
k= ko (Multiplying this value by —,p gives the contribu-
tion to ~ from the 'So and 'S~ entrance channels) .

Having made the above approximations, we cal-
culated the integral over allowed values of K, k, and
ko numerically. The required values of Goo(k, kz) were
obtained by interpolation from an array of previously
calculated values. The result for TV3"" was —0.34 MeV.
The error due to our approximations is probably
about 10%.

Ke can use this result for the soft-core potential
along with (3.34) to estimate Wah" for the Reid' hard-
core potential at normal density. Both potentials have
about the same value of U, but the value of ~ is 43%
larger for the hard-core potential. ' Thus W3"" is about
43% larger for the hard-core potential, i.e. , W3"h
—0.49 MeV for the hard-core potential at kg=1.36
F—1

C. Two-Body Combination Diagrams

Class A l. Using closure to carry out the summations
over a, b, c, and d in Eq. (2.4), we obtain

(A1) =~-'-', & Q.,„I t &„—i-„,)Q

X (mm
~

G
~

mm —em). (3.36)

Now, from (3.14), we see that

P (i &
~ i („—i ~g) =A—' g ~) —a. (3.37)

l l

This is an excellent approximation because zl already
depends very little on m and averaging over 1 reduces
this dependence on m even further /the left-hand ex-
pression in (3.37) is clearly independent of the spin
and isospin of m7. The sum over k in (3.36) is carried
out in analogy with (3.37), and we obtain

W(A1) =A '-', P ~'(mm
~

G
~

me —em) = ~~~2U. (3.38)
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Using the values of z and U from Table I gives
W(A1) = —0.60 MeV. This very simple estimate
should be accurate to within a few percent, and a more
elaborate calculation is unnecessary. Note that the
tensor force is fully taken into account.

The expression ~~ U is exactly equal to ~ times the
two-hole-line contribution to the binding energy. This
is the order of magnitude that was expected a priori
for a typical four-hole-line diagram. Recalling our
discussion of rough estimates in Sec. III B, we can now
see that most four-hole-line contributions will in fact
be much smaller than this. For example, the diagram
of class A1 has four closed loops. If it had only three
closed loops, as is the case for many four-hole-line
diagrams, its contribution would be reduced by a
factor of 4. Also, class A1 involves no phase-space
factors such as the one that reduces the contribution of
the hole-hole diagram by a factor of 3. The contribu-
tion of class A1 also tends to be large because of a
"coherence effect:" in summing formula (2.4) over the
momentum indices, we find that every term has the
same sign. There is no cancellation between contribu-
tions from different regions of momentum space. For the
vast majority of four-hole-line diagrams, circumstances
are not so favorable as they are for class A1, and most
four-hole-line contributions are accordingly much
smaller than W(A1).

The contribution from class A1 has been previously
calculated by Brueckner, Gammel, and Kubis, "using
the BGT" potential. Their result of —1.5 MeV for the
sum of classes A1 and A5 is about twice as large as ours.
The discrepancy suggests that the value of I(: appropri-
ate to the Brueckner- Gammel-Kubis calculation is
about 50% larger than the value used in the present
work. This is perfectly reasonable since their potential
had a hard core, and they worked at a higher particle
density. Kohler" used formula (3.38) to obtain a result
of —2.1 MeV for the Hamada-Johnston'P potential.
This is consistent with his calculated value of a which
was 0.25.

Class A2. The first two matrix elements in (2.7) can
be summed over a, b, and l by using (3.37). The re-

maining factors in (2.7) are the same as those in the
hole-hole diagram, except for a factor of 2. When the
approximation (3.37) is made, the contribution from
Fig. 6(b) becomes equal to that from Fig. 6(a). In-
serting an additional factor of 2 to account for Fig.
6(b), we find

W (A2) =—4gWP" =0.18 MeV. (3.39)

This estimate includes the tensor force and should be
accurate to a few percent for a given value of 8'3"".

Class A3. To evaluate class A3, we plan to calculate
U(b) from (2.10) and put the result into (2.9). Let
~

peak) have relative momentum kp and spin-isospin
quantum numbers SmsTT3, and let the corresponding
quantities for

~
bc) be k'Sma'TTp(ms and ms' are both

referred to the polar axis kp). Partial-wave expansions

for the matrix elements that appear in (2.10) are
obtained from (3.7) and (3.9). The product of these
two partial-wave expansions contains the product of
two spherical harmonics, both with argument (k', kp).
We make the approximation of averaging over the
angle between k' and kp. The orthogonality of the
spherical harmonics then greatly simplifies the form-
ulas.

The next step is to sum over all spin and isospin
quantum numbers. This implies a summation over the
spin and isospin of b, which should be kept fixed when
evaluating (2.10). A factor of ~i is inserted to correct
for this overcounting. This procedure is permissible
because U(b) is independent of the spin and isospin of
b. The result is (including the overcounting factor
of 4)

(nk (
G

( bc)(bc
~ (Q/e) G [ rlk krl,)—

Smamg~, TTS

—-', fl
—' Q 16v(I.SJ) Q GJz; s(k' kp)xlr. (k' kp)

JLS

(3.40)

The sum over momenta k, D, and c gives a factor
(-',A)' times an average over kp, K, with c=K—b
being determined from momentum conservation (K is
the total momentum of the state

~
ek)). A numerical

integration over kp was carried out, each point being
weighted bv the probability

P(kp) dkp 24x'(1——pPx+ ', x—') dx— (3.41)

for finding two particles in the Fermi sea with relative
momentum between kp and kp+dkp PIn(3.41), x=
kp/kpg.

In contrast to the integral over kp, the integral over
K was not evaluated in detail. Instead, for a given
value of kp, E was put equal to its rms value, de-
termined from

(E') = 2 4k''(1 —x) (x'+3x+6) /(6+3x), (3.42)

where x= kp/k&. This value of X was used in two ways.
First, for given values of E and b, the relations c=
K—b and

~
c ~)kz permit only certain directions of

K relative to b. The fraction of the total solid angle that
is available to K is

This phase-space factor is inserted into (3.40). The
second use of E is to determine an average value of
k'=-', ~

b —c ~. Using k'= —',K+b, we average k" over
the allowed directions of K relative to b to get

(k"), =-',b'+4ikp'+-', Eb,

=b'+ ,'K', -

This value of k' was used in (3.40).

b(kp+E

b) kr+E. (3.44)

f(b, K) = L(b+E)'—kp'j/4Eb, b(kp+K

b) kg+ E. (3.43)
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Thus the final expression used to calculate U(b~ is

kp

P(kp) dkpf(b, K)U(&) =-'I'

p(I.SJ)GI,I,, (k', kp)xii (k', k,). (3.45)
JLL~S

For each value of ko, the values of E and k' are de-
termined from (3.42) and (3.44), respectively. Be-
cause of the various approximations made, we cannot
claim high accuracy for this formula. It is perhaps good
to 30% for fl just above the Fermi sea, and it should
become more accurate as b increases.

The entrance channels JI.S included in the evalu-
ation of (3.45) were 'Sp, Sl, 'Pl, Pp, 'Pl, and 'P2.
The D-wave entrance channels were found to give a
negligible contribution. The 'S~ state accounted for
more than half the total, and the P waves contributed
about 15% as much as the S waves. There is no can-
cellation among various P-wave contributions because,
since Xl,i, is given by (3.11), all matrix elements of
G in (3.45) are squared. The calculated values of
U(b) are plotted in Fig. 41.

For a fixed value of b in (2.9), the sum over a, l,
and m is carried out in analogy with our treatment of
(2.10) . The result is then integrated over b. The final
expression is

W(A3) = d3$

, U(&)~ Z ~(LS~)
22r 8 JLL~S

x P(kp) dkp f(b) E) Lyl J..~s(k') kp) ]', (3.46)

from which we obtain W(A3) =0.26 MeV.
Class A4. In formula (2.12) for W(A4) we convert

the summation over momenta a, b, c, and d to an
integration over coordinate space to obtain

&2—

'I 5
b(F ')

FIG. 41. On-energy-shell potential energy U (b) for particle
states.

W(A4) = —
—2,A ' Q dr, d2.2d)-8d24

lmnk

X [f»(1, 4) —f „(1,4) ]*{.(2, 3)

X L4' -(2, 3) —4 (2, 3) ]}*Leak(2,4) —fp. (2, 4) ]
X{lI (1, 3) —l )(1, 3)]. (3.47)

Now, we have seen that in a matrix element such as
(ab { (Q/e)G

~

1428)= (ab
~ pl ), which occurs in (2.12),

it is a good approximation to take only S-wave en-
trance channels in the state

~
3218) Therefore, i. n (3.47),

lmnk
dT84 d2 1 )ft2(218rl44'282'24)

Xexp{ 28(1' r84 11' r84+Ill' rl2 k' r12) ]
X V(r14, r», r24, r») . (3.49)

Since the sum over spin and isospin has been carried
out, only the summation over momenta remains. The
plane wave comes from the center-of-mass parts of the
two-body wave functions. The normalization factors
0 ' carried by each of the four two-body wave functions
combine to give 0 4. But after three space integrations

we will include only S-wave entrance channels in the
partial-wave expansion of each wave function. This is
a great simplification because it removes all dependence
on the angle between ko and r in each two-body wave
function.

Our second approximation is to neglect the de-
pendence of the two-body wave functions on the
initial relative momenta. This was shown to be ac-
curate for the t's in Sec. III A. It is inaccurate for
P(2, 3) only when r» is large, and this does not matter
because 0(2, 3) is small in this region. So we have used
the average relative momentum (0.3) '"kp in calculating
each of the wave functions in (3.47). The sum over
momenta lmnk then simply gives a factor (4A) '.

To accomplish the sum over spin and isospin of
l, m, e, 0, we write the S-wave —entrance-channel part
of l'I in the form

l 1~(1, 3)—l~i(1, 3) =0—'rl8 —'

Xexp L2'i(1+m) ~ (rl+ r,) ]
XLXO(418)P18 +(Xpp(418)+8 X02(818) S18)P18 ]

X (1—EI8 818')
~
alrta„r ). (3.48)

The plane wave in (3.48) is the center-of-mass part of
the wave function, and

~

oil. lo 2. ) .is a two-particle
spin-isospin function. The tensor operator is denoted
by S», and P»s, I'»~ are singlet and triplet spin pro-
jection operators, respectively. The operators E»'
and E»', which exchange the spin and isospin, respec-
tively, of particles 1 and 3, are needed to account for
the exchange term on the left-hand side of (3.48) . The
space exchange operator is unity since we are consider-
ing only the S-wave entrance channels. The operators
S», P'»s, P»~, Ega, and 8~3' all have simple and well-
known representations in terms of the Pauli spin
operators r~, o3 and isospin operators v'~, v~. Formulas
similar to (3.48) are used for the other two-body
wave functions in (3.47) . The sum over spin and
isospin of /, m, e, and k becomes a trace, in the spin-
isospin space of four particles, of a product of four
factors such as (3.48).

The evaluation of this trace requires 20 or 30 pages of
algebra but is straightforward, and the result is tha, t
(3.47) becomes

W(A4) = —-'A '0 '2 '
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tities

Ao(r) =xo(r)+3xoo(r),

Ao(rl = —xo(r)+xoo(r),

Ao(r) = 2"xoo(r),

Gi(r) = v"c"&(r)u, (r),

G, (r) = vc"'v(r) uoo(r)+8'"vr(r) goo(r), (3.50)

Fio. 42. Coordinate system used in the calculation
of g {A4}.

have been carried out, the last one is trivial and simply
gives a factor Q. So we have changed 0 4 to 0 ' and
written only three space integrations instead of four.
The factor 2 ' comes from the trace calculation. The
complicated function V is defined in terms of the quan-

Co(r) = Gi(r)+3Go(r),

Co(r) = G—,(.)+G.(r),
Co(r) = 2' '(vc"" 3vt—s 2vr—) moo(r)+4vr(r) moo(r).

Here, a single subscript zero refers to the 'Sp state, and
the subscripts 00, 02 refer to the S- and D-wave com-
ponents of the 'S~ entrance channel. The formula for V
is

V(r&4, r&„r&4, rio) = 96Ao(ri4) Co(ru) Ao(ro4) Ao(r») —96A2(r14) Co(foo) Ao(ro4) Ao(fio) +3 similar terms

+192Ao(ri4) Co(roo) Ao(ro4) Ao(rio)+5 similar terms —384Ao(ri4) Co(roo) Ao(ro4) Ao(ria)

+3 similar terms+2208Ao(ri4) Co(roo) Ao(ro4) Ao(rio)+48Ao(ri4) Co(roo) Ao(ro4) Ao(rio)

X [3 cos'(r14 ~roo) 1)+5 similar terms —96Ao(ri4) Co(roo) Ao(ro4) Ao(rio)

X [3 cos'(ri4, roo) —1j+11similar terms+336Ao(ri4) Co(roo) Ao(ro4) Ao(rio)

X [3 cos'(ri4, roo) —1]+5 similar terms+48Ao(ri4) Co(roo) Ao(ro4) [Ao(rio)+Ao(rio)]

X [9 cos(ri4, roo) cos(ri4, ro4) cos(roo, ro4) —3 cos (ri4, roo) —3 cos (ri4, ro4) —3 cos (roo, ro4) +2j
+3 similar terms+Ao(ri4)Co(roo)Ao(ro4)Ao(rio) (36[—30 cos(ri4 roo) cos(r14 r$4) cos(roo r$4)

+3 similar terms+7 cos'(ri4, r&o)+5 similar terms —7)+324Icos'(r$4 r'2g) cos'(ro4 rgo)

+2 similar terms+14 cos(ri4, ro4) cos(ri4, rio) cos(roo, r24) cos(roo, ri, ) —2 cos(r]4 r23) cos(r$4 r]o)

X [cos(ri4, ro4) cos(roo, rio)+cos(ri4, rio) cos(roo, ro4) )I ). (3.51)

To see what is meant by "similar terms" in this equa-
tion, consider the second term, which can be written
symbolically in the form A&CpApAp. The three similar
terms are of the form AoC2AOAO+AOCOA2AO+AoCoAoAo.

The only dependence of (3.49) on momentum is in
the plane-wave factor. So it is permissible to average
each single-particle momentum independently over
angles and thus convert the plane-wave factor to a
product of four spherical Bessel functions of the type
jo(olro4) .

Next, we keep r34 fixed and consider the integral of
(3.49) with respect to ri and ro, using spherical co-
ordinates with r34 as polar axis and origin at particle
3 (see Fig. 42). The coordinates of particles 1 and 2
al e (rlo 81 Ipl) and (roo 82 +2) 1espectively. Fol 6xed
r34, the function V depends on r~s, r~s, 0~, 0~, and y~—

q 2,
'

hence we are faced with a five-dimensional integration.
However, the integral of V with respect to p~ —q~
can be done analytically. Furthermore, each term in the
result is a Product of a function of (rio, 8i) with a func-
tion of (roo, 8o). So the five-dimensional integration

reduces to a sum of products of two-dimensional in-
tegrals, which is much simpler.

However, this result is spoiled by the plane wave in
(3.49) . Tile factor jo ( o mrio) jo (—,'kr») Prevents the in-
tegral over p&

—z2 from being done analytically. To
achieve the above simplification, we replace each of the
jp factors by unity. This is accurate for small r» and
r34, where the integrand is largest. A correction to this
approximation will be made at the end of the calcu-
lation.

2

I 2
r~~(FERMIS)

Fxo. 43. Function P {r34} that arises in the evaluation of
g {A4).
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After the plane wave has been replaced by unity
in (3.49), the sum over 1, m, n, k simply gives a factor
(~A)', and we get

W(A4) = 4m—p~fP(r34) dr34,

P(r34) 2 '
r&4'fdic& dr2(r»r&4r»r24) '

(3.52)

X V(rr4, r», r24, r»). (3.53)

Numerical calculation gave the curve shown in Fig.
43 for P(r34), and expression (3.52) came to —0.28
MeV.

Note that P(r;4) is ne.gligible for r34)2 F. Hence
replacing jo(~lr34) by unity is a fairly good approxima-
tion. A reasonable correction to this approximation
is made by computing the average of jp(2&'84) jo(-2n~34)
with respect to l, n, and r34, using P(r34) as a weighting
factor. The result obtained above is then multiplied
by this average value. The factor jo(-,'rn~u)jo(&»»)
is included by multiplying once more by this same
average value. This is because of the symmetry of
the original formula (3.47) under interchange of
r~2 and r-.4. For example, if we had chosen to inte-
grate first over r~ and r4, keeping r~~ fixed, we would
again have obtained (3.52), but the variable of inte-
gration would have been r~2 instead of r34.

The average value defined above comes out to be
0.89. So our final result for W(A4) is —0.28(0.89)'=
—0.22 MeV. The importance of the tensor force is
shown by repeating the calculations with xo2(r) and
mr(r) put equal to zero. The result is —0.06 MeV, four
times smaller than the complete result including the
tensor force.

Class A5. Let us first make a rough estimate of
W(A5), using the methods described in Sec. III A.
The optional particle-particle interaction is included
by means of the reduction factor that was calculated
in Sec. III A. In addition to the direct diagram, there
are three exchange diagrams, and one easily finds that
the statistical weight is 1+2X(—4)+~~=~'~. The
fact that there are four summations over occupied
states and only three closed loops implies a factor
~A4. There is also a phase-space factor arising from
the requirement tha, t

~

c
~

=
~
k+n —m ~)kp. Let the

relative momenta of states
~
kn) and

~
@ac) be ko and

k', respectively, and let K be the total momentum of
both

~
kn) and

~
mc). Then in Fig. 40 the tip of ko must

lie inside both spheres; and the tip of k' must lie inside
the left-hand sphere but outside the right-hand sphere.
The phase-space factor is therefore equal to one minus
the phase-space factor of the hole-hole diagram, i.e.,
it is equal to —', . In (2.14) the energy denominator that
involves the excitation of three particles above the
sea is replaced by an appropriate average value e. The
sum over a, b then gives a factor Q E~

~ 1 ~~), which we
replace by 4~/3A, as discussed in Sec. III A. Each
of the remaining matrix elements of G is replaced by
4U/3A. Putting all these factors together, and in-

eluding the reduction factor r, we obtain the rough
estimate

9 A'2 1 4& 4U ' 2r~U'
W(AS)= —A-~

16 4 3e3A 3A 9 e

(3.s4)

In Sec. III A we calculated r=0.8 and e=530 MeV. So
the numerical value of (3.54) is —0.19 MeV.

To make a more accurate calculation, we note that
W(A5) is the product of expression (3.18) (summed
over l) and the expression

—A—'r g (kn
~
G

~
mc)(mc

~

G
~

kn —nk). (3.55)
knmc

It is ea, sy to see that the sum over I of expression (3.18)
is equal to K/e, where e was calculated to be 530 MeV
in Sec. III A. To calculate (3.55), let

~

kn) and
~

mc)
have quantum numbers kpSmsTT3 and k'Sms'TT3,
respectively. Each matrix element in (3.55) is ex-
panded in partial waves by using (3.7). An average
over the angle between k' and kp is made in the usual
way. The spin and isospin sums are then easily carried
out, and expression (3.55) becomes

—p 'r(2~) ~ dK dk' dko g 16P(I.SJ)
LSJLi

X PGl, r, (k', ko) j'. (3.56)

The allowed values of K, k', and kp have already been
discussed in connection with the phase-space factor.
The integration reduces to a three-dimensional integral
in the variables

~

K ~, ~

k'
~, and [ ko

~

and was done
numerically. All entrance channels LSJ with J&2
were included. Averaging over the angle between
k' and ko is exa, ct in only 35% of the available phase
space. A treatment that avoids the angle averaging is
feasible but has not been carried out. Using r=0.8,
(3.56) was calculated to be —603 MeV'. Multiplying
this by x/e gives W(A5) = —0.15 MeV.

Clc,ss Ao. A rough estimate of W(A6) can be made
in the same way as for class A5. We omit the optional
particle-particle interaction and correct for this by
using the reduction factor r=0.8. Replacing the middle
energy denominator in Fig. 13 by its average value e
leads to

W(A6) =-A-'(r/e) 2 0 t- I f - t-~)—
X ( jk (

G
(

cl lc)(cn
~

—G (jm mj ). (3.57)—
We will consider only the direct diagram, including
exchange by means of a statistical weight. There are
eight distinct diagrams when exchange is included,
and the statistical weight is found to be 1+4X—4+

To calculate the phase-space factor, we make the
change of variables" (with unit Jacobian) from

'7 I am grateful to J. MacKenzie for showing me this useful
transformation.
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jklmnc to

K2 ——n —m,

q, =-,'(n+m),
K3——1—k,

q, =-,'(1+k).
(3.58)

use the same value of the reduction factor r as cal-
culated for class A5. From (2.18) we get

&& (ke
I

G
I lm)(zj

I
G

I ke), (3.63)

Momentum conservation requires that K&——K&——K3—=
K. Figure 40 can now be used to describe the allowed
values of K, g&, g2, and q&. Let the center of the two
Fermi spheres be separated by a distance E, and let the
vectors q~, q~, and q3 originate from the same point as
the vectors k, ko shown in Fig. 40. Then the tip of q~

must lie inside the left-hand sphere but outside the
right-hand sphere. The tips of q~ and g3 must both lie
inside both Fermi spheres. The phase-space factor is
now easily calculated to be 149/840

There are four summations over the Fermi sea. in
IV(A6), but only three closed loops. This implies a
factor 4A'. Using the approximations (3.30) and
(3.33) for the direct matrix elements in (3.57), we get

r 3 1A4 4z 4U ' rKU'
W(A6) —A ' —— (3.59)

e 166 4 3A 3A 54e

This is 12 times smaller than our rough estima, te (3.54)
for W(AS). The statistical weight due to exchange is
three times smaller for class A6, and the phase-space
factor is four times smaller. The numerical value of
(3.59) is W(A6) —0.02 MeV. A detailed computer
calculation, similar to that for class A5, gave the same
result.

Class A7. A rough estimate will suflice for I'V(A7),
which can be written

where we have replaced the middle energy denominator
of Fig. 17 by an appropriate average value e. There is
only one exchange diagram in addition to Fig. 17, and
the statistical weight due to exchange is 1+(—xi) =-,'.
To calculate the phase-space factor, we use the variables

Ki ——1+m,

q, =-,'(1—m),

K2 ——k+ n,

q2
———,

' (k—n),

K,=i+j,

(3.64)

Momentum conservation implies K~ ——K2=K3, and the
discussion is now the same as for class A7. The phase-
space factor is 41/280 ~. Four summations over the
Fermi sea and two closed loops give a factor ~6A'.
Using (3.30) and (3.33) for the matrix elements in

(3.63), we obtain

1 r 31A4 4~ 4U ' r~U'
W(A8) ——A ' —-- — = — . (3.65)

2 e 47 163A 3A 126e

The energy denominator e involves the excitation of
only two particles above the sea and is therefore some-
what smaller than the value e= 530 MeV calculated for
class AS. If we take e=400 MeV, formula (3.65) gives
W(AS) —0.01 MeV. This is so small that a better
calculation is unnecessary.

Class AP. A rough estimate of W(A9) can be made
in the usual way. First, we rewrite (2.20) in the form

K~=m —n,

q, =-,'(m+n),
K3——j—i,

q3= 2(j+i)
(3.61)

Momentum conservation implies equality of the K;.
The discussion is now the same as for class A6, except
that the tip of each of the g; must lie inside both
Fermi spheres in Fig. 40. The resulting phase-space
factor is 41/280 1/7. Noting that diagram A7 has
only three closed loops, and using (3.30) and (3.33),
we find that (3.60) becomes

3 1A' 4g. '4U
W(A7) ——A ' ———

2 167 4 3A 3A

~'U

126
(3.62)

Numerically we find W(A7) 0.01 MeV, which is so
small that a more detailed calculation is pointless.

Class AS. To obtain a rough estimate for W(AS),
we omit the optional particle-particle interaction and

&& (1 i; I 1'i„1;i,)(im I
G—

Ije rji) (3—.60).
The statistical weight due to exchange is found to be
—,', .The phase-space factor is determined by introducing
the new coordinates"

(3.66)

There is one exchange diagram in addition to Fig. 18,
and the statistical weight is 4. Using the variables
(3.64), one finds a phase-space factor of 41/280
Four summations over the Fermi sea and two closed
loops give a factor iirA'. When we use (3.30) and
(3.33), formula (3.66) becomes

1 3 1A4 4& '4U ~'U
W(A9) —A ' ——— (3.67)

2 47 16 3A 3A 126

The value of (3.67) is W(A9)~ —0.01 MeV, which is
small enough to make a more detailed calculation un-

necessary.

D. Three-Body Combination Diagrams

As was mentioned in Sec. III A, our numerical
treatment of three-body combination diagrams is a
crude one. Its main shortcoming is the omission of the
tensor force in two important diagrams. The cal-
culations are performed in coordinate space, and we
therefore need coordinate-space representations for
(apq I Zi I lan) and (abc

I
F

I
1m') In the re.asonable
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FIG. 44. Dimensionless functions q(r) and g(r). The dot-dash
curve is the reference-spectrum approximation for g (r).

approximation of zero hole momenta, these coordinate-
space amplitudes depend only on the three inter-
particle distances. "Thus we have

(rlr2r3
~
Zl

~

l22828)~Z1(r», r», r23), (3.68)

and a similar equation holds for I'. We use the ap-
proximate solution" "
Zl(r12 r18 r23) '912(1 f18+ $18/28)

+ 918(1 I 12+ 2/12/28) 928($12+i 18 i 12/13)

+i 12K18+2 (i 12+f18)I 28 SU12i 13f28 (3 69)

Here, g12 means q(r12) and t'l2 means I (r12). The cor-
responding approximation for I" is seen from (2.26) to
be

I'(r12 r18 r28) 612+'gl3+'623 2( 1+ 2+Z8) (3 70)

In these formulas, q(r) and I (r) represent the on-

energy-shell and off-energy-shell two-body defect
functions, respectively. For a two-body potential with
a hard core, we have

g(r) =1,
=X&,(k, r)/Prj r, (kc) j, r) c (3.71)

where an appropriate average over I. and k must be
taken, and xl, is calculated on the energy shell. The
same formula holds for I (r), but x is then calculated
off the energy shell, and the average value of k is

larger. For our calculations with the Reid soft-core
potential, we have simply put c=0 in (3.71) and have
used (3.69) (which was derived for a potential with
a hard core). It has been pointed out" that this is not
the best way to handle a soft-core potential. It would

probably be better to define some effective core radius
of about 0.3—0.4 F for the soft-core potential. Never-
theless, the present rough treatment should give results
of the right order of magnitude (for central forces).
So we expect to learn which of the three-body combin-
ation diagrams are important and which are negligible.

In order to obtain rl(r) from (3.71), we calculated

X8 (k, r) for the average relative momentum k =
(0.3) '~'kr =0.745 F ' of occupied states. The Reid
'So soft-core potential was used. We took X=2k, and

l500

1000

500

0

-50

—IOO—

FIG. 45. The effective interaction g (r) for three different choices
of k, p . Curve 1 4=1.4 F ' y'=8.88 F Curve 2: &=1.8
F ', y~=12.72 F '. Curve 3: 4=2.2 F ' y' —17.52 F '. The total
momentum E was 2.7 F ' in all cases. The three curves coincide
for r&0.65 F. Note the different vertical scales used above and
below the horizontal axis.

ys = —K,b
—3I"=8.78 F (3.73)

The slightly different value of 8.47 F ' was actually
used in the calculations. The Reid 'So soft-core po-
tential was used, and the resulting function I (r) is

shown in Fig. 44.
A further approximation"" that is made here is to

replace certain off-energy-shell G matrices, such as the
one in (2.25), by a local function g(r). Bethe" has
shown how to improve on this approximation, but the
use of his improved method is not worthwhile in our
already rough calculations. The function g(r) is de-
fined by

g(r) = e(r) ur, (k, r)/$jr1, (kr) g, (3.74)

where an appropriate average over k and I must be
used. Matrix elements of g(r') between urlperturbed

plane waves will be approximately equal to the cor-
responding matrix elements of G.

We calculated g(r) from (3.74) with the 'S8 Reid
soft-core potential. The appropriate average values of
k, E are given by Kirson as k=0.72/c=1.8 F ', E=

y2 was found from (3.25) to be 2.61 F '. The resulting
function q(r) is plotted in Fig. 44.

The best values of k, E to be used in calculating I (r)
have been derived by Kirson. 13 He finds k=0.56/c and
%=1.1/c. For a core radius c=0.4 F, one finds k=
1.4 F ', If=2.75 F ', and we used these values. The
off-energy-shell value of p' must reproduce the excita-
tion energy of three particles above the Fermi sea.' " '4

Thus we have

e= k.8'+y '= k 32+-',Z.32+-2'c' —E(l) —E(228) —Z(23),

(3.72)

where the subscript on y3' reminds us that three par-
ticles are above the sea. The sum of three hole energies
is replaced by 3E, where A= —43 MeV. The total
momentum of all three particles will tend to be small,
and we assume it is zero. Then the momentum c of
the spectator particle is equal to E b, and we find
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Fxo. 46. Function 8{r) that arises in the calculation of
W'{81).

But the sum over the relative momentum k gives
0(22r) 'fd'k Q(k), where Q(k) requires that k)kF.
The energy denominator E,+Ep Et—E —is equal to
k2+&2, where &2 takes its on-energy-shell value of
26] F—2

Putting all these results together, we find

Wl(81)~—-88P8 k 'H(k) k 'H(k)
d'k (k)

1.44/c= 3.6 F ', where c=0.4 F. The value of y2 is then
found from (3.73) to be 12.84 F '. The resulting func-
tion g(r) is plotted in Fig. 45. The average values of
k, E used here were derived by Kirson for use in ex-
pression (2.25), which arises in the calculation of Wp.
The best values of k, E may be different for G matrices
in other types of diagrams. Such cases will be discussed
as they arise. We have found that g(r) is insensitive
to k, IC, y' for r)0.5 F. For smaller r, the repulsion
increases as y' becomes larger.

Class 81. In our approximation of spin-independent
central forces and small hole momenta, all exchange
diagrams are included by multiplying the direct
diagram by the proper statistical weight. Referring to
Fig. 22, we see that permuting the hole lines-t, rn, and e
at the bottom of the diagram gives six diagrams with
a total statistical weight of 1+3&&(—41)+2&&lip= —,'.
The remaining exchange diagrams are now obtained by
permuting the hole lines l, m, and k at the top of the
diagram. However, exchange of /, m at both top and
bottom leaves the diagram unchanged. So, for each
permutation of l, m, and e at the bottom, there are just
three permutations of /, m, and 0 at the top. These
are the identity, the exchange of / and k, and the
exchange of m and k. The resulting statistical weight is
1+2&& (—4) = 12. Thus we finally obtain —2)& 8 = lpp for
the statistical weight of the whole diagram.

We omit the optional particle-particle interaction for
the present. Multiplying the direct term by —,'6 gives,
according to (2.27) )the statistical weight 1'8 a,lready
contains the factor 21that appears in (2.27) j,
W, (H1) = —~-1—;,g (rmk

~

z,&G28
~

abk)

X (E.+Ep E( E~) '(abm
~

—G18Z2—+G28Z1
~

lm28), (3.75)

where the subscript on 8~ indicates that the particle-
particle interaction is omitted. Using the approxima-
tion of zero hole momenta, and putting the G matrix
equal to a local function of r, we can easily evaluate the
three-body matrix elements. For example, we find

(ab28
~

G13Z2
~

t81828)=Q 'f exp( —21r r») g(r»)

XZ2(r», r», r23) dip d8», (3.76)

where k= 2 (a—b) is the relative momentum of a, b.
The summation over /mmk simply gives a factor A4.

In summing over a, b we note that the total momentum
a+1 is fixed at zero by momentum conservation.

(3.77)

H(k) =42rk rjp(kr) H(r) dr,
0

H(r») =r»fg(r») Z2(r», r», r23) dip

(3.78)

=212fg(223) Zl(212, 2», 228) &3. (3.79)

The equality of the two expressions in (3.79) follows
from invariance of H(r12) under interchange of 1 a,nd 2
and from the symmetry property

Z1(212 218 828) Z2(812 228 218) (3 80)

This last equation can be checked directly from
(3.69). A more general discussion is given by Kirson. »

Thus, under our approximations, the two terms in
(3.75) are equal. Note also that the appropriate values
of k, E, y2 to be used in calculating g (r) are exa.ctly the
same as in a three-body cluster diagram.

The optional particle-particle interaction is included
simply by inserting a minus sign in (3.77) and replacing
one of the factors H(k) by

Hn(k) =48rk Xp(k, r) H(r) dr. (3.81)

k(F ')

"lO—

F

-20—

FIG. 47. Functions H {k) and JI~ {k) that are needed in the
calculation of W{81).

Here xp(k, r) is calculated on the energy shell with
y'=2. 61 F '.

The function H(r) is plotted in Fig. 46, and H(k)
and Hll (k) are plotted in Fig. 47. The contribution ob-
tained from (3.77) without the particle-particle in-
teraction is —0.69 MeV. But the contribution including
the particle-particle intera, ction cancels 62% of this,
leaving a Anal result of W(81) = —0.26 MeV.

It is reasonable to expect the inclusion of the tensor
force to enhance the size of W(81) considerably. The
Reid 'So potential, acting only in 5 waves, gives ~ =
0.044. But the contribution to ~ from the D state
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induced by the tensor force is 0.067. Hence including
the tensor force will make ~ about 2.5 times larger.
If W(81) were to scale as ~', we would then obtain
sjx times as large a result when the tensor force was
included. This is probably an overstimate because the
tensor force Aips the spin, and the orthogonality of
different spin states may reduce the tensor-force con-
tribution to the three-body amplitudes.

There is another factor that favors the tensor force
here. The tensor force will probably give much less
cancellation between the terms with and without the
optional particle-particle interaction. Ke have already
seen by explicit calculation in Sec. III A that this is the
case for class A5.

A reliable estimate of the effect of the tensor force
will require a detailed study. But it seems reasonable
to expect the inclusion of the tensor force in W(81)
to give a good fraction of an MeV of additional binding.
Thus we want to direct attention to the diagrams of
class 81. Of all the four-hole-line diagrams, it is this
class that most deserves further study.

Class BZ. We use the ideas explained in Sec. III 8
to obtain a rough estimate of W(82). We note first
that all exchange diagrams are obtained by permuting
the hole lines lkl at the bottom of Fig. 26(a) . Thus the
statistical weight due to exchange is found to be 8.
Next we note that the momentum c= k+n —m can-
not be very large. Hence the matrix element
&ke

I
G

I mc), which appears in formula (2.29) for
W(82), involves only states of fairly low momentum
and is approximated by s UA ' according to (3.33) .

Since the direct diagram has three closed loops, the
sum over lmek gives a factor 4A4. The requirement that
I
c I=I k+n —m I)4 gives a phase-space factor.

This phase-space factor is one minus the phase-space
factor for the hole-hole diagram and is therefore equal
fo 2

For simplicity in the evaluation of &abc I
F

I
lk»)

Lwhich appears in formula (2.29) for W'(82) g we
take 1+k+n=0 so that a+b=—K,b

———c. Then we
find

&abc
I
F

I
lke)=&—'f exp( ik r»)—dr»

Xf expI —ic (rp —R») )F(rip, r» r»)dr„(3.82)

where k is the relative momentum of a, b. We can also
write

&lm
I G(Q/e) I

ab)=Q 'fq(r) exp(ik r)dr. (3.83)

When (3.82) and (3.83) are now multiplied together,
and the sum over ab is replaced by Q(27r) 'fd'k, the
k-space integral gives a 6 function that simplifies the
spatial integrations.

One more simpli6cation is to replace the second plane
wave in (3.82) by its S-wave part. This is a good
approximation because

I
c

I
is not very large, and

F'(r» r» r») goes rapidly to sero when
I

r3 R»

W(83) = —3i~Wp, (3.86)

where t/I/3 is the energy per particle from three-body
clusters. Assuming that lV3 has been accurately evalu-
ated, formula (3.86) is very accurate and includes all
effects of the tensor force. The numerical value of
(3.86) is W(83) =+0.45 MeV.

Class 84. We make a rough estimate of W(84),
using the methods discussed in Sec. III 8. When the
sum over ab is carried out in (2.32), the factor outside
the square brackets becomes (i i~ I i i„), which we
replace by 3I~:A '. This matrix element requires that
the spins and isospins of /, m be equal, respectively, to
those of k, e. Therefore, since the two-body defect
fiiilcfloil xp(kp r) is nearly independent of the relative
momentum ko, we have

(kl
I G(Q/e) I ~f)=&ml I G(Q/e) I fe)

This in turn allows us to write

2 &k~
I G(Q/e) I ef)&ej I

G
I pq)

efg)q

X(fPq I
Zi~

I mlj) Wp/A', (3.87)

where Wp is given by (2.22) and (2.23). The same
argument shows that each of the other two terms inside
the square brackets of (2.32), when summed over
efpq, is also approximately equal to W&/A'. Since the
direct diagram has three closed loops, the sum over
occupied states gives a factor ~~A'. Finally, there is a
phase-space of ~ that is the same as for the hole-hole
diagram. So our estimate is

4~ 3$"3A'1 1
W(84) A ' ——= —~Wp.

3A A' 43 3
(3.88)

Numerically we find W(84) —0.05 MeV. The tensor
force is included here, at least in an average way, by

becomes large. Putting all our results together, we
obtain from (2.29)

W(82) =
p Up fq(r»)1 (r») dr» (3.84)

I (r») = fjp(c I
rp —R» I) Y(r», r», r») drp. (3.85)

Expression (3.84) was evaluated for c= 1.5k', c= 2.Oker,

and c=2.5k~. The results were —0.07, —0.12, and
—0.08 MeV, respectively. So a reasonable average
value is W(82) = —0.1 MeV.

Inclusion of the tensor will make the functions g
and F' larger. Hence the magnitude of W(82) could
become several times larger than our estimate of
—0.1 MeV. For this reason, class 82 is worthy of further
study in which the tensor force is properly taken into
account.

Class B3. The sum over a, b in (2.30) can be per-
formed by closure to obtain an expression containing
~i, as defined by (3.14). Neglecting the dependence of
ipi~ on the momenta of l and m, and using (2.22) and
(3.37), we find that (2.30) becomes



1296 B. D. DA Y

our use of the correct values of ~ and S'3. Our estimate
for W(84) is sufficiently small that a more accurate
calculation seems unnecessary.

Class 85. Assuming spin-independent central forces
and small hole momenta, we make a rough estimate of
IF(85) along the lines of Sec. III B. All exchange
diagrams are obtained by permuting the hole lines kej
at the bottom of Fig. 30. Hence exchange is taken into
account by multiplying the direct diagram by a
statistical weight of 8. Also, just as in the hole-hole
diagram, there is a phase-space factor of 3.

The matrix element (kn
I

G
I
le) in (2.33) is ap-

proximated by 3 VA '. We also find

g (tnt I V
I

abc&(abc
I

7'I kej& 0 '
0,bc

XJLF'(ru, ri3, rn) $'dry dr3 (3.8.9)

Since the direct diagram has three closed loops, the
sum over occupied states gives a factor ~~34.

Combining the factors mentioned above with the
factor —,'A ' that already appears in (2.33), we obtain

W(85)-(1/48) Up'f LF'(r„, r„, r„)]'dr, dr, . (3.90)

Numerical evaluation of this expression gives W(85)—0.02 MeV. This calculation includes only the '50 po-
tential. If (3.90) scales as ~', then including the tensor
force will increase W(BS) by about a factor of 6

I
see

our discussion of W(81) ].However, it seems unlikely
that an accurate calculation of W(85) would give more
than about 0.1 MeV of binding.

Class j36. Omitting for the moment the optional
particle-particle interaction, we make a rough estimate,
assuming spin-independent central forces and small
hole momenta. In formula (2.35) we replace E,+
E&—Ez—E by an average energy denominator t, .
The approximate value &UA ' is used for the matrix
element (Ae I

G
I kl&. This matrix element requires

that the spins and isospins of /, m be equal, respectively,
to those of k, m. The argument that was used for class
84 now shows that (ke

I G(Q/e) I cd), when combined
with the first term inside the brackets of (2.35) and
summed over edpg, is approximately equal to W3/A'.
The sum over occupied states gives a factor ~34. As in
the hole-hole diagram, there is a phase space factor of
@. Formula (2.35) only accounts for Fig. 31(a), whose
contribution differs from that of Fig. 31(b) by the
replacement (lm

I
G(ke)

I
kn)—&(lent I G(inn)

I
ke&. This

difference in starting energy is numerically unim-
portant, and we can therefore include Fig. 31(b) by
inserting a factor of 2. Putting these results together,
and inserting a reduction factor r to account for the
particle-particle interaction, we get

W(86)=—(2/9) (rU/e) W (3 91)

The value of r is uncertain, but we will undoubtedly
overestimate the inagnitude of W(86) if we put r= 1.
Taking e=400 MeV then gives W(86) —0.04 MeV.

The effect of the tensor force is largely included by our
use of values of U and t/V3 that contain the effects of
the tensor force. The small value of W(86) means that
a more accurate calculation is not necessary.

E. Four-Body Cluster Diagrams

In our treatment of four-body clusters, we make the
same approximations as for the three-body combin-
ation diagrams. Thus we put all hole momenta equal to
zero, omit the tensor force, and approximate the 6
matrix by a local function of r. We will first use these
approximations to replace formula (2.41) for W4 by an
approximate formula that is useful for computation.
Next we derive an approximate solution of the four-
body Bethe-Faddeev equations, using a method"
developed previously for the three-body Bethe-Faddeev
equations. Finally, this approximate solution is used to
evaluate the approximate formula for t/V4 numerically.

Before making any approximations, we rewrite
(2.41) as an integral over coordina, te space in the form

W4=-,'2 ' g dri dr~ dr, dr4
Zmnr

X L«e I G(Q/e) I
rir3&(mk

I G(Q/e) I
r~r4&

+«~~
I
I" 1»r»3&(k I r4&j

XG34(rir&rar4
I

C,4
I
keek). (3.92)

Here, (k I r4) is the single-particle plane wave pi,*(r4),
and 634 is the off-energy-shell G-matrix operator
acting on r, a,nd r4. The integrand of (3.92) carries a
normalization factor 0 4. However, the last spatial
integral is trivial and simply gives a factor Q. So, when
we rewrite formula (3.92) below, we will include only
three spatial integrations and insert a normalization
factor Q '.

We now make the approximation of zero hole
momenta. Thus the integrand of (3.92) is independent
of lmek, and the sum over these occupied states simply
gives a factor A'. Also, (k

I r4) becomes unity times a
normalization factor Q '~~. And all other wave func-
tions in (3.92) depend only on the interparticle dis-
tances, e.g. ,

(rir, r, r4
I

C&4 I lm~k&~C34(r», ri&, ri4, r», r&4, r34) . (3.93)

Further, we replace G34 by g(r34) .
We include exchange diagrams in the usual way by

multiplying the direct diagram by an appropriate
statistical weight. Permuting the hole lines lmmk at
the bottom of a four-body cluster diagram gives 23
exchange diagrams in addition to the direct diagram.
The total statistical weight is found to be 1+6X
(—4i)+11X(~)+6X(—~~) =s—,. This factor can
also be deduced from the following physical argument.
If all hole momenta are zero, the unperturbed four-
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body wave function is completely symmetric in the
spatial variables. Hence it must be completely anti-
symmetric in spin-isospin variables. The fraction of
four-particle states that is completely antisymmetric
in spin and isospin is easily seen to be 3/32. It is in-
teresting to note that the corresponding statistical
weight for five-particle states is zero, i,e., there is no
five-particle state that is completely antisymmetric in
spin and isospin. Thus the five-body duster diagrams
would contribute nothing in the approximation of zero
hole momenta.

Putting our results together, we can rewrite (3.92) in
the form

W4 ——(3/32) psJD(r34) g(r84) drs4, (3.94)

These two formulas are the ones we actually use for
computation. But before doing this, we must obtain an
approximate expression for the four-body wave func-
tion C34.

In the four-body Bethe-Paddeev equations (2.40),
we put the momenta of the hole states Immy equal to
zero, in accord with the discussion above. Changing
from the (abpq

~

representation to the {rlrsrsr4 i

representation then gives

C34(r12 r13 r14 r28 r24 r84) 9 (rls) g (r24) +9 (r14) n (r28)

+P (r12 rls r28) +P (r12 r14 r24) (Q12/e) G12C12

(Qls/e) G18C18 (Ql /e) G14C14

—(Q23/e) G28C23 —(Q24/e) G24C24. (3.96)

The reaction matrices G;; are calculated off the energy
shell, with the starting energy involving the excitation
energy of four particles above the Fermi sea.

We now introduce the approximation of Ref. 12 for
the operator (Q,;/e) G;, to obtain

C84= 7118'624+'f14'g28+ P123+ I 124
—t 12C12

flsC18 t 14C14 f 28C28 f 24C24 (3.97)

Here we define|18C13(r12 rls r14 r28 r24 r34)

=l (ris)C18(r12 r13 r14 r28 r24 r84)

=l (rls)C18(r12 e r14 r28 r24 r24)

r~3& c

r„)e (3.98)

where c is the radius of an assumed hard core. Similar
formulas hold for the other terms in (3.97) that have
the same structure as iisC13. As was discussed in con-
nection with (3.71), q(r) and f'(r) are the two-body
defect functions calculated on the energy shell and oG
the energy shell, respectively. Prom (3.68) and (3.69),

D(r34) =
2 fdrl drsLq(rls) q (r24) +P(r», rls, r23) j

XC34(r» r13 r14 r28 r24 r34) ~ (3.95)

we find

I 128 'f12(|18+t 28 $13/28) +'gls((12+i 28 i 12028)

+'928(|12+i 18 |12/18) 012fls i 12/23 glsfss

+2/ 12f'1st 28 (3 99)

C12= 6 5C13

Cls 4+2'f12 $12 4Cisi (3.1OO)

The starting energies for the f's in (3.99) and (3.98)
involve the excitation of three and four particles above
the sea, respectively. We follow Lawson and Sam-
panthar" and Kuriyama" by representing both of
these i's by the same function. This simplifies the
formulas and is a good approximation because l (r)
is not very sensitive to the starting energy.

Equation (3.97) is just one of six coupled equa, tions
for the C;,. These equations can be solved analytically
to obtain an approximate solution for C~2 as a poly-
nomial in the two-body functions q(r) and i (r) .

In solving (3.97), we make extensive use of the fact
that if r,; and rg, z are both less than c, then C;;=Cg, z.

(The pairs ij and kl are diBerent but may have one
index in common, e.g., ij =23 and hi=34. ) This sym-
metry property does rot hold for the exact four-body
wave function C~2. But it holds for the solution of the
approximate Eq. (3.97) because of our approxima-
tion (3.98) for the effect of the operator (Q/e) G on a
four-body wave function. To see this, consider the
diagrams that contribute to C;, and CI, z. Those in which
the last interaction is neither ij nor kl are common to
C;; and CI, z. There is a 1-1 correspondence between the
C;; diagrams with last interaction kl and the Cz, z

diagrams with last interaction ij (Repl. acing each ij
interaction by kl, and vice versa, takes one class of
diagrams into the other. ) Consider two corresponding
diagrams, and assume that r;;&c and rf, z&c. Then,
using (3.98) for the effect of (Q/e)G on a four-body
function, one can easily see that the two corresponding
diagrams give equal contributions. Thus our basic
approximation for the operator (Q/e)G enforces the
symmetry property that C;;=Cj,z whenever r;, and r~z
are both less than c.

We can now solve Eqs. (3.97). Suppose first that all
r;, are less than c. Then the C,; are all equal, and
q,;= i;,= 1, F,,&

——2. Equation (3.97) gives C»= 6—
5C~2, which implies Cy2= 1. Next we take r~2&c and all
other r;;&c. According to the symmetry property
discussed above, all the C;, are equal except that C~2
differs from the others. Thus it is sufhcient to solve
for C12 and Cls. In the equation of type (3.97) for
Cls there occurs on the right-hand side the term |»C».
In this term, C~2 is evaluated for all r,;(c, and there-
fore has the value 1, according to our previous cal-
culation. Using (3.99), we then obtain from (3.97)
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which has the solution

C12 2 27)12+$12)

C13 3 (4+ 27l12 $12) ~ (3.101)

Having obtained the solution when one of the r;,

is larger than c, we can next consider cases in which
two of the r,, are larger than c. This process is con-
tinued step by step until the solution is obtained for all
r;;&c. In each step, many of the C;; on the right-hand
side of (3.97) will be known from the solutions ob-
tained in earlier steps. The algebra is straightforward
but tedious, and the final result is

C12 912{ (|18+$28) (f14+f 24)+flsf14($28+$24)+t 28/24(t 13+t14) f13$14$23$24}

+ llsjt 14+t 84 2|12(f14+$24+$34) |14/23 f14/34 f 28f 34

+f12($14+$84) L(5/6)|28+ 6t 24j+3/12(f14f84+ f 28/24) +t 14$23$34

st 12$28f 24(014+$34) 4/1st 14' 28084+ (1/15) $12$14$23$24$84}+7/23 { }+7/]4{ }+7/24{ }

+7l34f (fls+t 14+t 23+024) (1+sf 12) f 18f 14 f lsf28 t 13i 24 f 14t 28

$14/24 f28t 24+ $18/14($28+i 24) + $28/24($18+f 14) st 12 ($13+$14) (f28+t 24)

8 f]2($13/14+psst 24) +sf12' is/14(t 28+$24) + sf12t 28$24(t 18+$14) $18$14$28$24 (4/15) f12$18$14t 28t 24 }

+7l127l84 j (1 f 18) (1 |14) (1 t 23) (1 f24) 1j+ns l24f 1 (1 2| 12) (t 14+f28+i 84)

+ (1 3/12) (f 14' 28+i 14t 84+$28/84) t( 14$28$84+ 4f12t(14$28t 84}

+47147l28{ } f t lsf14+f18$84+t 14$84+f28t 24+f28$34+$24t 84)

+f13' 14(t 28+(24+ 2i 84) +l 28k 24 (i 18+t 14+2f 84) +2f 84 (f lsd 28+$14i 24)

+f84(t 18$24+$14t 28) + sf12(mls+i 28) (t(14+$24) + sf12t(34(f 18+i14+t(28+i 24)

/1st 14t 28t 24 2012/84(flsf28+f14t 24) 2/12/34(t lsf14+f28f24) 4i 12' 84(018f 24+f14i 28)

—2(f23+t(24) (t 12+$34)113/14 2 ($18+114) (t 12+t 34) t 28| 24+ (32/15) /1st lsf14$23t 24+22$12f84(flsi14$28

+/1st(14/24+/1st 28t 24+ fl4$28i 24) /15+ 2t( 13$14$23$24$84 (5/3)t 12t 13$14f 23$24t(84 (3.102)

In this formula, the coefficient of q~3 is obtained from
the coefficient of p» by everywhere interchanging the
indices 1 and 2. Analogous statements hold for the
coefhcients of q~4, q~4, and g~4q~3.

Formula (3.102) is analogous to the approximate
solution (3.69) of the three-body Bethe-Faddeev
equations. In the three-body case," it was found that
the total three-body wave function, in the special case

+7l, was e—qual to (1—7n2) (1—7lls) (1—7l23). This ex-

pression had been suggested earlier by Moszkowski, "
and it gives the same type of correlations as are as-
sumed in the Jastrow method. " It is of interest to see
whether our formula for the four-body function C»
leads to a similar connection with the Jastrow method.

The total four-body wave function 4 is defined by

%l+ 3 Lg127784+ 918$24+ 7l147728

pairs

+2(F'128+F124+F134+I'234)+ Q C;lj. (3.103)
PR1ZS

The first term is the product of four unperturbed plane
waves in the limit of zero momentum. The second term
represents the six ways in which a pair of particles

' S. A. Moszkowski, Phys. Rev. 140, 3283 (1965).
83 J. W. Clark and P. WesthansPhys. R, ev. 141, 833 (1966).

pairs
(3.104)

So we ha.ve the same connection with the Jastrow
method as in the three-body case. However, %' contains
less information than C». Knowing C~2, one can cal-
culate N. But knowing + is not su%.cient to calculate

(

can scatter out of the Fermi sea, with no other inter-
actions taking place. When terms from the C,, are
included, (3.103) is seen to contain three terms of the
type &»&34, each with unit coe%cient. These terms
represent the possibility of two distinct pairs inter-
acting just once. Each of the four possible I;;& also
appears in (3.103) with unit coefficient Lnote that
each C;; contains some I"s according to (3.97) $. These
terms represent all possible interactions among three
particles, with the fourth particle remaining un-
disturbed in the Fermi sea. The higher-order terms in
the C;; involve at least three interactions that excite
all four particles above the sea. A given sequence of
interactions in which the last interaction is between,
say, particles 1 and 2, occurs in every C;; except C».
The factor 3 in (3.103) is necessary in order to correct
for this overcounting.

If we now substitute (3.99) and (3.102) into (3.103),
and put f equal to 7l, we obtain
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C», and it is specifically C» that is needed in the four-
body calculation.

We can now use our solution for C34 to calculate S4.

We must put Cs4 into (3.95) to obtain D(r„) and then
evaluate (3.94) to obtain W4.

The calculation of D(rs, ) from (3.95) requires a
fivefold integration. Straightforward numerical quad-
rature was found to consume a prohibitive amount of
computer time. So we followed Kuriyama" and ap-
proximated g(r) and i (r) by functions of the form

0.5

0.5

—l.s

—l.6

—l.4

q(r) = (1+cd) exp( —csr') —c~ exp( —csr'), (3.105)

f (r) = (1+de) exp( —dsrs) —dq exp( —dsr'), (3.106)

where the c, and d, are adjusted to give good fits. The
integrand in (3.95) now becomes a sum of many
Gaussian functions. Each term can be integrated
analytically by using Cartesian coordinates for rq

and r2, with particles 3 and 4 kept fixed. Even with
this simplification, the large number of terms to be

TABLE II. Values of parameters c; and d; used in (3.105) and
(3.106). The constants c2, c3, d2, and d3 are given in units of F ',
and cI and dI are dimensionless.

C1 C2

Case 1

Case 2

Case 3
Case 4

0.290 2.795 0.703 0.333 3.301 1.122
1.278 2. 165 1.332 0.333 3.301 1.122
1.278 2. 165 1.332 Same as c;
0.565 2.536 0.629 0.338 3.237 1.110

handled makes computation rather slow. Calculation
of D(rs4) for one value of rs~ took 2.3 min on the
CDC 3600 computer.

Calculations were done for the four sets of c;, d; shown
in Table II. The c; in cases 1 and 2 both give a reason-
ably good fit to rf(r) The r.ms difference between
ri(r) and (3.105) is about 0.02 in both cases, for
r(2F. The corresponding rms di6erences for 1 (r) are
about 0.01 in both cases. As expected, cases 1 and 2 give
similar results, and the function D(rs4) for case 2 is
shown in Fig. 48. In case 3, we put i (r) equal to q(r).
This approximation greatly simplifies the calculations,
and it is therefore of interest to see how accurate it is.
The result for D(rs4) is shown in Fig. 48. We see that
putting f'=r) produces only a small error in D(rs4). In
case 4, the c; and d; are Qtted to the reference-spectrum'
approximations to rf(r) arid i (r), respectively. The re-
sulting function D(rs4) is seen from Fig. 48 to be much
too large (note that case 4 is plotted to a different scale
in Fig. 48) .The inadequacy of reference-spectrum wave
functions for three-body calculations has been pointed
out before. " This result is not surprising because the
value of Jg'dr is too large by a factor of 2 in the refer-
ence-spectrum approximation.

1

l 2
f~~ (FEBMIS)

— l, 2

FrG. 48. Function D(r34) that is needed in the calculation', 'of
g4. Curve 2 is calculated using accurate approximations for
v(r) and I'(r). Curve 3 is obtained by putting f(r) equal to
q(r). In curve 4, the reference-spectrum approximations for
g(r) and f(r) have been used. The left-hand vertical scale is
used for curves 2 and 3, and the right-hand vertical scale is used
for curve 4.

w4/w, =0.1/30 =o.oo3,

~2=0.0442=0.002,

(3.1O7)

(3.108)

TABLE IIL Values of k and ys used in the calculation of g(r)
for four-body clusters.

Case 1
Case 2

1.8
2 ' 2

12-72
17.52

Having calculated D(r,4), we use (3.94) to compute
t/1/'4. Here, we must decide what values of k and y' to
use in calculating g(r) . We calculated for the two cases
shown in Table III. The parameters of case 1 are ap-
propriate for the three-body cluster calculation. Por
the four-body calculation, k and p' should be larger by,
very roughly, a factor of . This leads to values similar
to those of case 2. The resulting functions g(r) are
shown as curves 2 and 3 in Fig. 45 and differ only at
short distances. The difference in W4 between cases
1 and 2 is less than 10%. We conclude that W4 is only
moderately sensitive to the values of k and y' used to
calculate g(r) .

Por k= 2.2 P ' and y'= 17.52 F ', choices 1, 3, and 4
for the c; and d; gave t/t/'4= —0.12, —0.11, and —0.45
MeV, respectively. The repulsive contribution to the
integral (3.94) from r(0.65 F cancels 40%%uo of the
attractive contribution coming from larger r.

The value $'4 —0.1 Mev is quite reasonable. One
would expect a priori that W4/Ws s', where Ws—30 MeV is the two-body contribution to the energy
per particle. Since we have assumed the Reid 'So po-
tential to act in both the 'So and 'S~ states, we should
use the corresponding value of ~, which is 0.044.'
Then we find
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TABLE IV. Summary of numerical results, as discussed in the text.

Class

Rough
analytic
formula

Numerical Extrapolated
result result

(soft core) (hard-core)
(MeV) ~MeV)

A1
A2

A3
A4
A5
Bj
82
83
84
8'4

-'lt'U
—4IcS' '"
CX g

—2pg U~/(9p)
CC gm

~ ~'U
—3a8'3
—,'f~lVg

CCg

Total

—0.60
+0.18
+0.26
—0.22
—0.15
—0.52
—0.20
+0.45
—0.05
—0 ~ 24

—1.09

—1.1.5
+0.34
+0.53
—0.45
—0.19
—1.06
—0.38
+0.64
—0.07
—0.49

—2.28

W,=,'p fg(r-) dr

Thus we expect to find that

(3.110)

W4/Ws ~p'D =0.003, (3.111)

and this is indeed borne out by actual calculation.
We have completely neglected the tensor force in our

treatment of four-body clusters. In the three-body
cluster calculation, " inclusion of the tensor force gives
an additional contribution that is comparable to that
coming from central forces alone. If the same thing
holds true for four-body clusters, then W4 will be only
about —0.2 MeV, even when the tensor force is in-
cluded. However, this is just a guess and should be
checked by a detailed investigation.

Although Kuriyama's formulation" divers from ours
(see the end of Sec. II C), his numerical results for W4
are about the same as ours at normal density. He also
finds 8 4 to become rapidly more negative as the density
is lowered. Lawson and Sampanthar" do not obtain a
numerical result for 8'4.

I". Summary of Numerical Results

The numerical results that have been obtained are
summarized in Table IV. In the first column are listed
the various classes of four-hole-line diagrams (W4 refers
to the four-body clusters). Classes A6-A9 and 85 and
86 have been omitted because their contributions are
so small. The second column gives the analytic estimate
of the contribution whenever such an estimate was
made. In other cases (A3, A4, 81, 82, and W4) the
second column gives an idea of how the contribution
scales with a and U'.

and these two numbers are comparable, as expected.
Another way of saying the same thing is to note that,
taking D(rs4) to be constant, we have

W4 (3/32) p'D jg(r) dr, (3.109)

The third column of Table IV gives our best nu-
merical estimate of the contribution from each class,
using the Reid' soft-core potential. The tensor force is
properly included in all classes except 81, 82, and H/"4.

For each of these we have arbitrarily doubled the result
obtained for central forces in order to include the effects
of the tensor force.

In the fourth column of Table IV we estimate the
contributions that would be obtained from the Reid"
hard-core potential. These results are obtained by
using the formulas in the second column to extrapolate
the numerical results for the soft-core potential. In
making these extrapolations, we have assumed that
r, e, and 5"3 have the same values for the hard-core
potential as for the soft-core potential. The values
of K for the hard- and soft-core cases are' 0.193 and
0.135, respectively, giving a ratio of 1.43. We have
taken U= —66 MeV (soft core) and U= —62 MeV
(hard core). This implies that the first-order binding
energy is 2 MeV less for the hard core, as is reasonable. '
In extrapolating W(A2) from soft core to hard core,
we use the fact that F3""is proportional to ~U. These
extrapolations are well justified in cases where an
analytic estimate has been made. They are less certain
in other cases (A3, A4, 81, 82, W4), where we have
simply made a reasonable guess about how the contri-
bution sca.les with ~ and U.

The sum of all contributions is —1.09 MeV for the
Reid soft-core potential. It is believed that all the
calculated values are reliable except for those of cia.sses
81, $2, and 8'4, in which the main uncertainties come
from the tensor force. If only the contributions to
these three classes from central forces are included,
the total four-hole-line energy is —0.61 MeV. If, for
each of these three classes, the contribution from tensor
forces is assumed to be twice that from central forces,
then the total four-hole-line energy becomes —1.57
MeV. The truth probably lies somewhere between
these extremes. So the total four-hole-line energy is
probably between —0.6 and —1.6 MeV for the Reid
soft-core potential. The result for the Reid hard-core
potential is roughly twice as large as that for the soft
core. A proper treatment of the tensor force is required
in order to obtain a more precise result.

One more possible source of error is the value of H/'3.

The only complete calculation of 5'3, including the
tensor force, was carried out' by Dahlblom for the
Reid hard-core potential. The four-hole-line energy
contains the term —(8'/3) Ws = —0.36Ws, coming
from classes 83 and R4. If future calculations of TV3

for the soft-core potential give a value different from
Dahlblom's result of —1.1 MeV, our numerical results
will have to be changed accordingly.

Finally, we repeat our results for the contribution
Ws"" from the hole-hole diagram. An accurate cal-
culation for the soft-core potential gives —0.34 MeV.
The extrapolation to the hard-core potential gives
—0.49 MeV, which we believe to be a reliable result.
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Iv. SUMMARY AND DISCUSSION

We have enumerated the four-hole-line diagrams
and have given exact formal expressions for their
contributions. In this procedure, a very important role
is played by GTO, which collapses classes of diagrams
into single diagrams and simplifies the energy de-
nominators. In our formulas, all energy denominators
are clearly defined, and exchange diagrams are fully
taken into account. Although approximations must be
made in any practical calculation, our exact formal
expressions are still useful as a starting point for
numerical work. Starting from the exact formulas, one
can systematically introduce approximations until a
practical formula is obtained.

We have given methods for making rough but quick
estimates of most diagrams in terms of parameters such
as ~, U, etc. When checked by detailed calculation,
these estimates are typically found to be in error by
about 50%. Hence the rough estimates provide a
reliable way of deciding that certain classes of dia-
grams give negligibly small contributions. We have
used this method to show that the contributions from
classes A6—A9 and B5 and B6 are too small to be of
interest. A second virtue of the rough estimates is that
they allow an extrapolation of numerical results for
one two-body potential and particle density to other
two-body potentials and particle densities. Our nu-
merical results for the Reid soft-core potential have been
extrapolated in this way to the Reid hard-core po-
tential.

Our numerical work indicates that for the Reid soft-
core potential, the total contribution from four-hole-
line diagrams lies between —0.6 and —1.6 MeV per
particle at normal density. We have not taken proper
account of the tensor force in several classes of dia-
grams, and this is the main source of uncertainty in our
numerical result. For the same density and two-body
force, we have calculated the contribution from the
hole-hole diagram (which has only three independent
hole lines) to be —0.34 Mev per particle.

The main conclusion to be drawn from our numerical
results is that the convergence of the hole-line expansion
continues to be governed by the value of ~. For the
Reid soft-core potential, we have ~'8"2= —0.6 MeV,
which is about half of our best estimate for the sum
of all four-hole-line contributions. The possibility of
obtaining a large result by summing many contribu-
tions, each one being of the order of ~'W~, has not
materialized. One reason for this is cancellation be-
tween attractive and repulsive contributions. The
repulsive contributions listed in Table IV cancel about
45% of the attractive ones. A second reason is the
presence, in almost all of the diagrams, of phase-space
factors or of small statistical weights due either to
exchange or to a diagram's having fewer than four
closed loops. Because of these phase-space and sta-
tistical factors, 6 of the 16 classes of four-hole-line

diagrams have negligible contributions, and only 3
classes give contributions of magnitude comparable
to g2g2.

These phase-space and statistical factors will un-
doubtedly be extremely important in reducing the
five-hole-line contribution to the energy. The number
of distinct classes of five-hole-line diagrams is probably
one or two hundred. Neglecting statistical and phase-
space factors, the contribution of a typical class would
be ~'8"2 0.1 MeV. But the statistical and phase-space
factors may well reduce almost all of these terms by a
factor of 10 or more, and there will certainly be sub-
stantial cancellation between attractive and repulsive
contributions. Thus the five-hole-line energy coul.d
easily be very small, but we are unable to give any
quantitative estimate without actually writing down
the diagrams explicitly. This would be an enormous
task. The hole-line expansion becomes inefficient if
one is forced to carry it out to high order by brute
force, and one should probably search for a more
efficient procedure if one wants to go beyond four
independent hole lines. In the meantime, what can we
say about the accuracy of nuclear-matter calculationsP
Assuming that the error in the hole-line expansion is
no larger than the last term calculated, a calculation
that accurately includes all terms with two, three, and
four independent hole lines will be uncertain by
roughly 1 MeV for the Reid soft-core potential. The
uncertainty will be larger for two-body potentials that
give larger values of ~. To reduce the uncertainty much
below 1 MeV is nearly impossible with the present
methods.

It is very gratifying that the four-hole-line contri-
bution to the energy is attractive and increases the
total binding energy. All recent nuclear-matter cal-
culations "~ have given binding energies that are
several MeV smaller than the empirical value. The
four-hole-line contributions will improve the agreement
between the theoretical and empirical binding energies.

Our numerical work has focused particular attention
on the diagrams of class B1.A proper treatment of the
tensor force in these diagrams would greatly reduce
the uncertainty in the four-hole-line energy.

The present work is incomplete in several respects.
We have worked only at normal density and have con-
sidered only the Reid two-body potentials. The tensor
force has been omitted from three important diagrams.
We have also assumed that V(k) =0 for k)k~. This
gives a big gap in the energy spectrum at the Fermi
surface. It has been suggested" 4' that a better single-
particle spectrum would be nearly continuous at
4=k& and would approach pure kinetic energy only at

"D. W. Sprung, in Proceedings of the International Confer-
ence on Atomic Masses, University of Manitoba, Winnipeg, 1967
(unpublished) .

4' Reference 23, p. 805.
4'M. Baranger, in Proceedings of the International School of

Physics "Enrico Fermi, " Course XI., edited by M. Jean (Aca-
demic Press Inc. , New York, 1969), p. 582.
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large k, say k&2k~. If this idea turns out to be right,
some of the approximations that we have used may
become unreliable. For example, the approximation
of neglecting the dependence of ~~ on the momenta
of states l and m will certainly become much worse.
The numerical work will then become more dificult.
Making the single-particle potential attractive for low-

lying unoccupied states will also increase" the value of
~ and therefore worsen the convergence oi the energy
expansion.
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The shape, width, and location of the 16-MeV resonances in the O,-particle energy spectrum from the
Li (Li, o.) Be reaction were found to be a function of the angle taken by the breakup fragments in the
subsequent decay of the Be'. This was caused by the long-range electrostatic interaction between the
a particle and the breakup particles.

I. INTRODUCTION

J &HE effects of Anal-state Coulomb interactions were..studied with the reaction Li'(Li', uo) Be', where the
Be' was left in the 16.6- and 16.9-MeV states and where
the Li' beam energy was 6 MeV. Preliminary results
from this work have been described under the title,
"Distortion of Nuclear Spectra by Final-State Coulomb
Interactions". ' lt was shown that effects of this kind
can be important in many nuclear reactions and are
particularly important when precision measurements
are made on unbound nuclear levels. If corrections for
these effects were applied to the values in the literature,
some of the energy levels would need t.o be lowered

slightly and made more narrow.
The lifetimes of the two Bes states are such that, on

the average, the no particles are about 100 F (10 "cm)
away from the Be' before it disintegrates. At this dis-
tance the electrostatic potential energy of the Be'-ceo

system is 115keV. When the Be breaks up in a direction
perpendicular to the direction of uo, the no does not get
its full share of this energy. The energy lost is about
30 keV.
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An effect that is Qve times larger occurs when the Be'
breaks up in a direction roughly parallel to the direction
taken by o.o. In this case no gains energy because the
breakup particle follows along behind 0,0, allowing the
electrostatic repulsion to occur over a very long time.

At, all angles, calculations using classical mechanics
were found to agree moderately well with the experi-
mental energy shifts. The calculation for the change in
the widths as a function of angle were uncertain by as
much as a factor of 2 at some angles because of the
difficulties of using classical mechanics for what is really
a quantum-mechanical problem. The experiment was
not designed to make precise measurements of the
widths.

IL EXPERIMENTAL TECHNIQUES

The 6-MeV Li' beam from the University of Iowa
Van de Graaff was used to bombard thin I i'F targets
which had been evaporated onto 190-nm nickel foil.
The ao particles were detected with a 50-mm', 150-p,
surface-barrier silicon detector placed at an angle of
15' with respect to the beam direction. An aperture,
placed in front of the detector, limited the acceptance
angle from the center of the target chamber to 3'. All
of the detectors were covered by 5.2-mg/cm' nickel foil
to stop scattered beam. The detectors were calibrated
with a 10.6-h Th 8 preparation that emitted 6.05- and


