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The C®2 nucleus is studied from the three-a-particle point of view based on a wave-function method in
which the Hermiticity of the Fredholm kernel is preserved. The interaction between two « particles, obtained
from the resonating-group calculation of Okai and Park, is recast in a separable form with the aid of Hille’s
formula. For the numerical calculation, we have employed three simpler types of the potential: Gaussian,
Tabakin, and Yamaguchi. It is shown that Harrington’s theory, based on the 7-matrix method, reduces to a
result of the present study, but not to those of other wave-function methods. Contrary to a conclusion of the
previous work, we have succeeded in finding an excited state with the same (J, ) as the ground state. The
present method also supplies the mean height and side of the equilateral triangles formed by three « particles.
These values are found to imply a root-mean-square radius of the C'2 nucleus which agrees well with the

experimental value.

L. INTRODUCTION

N integral equation with a separable (or degenerate)
kernel can be solved exactly by an algebraic
method.? The two-nucleon problem was first treated
in this way by Yamaguchi,? who employed a nonlocal
but separable (NLS) potential. This potential has since
been widely used in the three-body problem. In fact,
most of the recent formulations of the three-body prob-
lem presuppose the use of NLS potential.#5 While
some fundamental question regarding the nonlocality
of the basic nucleon-nucleon interaction may exist,
such a question does not exist for the nucleon-nucleus
interaction. Any theory in which antisymmetrization is
involved will lead to an integrodifferential equation,
well-known examples being the atomic Hartree-Fock
equation and the method of resonating group structure
in nuclear physics.® In the latter case the nonlocality of
the interaction is reinforced by the exchange nature of
the nuclear forces. Thus as far as nuclear physics is
concerned the nonlocality of the interaction is a general
feature rather than an exception. It remains to be seen
how well the ansatz of separability is justified.

In the present paper we first investigate the separ-
ability of the a-« interaction, which was treated earlier
by Okai and Park? by use of the method of resonating
group structure. We shall recast the kernel in the
momentum space and write down the separable form
of the kernel with the aid of Hille’s formula. This
is done in the first part of Sec. II.

The second objective is to calculate the binding
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Science Foundation.
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energy and other observables of C'? nucleus by use of
NLS two-body potentials between alpha particles®
This problem has already been treated by Harrington.
and Wong,? whose methods were based on the Faddeev-
Lovelace formulation of the three-body problem, in
which the 7" matrix plays a central role. For the bound-
state problem, however, the Schrodinger wave function
has greater physical ramification. The method of wave
function employed here is similar to methods used by
Mitrat and Eyges!® but differs from them in details and
in that we preserve the Hermiticity of the integral
kernel. Furthermore, it turns out that Harrington’s
final result can be shown to lead to Eq. (20) below, thus
implying that for the present simplest three-body prob-
lem the 7-matrix method is equivalent to the wave-
function method adopted here. We have employed
three types of NLS potentials: a Yamaguchi potential,
Tabakin-type potentials,’* and Gaussian potentials.
These are discussed in detail in the second half of
Sec. II. The Yamaguchi potential is considered here
as a reference and the values of the potential param-
eters are equivalent to those suggested by Harrington.?
We find that the potential does give rise to the first
excited state of the same (J, =) as the ground state
of C®2 nucleus, contrary to Harrington’s finding. The
details of the wave-function method are presented in
Sec. III, where we also briefly touch upon the Eyges
method. On the whole, Tabakin-type potentials repro-
duce well both the two-body and three-body experi-
mental data, including the prediction of the first excited
state of the same (J, ) as that of the ground state. In
the present method of wave function it is very natural
to talk of the relative motions of the three particles as
manifested through the wave functions. We have thus
calculated the root-mean-square distances involved in
the three-body system. The result predicts, if inter-
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preted geometrically, a reasonable value of the root-
mean-square radius of the C®2 nucleus. These are dis-
cussed in detail in Sec. IV. Finally, in Sec. V we sum-
marize the physics of the C*? nucleus obtained in this
study.

II. SEPARABILITY OF «o-o¢ INTERACTION

A simple example of a nonlocal interaction between
complex nuclei is afforded by the a-a interaction as
calculated by the method of resonating group structure.®
According to this method, the a-a interaction is
described by an integrodifferential equation of the form

(V2 k) (r) = S K (x, 10) ¥ (10) dro, (1)

where the kernel K(r,r,) arises from the antisym-
metrization and the exchange nature of the two-nucleon
forces. There is, in addition, the direct potential, which
will be regarded as having been absorbed in the kernel.
In the momentum space, Eq. (1) reads

(=p+=)¥(p)=J{p | K | (q)dg, (2)
where ¢(p) is the Fourier transform of ¢(r) and
(| K|q)=JSldr/(2m)**] exp(—ip-1)(r | K | ro)
X exp(iq-ro) [dro/ (2m)**].  (3)

We see that the separability of K(r,1,) always implies
that of {(p | K | ¢). The kernel K (r, 1) derived and used
by Okai and Park” consists of many terms of the form

K(r, 1) =F(r)F (ro) exp[—a(r—r)2], (4)

which is symmetric (or Hermitian) inr and ro. We see im-
mediately that it is the angular factor exp[—a(r—r,)%]
which prevents K from being separable. We resolve K
into the radial and angular parts:

K(r,10) = LZ;;I [4r/ (2LA1) IK (7, 70) Y Lar (F) Y 2ae (7o)

(5)
where
Ko, ) =32L41) [ K070 P} (5b)

For the specific form of (4) the radial part of K becomes

Ky(r,70) = (=) (2L+1)F(r)F (r0)
X exp[—a(r*4rd) J(3m) V2 Ly1/2(2ar70) / (2arr0) 2],
(3¢)
We now employ Hille’s formula!?
I,(2%%xy)  exp(a®+y%)
(xy)” - Qvi2+1
X Z Ly (2?) L’ (%) (6)

n=0 an( + +1)

12 See Higher Transcendental Functions, edited by A. Erdelyi
(McGraw-Hill Book Co., New York, 1953) Vol. 2, p. 189.
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to make K(r,r,) formally separable. By substituting
(6), (5¢), and (52) into (3), we find

sy ()l
| K|q)=2(m)" f::’n 2T (n+1+3%)
XEFO (D)0 (@) Vi (3) Vin @), (72)

where

o= (2)" [ ar e

0
Vi—1 o
X[F(7) exp(—— > aﬂ)ﬂan/?(%)], (7b)

which is the Fourier-Bessel transform of the quantity in
square brackets. We note that Eq. (7a), up to a
multiplicative factor, is precisely the angular-momen-
tum-dependent separable interaction anticipated by
Yamaguchi. If we apply the above prescription to the
entire kernel in (1), we would be deriving the separable
kernel by starting from the local two-nucleon inter-
action. The kernel K(r,1;) of Ref. 7, which contains
the effect of Coulomb interaction as well, is very much
complicated, and hence it is not really illuminating to
pursue this program.!® Instead we shall postulate the
S-wave NLS interaction of the form

Ja(p) =a(pi—p*) (a+bp?) exp(—dp?).  (8)

This form of the interaction is implied by (7b) as well
as the shell-model type of calculation involving the
Laguerre polynomials. Since the S-wave a-a scattering
phase shift is known to change sign as a function of the
bombarding energy, the value of P2 can be readily
determined. We shall also use a Tabakin potential

Jr(p) =a(p—p) L(P*+d) / ($+0) 1(p+-at) 7% (9)

This is a variant of the Yamaguchi potential, implying
the Yukawa-type spatial dependence, and as such
probably has a better theoretical foundation. For the
sake of a reference we shall also employ a Yamaguchi
potential

fr(p) =a/(p*+0%).
The separable two-body potential is then given by

V(p, p")=—@®/m) (1) 2e)f(p)f(¢"),  (11)

where m is the mass of an « particle. The two-body
binding energy 72«*/m and the S-wave phase shift are
then obtained from the well-known relations

PP (p)
[,

tand (k) = kf2(k) / (

(10)

(12)

P/ dp 2f2<12> (13)

138G, C. Park, C. C. Leung, and J. P. Rickett, Bull. Am. Phys.
Soc. 12, 188 (1967). In this report Hille’s formula (6) was ap-
plied to the kernel of Ref. 7.
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TaBirE I. Values of the potential parameters and results of calculation. Energies listed here are the nuclear-binding energies only.
In order to obtain the actual binding energies, Coulomb energies must be added. According to Ref. 8, the approximate values of the
Coulomb energies are 3.5 and 5.44 MeV for Be8 and C!2 nuclei, respectively.

Root-

Ground- Ground- Excited-
state state state mean-
energy energy energy square
Potential of Be? of C12 of C2  radius of
(method used) a b o? (MeV) (MeV) (MeV) C2 (F)
Yamaguchi potential 0.736 2.36
(Harrington’s result) (F1) (F-%) —2.9 —12.8
(WFM)» —12.8 —3.0 1.3
(Eyges’ method) —13.3 —1.6
(Mitra’s method) —11.2
Tabakin potential 1.9 1.3 5.0 3.186 —3.6 —12.2 —6.6 2.0
(WFM) (F) (F™) (F1) (F9
Gaussian potential 1.0 0.05 0. 4.432 —-3.4 —-9.0 —2.2 2.1
(WFM) 0.6 0.1 0 14.48 —4.1 —10.0 2.1
(F2) ( (I?)

2 These two works employ the same binding-energy equation (20).

The values of the potential parameters are listed in
Table I; those for the Yamaguchi potential are the ones
suggested by Harrington. The corresponding shapes of
the potential factors are shown in Fig. 1. The S-wave
a-a scattering phase shifts predicted by these potentials
are shown in Fig. 2, which also contains the result
So—p of the resonating-group calculation. The two
versions of Gaussian potential predict almost equal
phase shifts, and they are not distinguished from each
other in Fig. 2. This means that the determination of the
potential parameters is by no means unique, and there
exists a certain cancellation effect, the greater attrac-
tion of fg: annulling to some extent its greater repulsion,
thus producing the same phase shift as fg.. On the
other hand, some consequences of these potentials are
quite unexpected. For instance, the introduction of the
repulsive part as in fr does not necessarily mean that
the corresponding two-body binding energy would
decrease, although it yields negative phase shifts. On
the contrary, the Tabakin potential in Fig. 1 gives rise
to a greater binding energy than the Yamaguchi
potential shown there, as attested by the values in
Table I. This and other paradoxical features of the

f(p)

Fic. 1. Potential form fac-
tors. The subscripts G, Y, and
T correspond to Gaussian,
Yamaguchi, and Tabakin po-
tentials, respectively.

FORM FACTORS

1

Tabakin potentials and the separable potentials in
general are discussed in detail elsewhere.*

III. THREE-BODY EQUATION

We shall now present the formulation of the three-
body bound state problem based on the wave-function
method (abbreviated as WFM), which is similar to
methods used by Eyges and Mitra. We introduce three
vectors

P=%(K1+K2+K3),

Pi= % (KZ_K3) )
01=3(Ko+K;—2K,),

where 7K; is the momentum of the ith « particle

(14)

T T T T T T T T T

A EXPERIMENTAL

(deg)
1)
s}

PHASE SHIFT

1 1 1 1 1 1 1 1

L
2 4 6 8 10 12 14 |16 18
ENERGY (cm) (MeV)

F16. 2. S-wave o-a scattering phase shifts. The subscripts

G, O-P, Y, and T correspond to Gaussian, Okai-Park, Yama-
guchi, and Tabakin potentials.

4 C. C. Leung and S. C. Park (to be published in Phys. Rev.).
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referred to a fixed coordinate system. We shall work in
the barycentric coordinate system, P=0, throughout
the work. We can similarly introduce other pairs of
momenta, which can be obtained from the pair (ps, qi)
by the transformation

(0)-C )0
0)-C )0

These momenta are invariant in the sense that
pEt+igl=pi+igd (1=1,2,3).

The three-body nuclear binding energy will be denoted
by

—

Nl
IN[X)

—

B=HK2/m,

where m is the mass of an « particle.

Our starting point is the homogeneous integral
equation for the three-body bound-state function
¥(p,q) in any pair of the variables (p;,q:)=(p,q):

(7/m) (p*+31¢+K*) ¥ (p, q)
=—[fdp'dq’{p,q | Vit+ Vot Vs | D, 'Y ¥(p', '), (16)

where V; denotes the interaction between the pair of «
particles j and & (4, 7, k=1, 2, 3). We shall restrict our-
selves to only the S-wave interaction between two «
particles; we shall not consider any three-body forces.
The separable interaction V; is then assumed to be of
the form

®, 9| Vilp/a)
=—(B/m) (1/2e2)f(p)f(p)o(qi—q). (17)

The basic equation (16) then suggests the introduction
of the following three functions:

—1
(72/m) (p24-1g24-K?)
X[fdpidg/ (ps, q: | Vi| D/, 0/ )% (p, q)
= (1/2x%) [ f(ps)/ (p2+292+K?) ]
X [dp/f(p)¥(p{, q:)

=[f(ps)/ (p2+192+K2) In(qs)

¥i(pi, qi) =

(18)

(7:2 1) 2; 3)7

where 7(q;) is an unknown function yet to be deter-
mined. The three-body wave function ¥(p, q) is then
the sum of the following three functions:

¥ (p, @) =¥a1+vatis.

By introducing the change of variables as in (15), we

(19a)
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have
¥(p, q) =1/(p*+1¢*+K?)
XLf(P)n(Q+f(—ip+id)n(—p—3q)
+f(=2p— i (—p+39) 1.
Because of the symmetry of the system consisting of
three identical particles, among which only the S-

wave interactions are operative, we must have

‘h:‘l’z:%

(19b)

and
7(q) =n(g),
where ¢g= | q|.
In view of this, Eq. (18) becomes a single integral
equation for n, which now reads

n(q) = (1/2x*) fdp[ f(p)/ (p*+ 3¢+ K?) ]
XLf(p)n(@Q)+f(—3p+3q)n(—p—1q)
+f(—=3p—3)n(—p+3q) 1.

By suitable changes of the variables in the second and
last integrals and by using the evenness of the S-wave
potential form factor f, we obtain

dp  f2(p)
[1_ E;Z pZ.f_%gZ_}_KZ:l n(Q)

1 J(p+29)/Grp+9)
= [apPRELIREL ) g
#) P ptpatetr, " 20

This equation can be solved for the three-body binding
energy 72K?/m and the function 7(q) from which the
three-body wave function ¥ can be computed. This is
true so long as the factor multiplying n(g) on the left-
hand side of (20) does not vanish. In order to look into
this aspect further it is convenient to introduce the
factor function

H(q)=1=f(dp/2e) [ f(p)/ (p*+3¢+EK?)].  (21a)
If we now compare this with the binding-energy equa-
tion (12) of the two-body system, we see that H(g) =0
if

P+HK=2, (21b)
where 7izko/m is the two-body binding energy. This is
impossible if K2>«? and for real (physical) values of ¢.
While the three-body energy #2K2/m is certainly greater
than the two-body binding energy 7%22/m, there is a
possibility that the binding energy of an excited state
of the three-body system is so small that Eq. (21b)
can be satisfied for a particular value of g2 For the
present problem this possibility does not exist, but we
are pointing out this possibility in other problems.
Equation (20) can be put in a more symmetric form if
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we introduce an unknown function F(g) through

F(q)=n(q)H*(q),

in terms of which Eq. (20) now reads

1 1
F(g) = —g/dp - j:(P+ZQ)f(2P+Q) F(p).
v ) P iR B (p) HE(g)
It is clear that this equation possesses a Hermitian
kernel.

We shall now discuss how the present formulation is
related to the other formalisms of the three-body
problem. First, we observe that the Eyges method con-
sists in projecting the three-body function onto the
two-body space:

Yi(Di, 4) = (p)n(q:) = [F(p) / (p2+KD) In(gs), (22)

where the tilde denotes that the quantity is of two-body
nature. Thus, ¢(p:) above is the two-body bound-state
function corresponding to a two-body binding energy
conveniently set equal to #2K*/m, and f(p;) is the
corresponding two-body potential form factor with
the values of the strength parameter &* adjusted to
yield this two-body binding energy. If ¢; of (22) are
used in (19a) and (16), we obtain an integral equation
for 7(g¢.), identical to Eq. (23) of Ref. 10, whose kernel
is non-Hermitian, however. If we take the Hermiticity
of the integral kernel as one of the guiding ideas and
symmetrize the kernel, we obtain

{3+ [1— (/@) *1(K>H-fdpp?* | $(p) ) }n(q)
=2(a/a)*fdp{3[ (p+39)*+ (3p+q)2 ]+ K?}
X (p+390)(Gp+Q)n(p).

A further and more drastic separation of the variables
can be effected by following Mitra’s approximations,
especially involving the angle integration. The com-
parison of the numerical results will be discussed later.
Both the Eyges and Mitra methods share with the
present formalism that they are all wave-function
methods. Harrington, on the other hand, bases his
formulation on the 7-matrix method of Faddeev and
Lovelace. It turns out that for the present problem,
Harrington’s result exactly coincides with a result of
the present formalism, but not with Eyges’ nor Mitra’s.
If we use the values

(23)

$=0.736 T,

C=—2.36X (4nh2/m) = — a2 (4xh2/m), (24)

for the Yamaguchi potential in Eq. (16) of Ref. 8, it
reduces to (20) of the present study. It follows, there-
fore, that we should reproduce Harrington’s result. It
turns out, however, that this is not the case, and the
main reason for the discrepancy seems to lie in the
accuracy of the numerical calculation. This aspect is
discussed in the next section.
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IV. NUMERICAL RESULTS

The three-body binding energy 72K%/m as well as the
function n(g) are obtained from the numerical solution
of (20), using a 24-point Gauss-Legendre radial inte-
gration and a 24-point Legendre angular integration.
The results obtained for different potentials and for
different methods of the solution are summarized in
Table I. For the Tabakin and Gaussian potentials we
employed only WFM, but for the Yamaguchi potential
we have also tested the approximate methods suggested
by Eyges and Mitra. The values of the ground-state
energy of C¥ predicted by these two approximate
methods are not too much different from that of WFM,
indicating that these two approximate methods are
relatively accurate ones. On the other hand, we believe
that these two theoretical approximations do not add
any real physical insight and hence are unnecessary,
because the three-body binding energy as well as the
wave function can be numerically computed in a
straightforward manner. For the Gaussian potential
we have tried the two versions shown in Fig. 1. They
yield almost equal values of the C*? ground-state energy,
which, however, are smaller than the values resulting
from the other two types of the potential. For both
Yamaguchi and Tabakin potentials considered here
the three-body binding energy is greater than three
times the two-body binding energy.

We have also searched, with some success, for the
first excited state of the C*? nucleus with the same (J, «)
as the ground state. For the Yamaguchi potential we
found the first-excited-state energy equal to —3.0 MeV,
in contrast to the conclusion given by Harrington, who
used in effect the same potential and the same Eq. (20).
Both the Tabakin and the first version of the Gaussian
potentials predict an excited state, as shown in Table I.

In the present WFM, it is very natural to talk of the
relative motion of two a particles and the corresponding
root-mean-square distance. In order to look into this
aspect in detail we rewrite (19b) in the form

¥(p,q) =Lf(p)n(9)/(p*+3+ K% I[1+4(p,q) ],

where
A(p, Q) =f(p)n ()
XLf(=3p+i)n(—p—3Q)+f(—3p—2¢)n(p—3q) 1.

When the wave function ¥ is squared and integrated
over either p or ¢, we obtain a function of a single
variable in the form f2(p) F2(p) or 72(¢)G2(q), where

)= | (A S nram )|

Glg)= [/ L (;%(ﬁ?f [1+4(p, @ 3)2]‘”.

For a Yamaguchi potential, f(p) and n(¢q) are smooth
and sign-definite functions and so are F(p) and G(p).
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v(p) AND p2v2(p) (ARBITRARY UNIT)

p ., a-2a DISTANCE (F)

F1c. 3. Radial wave function »(p) and radial probability den-
sity p%?2(p), obtained from using the Yamaguchi (Y) and Tabakin
(T) potentials. v(p) is the Fourier transform of the g-dependent
part of the three-body wave function ¥ (p, ¢).

In performing the integration we assign to the value of
7(s), for any argument s (>0), the value of n at the
mesh point closest to s, since only its numerical values
at mesh points are available. This is the way the angle
integration has been performed. For the radial inte-
gration we used 31 mesh points for positive p or g up to
6 F~1. In order to discuss the spatial wave function we
now introduce the Fourier transform of f(p)F(p),
u(r), and that of 7(¢)G(q), v(p). Here g and r represent
the position vectors conjugate to g and p, respectively.
The wave function v(p) shown in Fig. 3 thus represents
the motion of an « particle relative to the center of mass
of the remaining two « particles. In the inset of Fig. 3
we show a schematic relation between p and q. The same
diagram can also be used for the pair (r, g). The wave
function #(r) in Fig. 4, on the other hand, represents
the relative motion of two « particles. We observe that
u(7r) reflects, to some extent, the form of the inter-
particle potential, i.e., #(r) for the Tabakin potential
changes sign, whereas that for the Yamaguchi potential
is sign-definite. Having computed p%?(p) and 7%43(r),
we can readily calculate the root-mean-square distances
of p and 7, respectively denoted by {p) and (r). These
distances correspond to the average values of the height
and side length of a triangle. Now this triangle must
necessarily be equilateral, because what is true of one
height (side) must be true of two remaining heights
(sides), thanks to the inherent symmetry of the three-a
system. Now suppose we consider two equilateral
triangles (or two circles circumscribing the triangles),
one with height {(p), the other with side length (r).
The question then naturally arises whether these two
circles imply the same value of the radius R. It has been
found in the present numerical calculation that the
values of radii corresponding to these triangles do indeed
agree with each other within two significant figures. We
are inclined to interpret this result as indicating that our

C. C. H. LEUNG AND S. C.

PARK 187
numerical wave functions #(r) and v(p) are fairly
accurate. The values of the root-mean-square radius
R, obtained for different potentials, are shown in the
last column of Table I. Both Tabakin and Gaussian
potentials predict a considerably larger C' nucleus
than the Yamaguchi potential. This is easily acounted

- for from the fact that the former type of the potential

contains a repulsion as well as an attraction, in contrast
to the Yamaguchi potential which is everywhere
attractive. All the values of the root-mean-square radius
listed in the table are smaller than the experimental
radius, which is about 2.5 F. There are at least two
obvious ways of improving the present values. The first
is to include the Coulomb interaction, which will
certainly increase the size of the C*2 nucleus. The second
way is to explicitly take into account the finite size of
an « particle whose experimental radius is about 0.9 F.
The value of the radius of C*2 nucleus obtained from the
Yamaguchi potential becomes 2.2 F, which would
further increase if the Coulomb potential were explicitly
taken into account. The value of the nuclear radius
obtained from the Tabakin type of potentials, on the
other hand, becomes 2.9 F. However, in this case, the
naive model upon which the argument rests also
pictures that there exists a kollow central region within
the circle of radius 1.1 F, which is certainly unrealistic.
So we see that the literal inclusion of the effect of the
finite size of an « particle probably does injustice to the
actual situation. It appears, therefore, that the explicit
inclusion of the size effect of an o particle is not war-
ranted for the case of the Tabakin and Gaussian poten-
tials, because the fact that these potentials involve a
repulsion is itself a reflection of the size effect. In other
words, the effect of the finite size of an « particle is
already indirectly taken into account when the two-a
interaction is determined to fit the experimental scatter-
ing data. The discussion given above is admittedly

u(r) AND r2u2(r) (ARBITRARY UNIT)

1 1 1 1
2 3 4
r, @-a DISTANCE (F)

yF16. 4. Radial wavefunction #(r) and radial probability density
7222 (r) for the relative motion between two « particles interact-
ing through the Yamaguchi (Y) and Tabakin (T) potentials.
u(r) is the Fourier transform of the p-dependent part of the
three body wave function ¥ (g, g).
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qualitative. It shows nevertheless that the values of the
nuclear radius predicted by different types of the
potential can be justified qualitatively according to the
particular features of the interaction used.

V. CONCLUSION

The three-a model of the C®2 nucleus is investigated
based on a WFM similar to methods used by Eyges and
Mitra, but it differs from them in detail and in that the
Hermiticity of the Fredholm kernel is preserved through
out. We observe that the WFM is appropriate to the
bound-state problem treated here, while the 7-matrix
method is powerful for the scattering problem. How-
ever, the two methods yield the same binding-energy
equation (20). The fact that Harrington missed the
first excited state might be due to the difference in the
accuracies of the numerical solutions. We have em-
ployed three types of the potential: Gaussian, Tabakin,
and Yamaguchi. The Gaussian potential was suggested
by the resonating-group calculation for the a-a scatter-
ing. The Yamaguchi potential was used as a reference,
the values of the parameters being equivalent to those
used by Harrington. Throughout the work we are con-
cerned with the nuclear-binding energies only, that is,
we have neglected the Coulomb energies, which,
according to Ref. 8, are 3.5 and 5.44 MeV for Be® and
C®2 nuclei, respectively. Accepting these rough estimates
we find that the ground-state and the first-excited-state
energies obtained from the Tabakin potential are,
respectively, —6.76 and —1.16 MeV, which are not far
from the respective experimental values —7.28 and
+0.32 MeV. Besides the energies of the three-a system,
the present study provides the wave functions v(p) and
u(7) in the configuration space. From these we calculate
the mean height (p) of an equilateral triangle, and the
mean side length (r) of an equilateral triangle. If we
imagine two circles, each circumscribing one of the two
triangles, the numerical values of {p) and {r) turn out to
predict the equal value of the radii. This close agreement
of the two radii is interpreted as indicating a good
accuracy of the numerical wave functions #(r) and
v(p). From these wave functions the root-mean-square
radius of the C* nucleus can be calculated. The radius
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predicted by the Yamaguchi potential is 1.3 F and
becomes 2.2 F if the radius 0.9 F of an o particle is
added. The inclusion of the Coulomb potential will
further increase the radius towards the experimental
value 2.5 F. For the case of the Tabakin and Gaussian
potentials the explicit inclusion of the size effect of an
«a particle leads to 2.9-3.0 F for the value of the radius.
These potentials, however, do already include the size
effect of an « particle in that the repulsive part of the
potentials originates from the exclusion principle
operating between two composite o particles. The literal
inclusion of the size effect for these potentials amounts,
therefore, to an “over-inclusion” of the effect. For these
two potentials, thus, the only effect that should be
explicitly included is the Coulomb repulsion.

These considerations, although qualitative, lead us
to a consistent picture of the C? nucleus in that its
important physical observables, i.e., energies and size,
can be deduced from the theory which employs the
two-body data only. We have employed three separable
approximations to the S-wave a-a interaction. The
Tabakin type of potential seems to be preferable in
view of the fact that it provides the best account of the
two-body scattering as well as three-body observables.
Our next objective is to apply the same method to Be?
and Li% in which not only the a-a interaction, but also
N-aand N-N interactions enter. Our goal is to correlate
these two-body data with the physical observables of
these two nuclei as well as C'2 nucleus based on the
method of wave function presented in this paper.
The three-body model of Be® and Li® nuclei will be
reported in a forthcoming paper.t®
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