122 HOLLSTEIN, SHERIDAN,

TPresent address: University of Alaska, College,
Alas.

Ipresent address: Dornier GmbH, P.O. Box 317,
Friedrichschafen (Bodensee), West Germany.

R. A Buckingham and A. Dalgarno, Proc. Roy. Soc.
(London) A213, 327 (1952).

’E. E. Benton, E. E. Ferguson, F. A. Matsen, and
W. W. Robertson, Phys. Rev. 128, 206 (1962).

3R. D. Poshusta and F. A. Matsen, Phys. Rev. 132,
307 (1963).

‘F. A. Matsen and D. R. Scott, Quantum Theory of
Atoms, Molecules, and the Solid State (Academic Press
Inc., New York, 1966), p. 133.

°D. J. Klein, E. M. Greenawalt, and F. A. Matsen,

J. Chem. Phys. 47, 4820 (1967).

®H. L. Richards and E. E. Muschlitz, Jr., J. Chem.
Phys. 41, 559 (1964).

"E. W. Rothe, R. H. Neynaber, and S. M. Trujillo, J.
Chem. Phys. 42, 3310 (1965).

8. A. Fitzsimmons, N. F. Lane, and G. K. Walters,
Phys. Rev. 174, 193 (1968).

M. A. Biondi, Phys. Rev. 83, 653 (1951).

Y%, Ebbinghaus, Ann. Phys. (Leipzig) 7, 267 (1930).

Uy p. Colegrove, L. D. Schearer, and G. K. Walters,
Phys. Rev. 135, A353 (1964).

2p. L. Pakhomov and I. Ya. Fugol, Dokl. Akad. Nauk
USSR 179, 813 (1968) [English transl.: Soviet Phys. —
Doklady 13, 317 (1968)].

BRr. A, Buckingham and A. Dalgarno, Proc. Roy. Soc.
(London) A213, 506 (1952).

PHYSICAL REVIEW

VOLUME 187,

PETERSON, AND LORENTS 187

45, A. Evans and N, F. Lane, Bull. Am. Phys. Soc.
14, 262, (1969).

N. G. Utterback, Phys. Rev. Letters 12, 295 (1964).
1op1. Hollstein, D. C. Lorents, and J. R. Peterson,
Bull. Am. Phys. Soc. 13, 197 (1968).

. Hollstein, D. C. Lorents, and J. R. Peterson,
Bull. Am. Phys. Soc. 14, 262 (1968).

By, Hollstein, D. C. Lorents, J. R. Peterson, and
J. R. Sheridan, Can. J. Chem. 47, 1858 (1969).

%5, R. Sheridan and J. R. Peterson, J. Chem. Phys.
51, (1969).

25, R. Peterson and D. C. Lorents, Phys. Rev. 182,
152 (1969). T
HExeitation of the 3°D state could result via cascade
from an excitation by 2's atoms of the 4!F state which
mixes with the 4°F state. The 3'D state could be simi-
larly excited by 238 atoms. However, the experimental
results indicate that these processes do not contribute
significantly.

2p R. Bates, Discussions Faraday Soc. 33, 7 (1962).
%D. R. Bates and R. McCarroll, Advan. Phys. 11, 39
(1962).

*F. J. Smith, Phys. Letters 20, 271 (1966).

By M. Peek, T. A. Green, J. Perel, and H. H. Michels,
Phys. Rev. Letters 20, 1419 (1968).

%R, E. Olson, Phys. Rev. 187, 153 (1969).

¥R, E. Olson (private communication).

%3, A. Evans and N. F. Lane, Phys. Rev. (to be pub-
lished).

NUMBER 1 5 NOVEMBER 1969

Rotational Excitation of the (H, H,) System

K. T. Tang
Deparvtment of Physics, Pacific Luthevan University, Tacoma, Washington 98447
(Received 26 May 1969)

An analytic two-body potential, consistent with all available data, is presented for the (H, Hy)
system. This potential is then used in the calculation of rotational excitation with the distorted-
wave Born approximation. As compared with the results of previous studies, the differential
cross sections are drastically different, and the total cross sections are smaller by an order
of magnitude. This is because the potential used is different from that used previously.

I. INTRODUCTION

The rotational excitation of hydrogen molecules
by the impact of hydrogen atoms has received
considerable attention. !”® It is physically inter-
esting because it is involved in a variety of re-
laxation processes, * possibly including the cooling
of interstellar clouds.® Furthermore, it serves

as the prototype of the inelastic scattering of
molecules by heavy neutral particles.

An exact solution of this many-body problem
requires one to consider both the nuclei and the
electrons. However, for thermal-energy colli-
sions (5 1 eV), the Born-Oppenheimer approxi-
mation separating nuclear and electronic motion
is valid, and a single electronic eigenfunction can
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be used to represent the state of the electrons
throughout the atom-molecule encounter. In the
case where the translational energy is well below
the first vibrational level, the problem is usually
regarded as the scattering of a particle by a rigid
rotator with a two-body potential.

The problem is formidable even after such
simplifications. First, we must know the inter-
nuclear potential provided by the solution of the
electronic problem for stationary nuclei. Then
the dynamics of the scattering must be obtained
by solving the Schridinger equation. Both aspects
of the problem have been discussed extensively, ¢
neither of them is amenable to exact mathematical
treatment.

Although we probably know more about the in-
teractions between a hydrogen atom and a hydro-
gen molecule than that of any other atom-molecule
system, a priori determination of the potential
for an arbitrary configuration is not yet available,
All potentials previously used in connection with
the rotational excitation of this system are simi-
lar. While they yield a reasonable total cross
section in the low-energy range (<1 eV), the
elastic cross section derived from them is much
too large when compared with the experimental
data of high-energy (200-800 eV) scattering.”
These potentials are based on the results obtained
from simple perturbation calculations with 1s
wave functions on the three hydrogen atoms.
These wave functions lead to an energy surface
which will give much too small a cross section for
reactive scattering,® Furthermore, the aniso-
tropic part of these potentials which are respon-
sible for the inelastic scattering are contradictory
to all the semiempirical energy surfaces based
on valence bond formulation of the polyatomic
system.

Once the interaction potential is determined,
the dynamic problem can be expressed in many
different mathematic forms.® !* To carry out the
calculation, approximation of one kind or the
other has to be introduced. However, the inac-

curacy caused by the approximation methods are
far less than that caused by the uncertainty of the

potential. For rotational excitations with low-
incident energies, the distorted-wave Born ap-
proximation is generally adequate,

In this paper, we present a two-body potential
which is consistent with all available data. This
potential is then used to calculate the rotational
excitation, As compared with the results of pre-
vious works, the total cross sections are much
smaller, and the angular distributions are also
significantly different.

II. INTERACTION POTENTIAL

The three-body potential of the atom-molecule
system is a function of R, the coordinate of the

atom relative to the ¢. m. of the molecule, and

T, the internal coordinate of the molecule. Mak-
ing a harmonic analysis of the potential, we can
write

V(R, F):EnVn(R,r)Pn(cosx), (2.1)

where x is the angle between Rand 7 , and P, is
the Legendre polynomial of order n. Since H, is

a homonuclear molecule, only even-# terms con-
tribute. Generally, for rotational excitation at
thermal-energy range, 7 is taken to be the equi-
librium distance 7, of the molecule, and the har-
monics higher than the second order are neglected.
(See Sec. VI.)

There are two sets of first-order perturbation
calculations for the potential, one by Margenau, 2
and the other by Mason and Hirschfelder.® They
used 1s wave functions on the three hydrogen
atoms and approximated the exchange integrals.
Margenau’s results have been summarized by
Takayanagi® into the first two harmonics (a.u. are
used throughout this paper):

Vo(R)=1.0x10"*exp[- 1.87(R - 6. 3)]
-2.0x10™exp[-0.935(R~-6.3)], (2.2a)

V,(R)=0.26x10 " exp[- 1. 87(R - 6.3)].
(2.2b)

The results of Mason and Hirschfelder were
joined to the long-range van der Waals interactions
by Dalgarno, Henry, and Roberts,? to give

Vo(R)=511.1exp(- 1.9R) - 252/R® (2.3a)

V,(R)=346.7Texp(-2.0R)-27.9/R®, (2.3b)
These two sets of expressions give similar numer-
ical values except at very large distances, where
Egs. (2.3) give the correct R~® dependence.

These are the potentials used in the previous study
of rotational excitations.

Independent of the perturbation calculations,
there is a long history of theoretical attempts to
obtain the three-body potential V(R,T) of the H,
system. ;> Many approaches have been pro-
posed; most of them employ the London formula?¢
and related refinements. Up to the present, the
available methods are not sufficiently developed to
obtain an a priori potential surface, and empirical
data of one kind or the other have had to be intro-
duced. Consequently, they are called semempir-
ical surfaces. Although there are quantitative
differences among various semiempirical sur-
faces, all of them predict that if the distances 7
and R are fixed, among all configurations the po-
tential energy is maximum when 7 and R are per-
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pendicular (x =90°). This is just the reverse of
what Eq. (2.2) or (2.3), predict. There, the sec-
ond harmonic V,(R) is positive which means the
energy is maximum for linear geometry (x =0)
and minimum for the perpendicular case (x =90°).
Furthermore, when we make a harmonic analysis
of the semiempirical energy surface, and set 7
equal to 7, we find that V (R) is much smaller
than the corresponding term in either Eq. (2.2) or
2.3).

In a previous paper, !” we have constructed two-
body potentials from such a potential energy sur-
face. That surface has been used for extensive
quantum'® and classical’® calculations of elastic
and reactive scattering. The results are in gen-
eral agreement with available data. The Legendre
polynomial expansion [Eq. (2.1)] with » =7 for
this potential surface is shown in Fig. 1. The re-
sults of the perturbation calculation [Eq. (2.3)]
are also included in the figure for comparison.
The differences between them are rather drastic.

Equations (2.2) and (2. 3) are analytic expres-
sions, so they give the potential everywhere in
space [Eq. (2.3) must be cut off at small distan-
ces, since the potential goes to — «as R approach-
es zero|. However, the available perturbation
results that these equations are based on are limi-
ted to large distances of separation. In particu-
lar, in the region between R<5 and R21a.u.,
there is no information from the perturbation cal-
culation.

This region is where the reaction takes place.
The semiempirical potential surfaces are con-
structed for precisely this purpose. Since the

06—

R(@.u)

FIG. 1. Comparison of semiempirical and perturba-

tion potentials. , semiempirical Vj(R); ----,
semiempirical Vy(R); ——+——+——, perturbation
Vy(R); and — .. —— . .——, perturbation V,(R).

semiempirical surface yields a reasonable cross
section for reactive scattering, !® and agrees with
the results of high-energy elastic scattering data,!”
it is likely that the semiempirical calculation is
close to the correct potential.

In the outer region, it is almost certain that the
potential expressed in Eqs. (2.3) is more accurate.
There, the two sets of perturbation calculations
agree with each other. Furthermore, it has the
proper van der Waals attraction, whereas the
semiempirical potential is purely repulsive,

Making use of these observations, we adopt an
analytic potential which agrees with the semiem-
pirical calculation in the inner region and with
the perturbation calculation in the outer region,

It has the form

V,(R)=90.2exp [-0.617R +1,234]/R* - 251.6/R®,
(2. 4a)

V,(R)=92.04 exp[ - 1.87R]-12.92

x exp[-0.26R2-0.39R] (2.4b)

This potential is shown in Fig. 2, together with
the perturbation potential of Eq. (2.3). The outer
region of the potentials is illustrated in Fig. 2(b).
As compared with Fig. 1, the spherical symmetric
part is essentially the same as that of the semi-
empirical potential in the inner region. Due to
the van der Waals attraction, the present potential
is considerably softer for R> 3a.u. It drops to
zero at about the same place (R~6a.u.), where the
perturbation potential does. After reaching a
negative minimum it approaches zero againwith the
appropriate R~® behavior. For R27 a.u., it is
essentially identical with the potential of Eq.

(2. 3a).

The features of the anisotropic term V,(R) is of
particular significance for rotational excitation.
As shown in Fig. 1, V,(R) of the perturbation po-
tential is positive for distances up to R=7.2 a.u.,
while V,(R) of the semiempirical potential is posi-
tive only for very small distances, and for dis-
tances of practical interest (R22 a.u.), it is neg-
ative. Inthe present potential, V,(R)[Eq. (2.4b)]
drops from positive to negative at R~ 2 a.u. es-
sentially in the same way as the semiempirical
potential does. After the minimum, it starts to
rise somewhat more rapidly than the semiempir-
ical potential. At about R=3.7 a.u., it becomes
positive, It reaches a maximum atR =~4.4a.u.
and approaches the perturbation potential Eq.
(2.3b) at R~6.4 a.u. At very large distances
(R27.2 a.u.), the potential of Eq. (2.3b) becomes
negative, while Eq. (2.4b) does not have the same
R7% dependence and stays positive. However, at
such distances, the absolute values of V, are so
small (£10-% eV) that little difference will be made
in the cross section if Eq. (2.4b) is truncated and
the tail of Eq. (2.3b) is joined to it. To compro-
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FIG. 2. Comparison of potentials of present work
[Egs. (2.4)] and that of Dalgarno, Henry, and Roberts
[Egs. (2.3)]. (a) Inner region. (b) Outer region.
Vo(R) of Egs. (2.4); — ——— V,(R) of Egs.
V,(R) of Egs. (2.3);
cie— . .—— V,3(R) of Egs. (2.3).

mise the semiempirical calculation and the per-
turbation calculation, the sign of V,(R) has to be
changed twice in the important range between
R21.6 and R<7.0 a.u. This reversal of aniso-
trophy, as distance of separation increases, is

in agreement with recent theoretical calculations. 2°
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I1I. FORMULATION

To consider the inelastic scattering of a particle
A by a rigid rotator BC, we write the total Ham-
iltonian H in the form

H=H,(R,7)+V(R,T), (3.1)
where H, (R, ) is the noninteracting Hamiltonian
of the free particle and the free rotator. The
plane-wave solutions of HO(R,F) with total energy
E are (normalized to unit density)
, B (), (3.2)
where En is the relative wave vector of the motion
such that

E:(ﬁzkn2/2u)+€n, (3.3)

with 7, and €, the nth rotational eigenfunction and
eigenenergy of BC. The reduced mass of the sys-
tem is denoted as . For the total Hamiltonian

H, the solutions with energy E and outgoing (+)

or incoming (-) spherical-wave boundary condi-
tions are written ¥,'\*t/, and w(- ), respectively;
these functions satisfy the Lippman-Schwinger
integral equations?!

v ) (Bomeic) vy (), (3.4)
n n n

where € is a positive infinitesimal which intro-
duces the appropriate asymptotic behavior.

The differential scattering cross section from
the state » to »’ can be written®?

k

o)~ e 1,4

n, (277m2)? nn (3.5)

’

where Ty, , the transition matrix elements,
are??,238

(+)
Tn,n:(cbn,]vlqrn ). (3.6)

This expression is exact. The functions and the
potential V are known, therefore, the difficulty in
determining T}, 4, and from it oy, ’(k, ) arises in
the calculation of ¥,'"/. Since the exact solution
is not feasible at pre?ent, approximations have to
be introduced. If ¥, +) is replaced by the plane-
wave solution &,’, we obtain the first Born ap-
proximation. However, the Born approximation
would yield very inaccurate results in the ther-
mal-energy range. In view of the strong repul-
sive barrier in the (H, H,) system, it is a better
approximation to replace the total wave function
¥, 't/ by the elastic scattered wave function which
is the incoming plane wave distorted by the spher-
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ically symmetric part of the potential. To take
account of the principle of detailed balancing, the
outgoing wave must be distorted also.?* This can
be accomplished by making use of the fact that the
potential V is naturally separated into a spherical
symmetric part V, and an anisotropic part V'[in
the present case V'=V,(R)P, (cosy)]. Letus de-
note xn(i) to be the solutions of the Hamiltonian
H,+V, that is,

X (i)=¢n+(E—H :l:iE)—lV (i).

- 0 (3.7)

Writing the transition matrix 7, %, in the form
T , =(& ,|V +V'|¥ (+)> (3.8)
nn nt 0 n ’

and using Eq. (3.7) to relate cbn, and Xn(_)’ we
have

T, = x, 7 e v e @)

-{(B-Hy-ie)” 1 Vo Xn'(—)

< (7718, =, g le, )
+<an(_)lV’ I‘I’n(+)>

_(xn,(_)lVo(E-H +i€)” lvqun(‘“)) . (3.9)

0

If we combine the first and last terms on the right-
hand side, 7}, %, becomes

+ie)” 1V]|\11n(+)>

0

(=)
Tn’i’l :<an IVOI[I—(E—H

+(xn,(')lv' [q;n(+)), (3.10)
From Eq. (3.4),
& =[1-(E-Hj+ie)” 1V]\Ifn(+).
Substituting into Eq. (3.10), we obtain
W L AL P T s
(3.11)

For inelastic scattering, the first term is equal
to zero since V, has no angular dependence and
the initial and final rotational wave functions of
BC are orthogonal. Thus,

T, =0 v e ), (3.12)

nn

This is still exact. Now if \I!n(+) is replaced by
xn(+), we obtain the distorted-wave Born approx-
imation (DWBA)

(—) ’ (+)
T, 1, (OWBA)= (x "'|V X, ). (3.13)

It is with this approximation that the present cal-
culation is carried out.

IV. CALCULATIONS AND RESULTS

The problem of elastic scattering from the sym-
metrical potential V(R), alone, is solved with
the usual partial-wave analysis, that is,

T /)
xn+(§,5):[(knR)‘ 1Zl(21+1)z‘le’51 Ul(knR)

X Pl(cose)] nn(F), (4.1)

where Uj(k,R) is a solution of the radial equation

and is normalized asymptotically to

n
)

; 1
Ul(knR)-»sm(knR—zlw +6.7), asvr-wo, (4.2)

l
The phase shifts 5;” are evaluated by the equation

n
tand, = Jl (knRO)/Nl (knR

! )

o> 4.3)
where R, is the node of Uj (kyR); and J; and N
are spherical Bessel and Neumann functions, re-
spectively. The radial equation is solved numeri-
cally by the Runge-Kutta-Gill method. 25 Success-
ive nodes of the radial solution at large distances
are used in Eq. (4.3) until the phase shifts so
calculated agree with each other to the desired
degree of accuracy. To evaluate the matrix
element of Eq. (3.13), we have to do a five-
dimensional integral. Using the additional theo-
rem of Legendre polynomials®® and the properties
of triple products of associate Legendre poly-
nomials,?” we can carry out the angular integra-
tion analytically. However, the radial integra-
tion has to be done numerically. In the present
work, it is done by Gaussian quandratures, 28

The total cross sections for the excitation
H+H,(j=0)-H+H,(j =2) are shown in Fig. 3.
For comparison, the results obtained by Dalgar-
no, Henry, and Roberts,? using the potential of
Egs. (2.3), are also included in the figure. As
is seen, there is a drastic difference between the
two sets of results. At E=0,17 eV, the present
result is smaller by an order of magnitude. As
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FIG. 3. Total cross section of rotational excitation
from j=0 to j=2 as a function of incident energy.
results of present work, ---- results of Dalgarno,
Henry, and Roberts (Ref. 2). Their results have been
reduced by a factor of 10 as shown in the figure.

the energy increases, the difference between the
these two widens further., An interesting feature
of the present result is that the total cross-sec-
tion curve rises to a maximum at about E=0. 12
eV, and then drops slowly to a minimum at about
E=0.24 eV. After that, it rises again. On the
other hand, the cross section obtained with the
potential of Egs. (2.3), as functions of energy,
rises monotomically at all energies.

The differential cross sections are shown in
Fig. 4 for a few incident energies. The predom-
inant feature of these curves is the strong forward
peak. As the energy increases, a small backward
peak starts to appear., These results contrast
sharply with that of Dalgarno, Henry, and
Roberts. Their differential cross sections at
different energies all have the same qualitative
shape, most of the scattering occurring in the
backward direction. This situation of backward
scattering is not changed in the close-coupling
calculations.?

To gain some insight into this behavior, we ex-
amine the individual contribution of each orbital
angular momentum to the total cross section.
From Egs. (3.13) and (4.1), it is seen that the
total cross section can be expressed as

0=25,(21+1)A, .

This is because the Legendre polynomials are
orthogonal.

Since I (in units of 7#) corresponds to the impact
parameter b times the relative momentum P in
the classical picture, and (27 +1) is proportional
to the area between the circle with radius (I +1)

and the circle with radius [, we can interpret
A] to be the relative probability of excitation for
that particular 7,

The Aj’s calculated from the potential of Eqgs.
(2. 4) are shown in Fig. 5; those calculated from
the potential of Eqs. (2.3) are shown in Fig. 6.
These curves can be understood in terms of the
corresponding potentials.

The anisotropic term V,(R) of the potential in
Eq. (2.3) increases monotomically as R de-
creases. The deeper the incoming wave pene-
trates the potential, the larger is the transition
matrix element which is controlled by V,(R).
Because of the centrifugal potential I( +1)/R?, the
penetration is less for larger I. Therefore, the
probability of excitation decreases smoothly as
! increases. It is also clear that for a given 7,
the incoming wave will penetrate deeper and yield
a larger probability of excitation if its energy is
higher. These features are all shown in Fig. 6.

On the other hand, V,(R) of Eqs. (2.4) changes
sign twice., This makes the general behavior of
the A; , which are shown in Fig. 5, dependent on
the incident energy. For E=0.10 eV, the incom-
ing wave first samples the positive portion of V,,
then samples the portion with the negative sign.
The contributions from these two parts have op-
posite sign and compensate each other somewhat.
As I increases from zero, the incoming wave is
pushed outward and away from the negative part
of V,(R). Thus, the probability of excitation in-
creases, After it reaches the maximum, it fi-
nally drops to zero, since any further increase
in ! will put the wave completely outside the re-
gion where V,(R) is nonvanishing. As the inci-
dent energy is increased to E=0. 15 eV, the waves

0.

o®) au.

lo]]

T B T ST SR N

30 60 90 120 1509

FIG. 4. Differential cross sections as a function of
incident energy E. E=0.10eV; — — ——
E=0.15 eV; ==—me—m E=0.25 eV.
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FIG. 5. Probability of excitation as a function of
orbital angular momentum ! calculated from the poten-
tial of this paper [Egs. (2.4)].

with smalll penetrate deeper into the potential
and sample the negative part of V,(R) more, Thus,
the compensation effect becomes more pronounced
and the probability of excitation becomes smaller
instead of larger. As [ increases, A; starts to
rise and, after a maximum, falls to zero as be-
fore. When the energy is further increased to
E=0.25 eV, the incoming wave with 7 equal to
zero penetrates so deep that the contribution from
the negative part of V,(R) overtakes the contribu-
tion from the positive part. Under this condition,
when the waves are pushed out by the centrifugal
potential, the contribution from the negative part
becomes smaller, and closer to the contribution
from the positive part, The net result is that the
probability of excitation is decreased as [ is in-
creased. After it drops to a minimum at I=7T, it
starts to rise again in the same manner as other
curves in the figure,

It is interesting to note that, although the over-
all features of the curves in Fig. 5 are very
different from those in Fig. 6, the corresponding
curves do have similar behavior at large I values.
This is because the potentials in Egs. (2.3) and
(2.4) are almost identical for large distances of
separation,

Froni these probability curves, we can under-
stand both the total cross sections and the differ-
ential cross sections. The curves shown in Fig.
6 indicate that excitations can take place most
easily for head-on or nearly head-on collisions.
Such collisions, because of the strong repulsive
core of the potential, will make the colliding sys-
tem rebound in the backward direction. Thus, in
the c. m. system, we expect to find a backward
peak in the differential cross sections. Further-

more, since the probability increases with in-
creasing energy for all [, the total cross section
should also increase with increasing energy.
These features are exactly what have been found.

The situations shown in Fig. 5 are quite differ-
ent. The maximum probability of excitation does
not occur at /=0, but at some other I, This cor-
responds to the scattering with some impact
parameter b (b=17/p, where p is the linear mom-
entum in the classical picture). Assuming the
particles will continue their journey after the
excitation has taken place, we will find a forward
peak. These forward peaks in the differential
cross sections are shown in Fig. 4. When the
energy is increased to £=0.5, a secondary
maxima appears at /=0 in the probability curve,
This maxima corresponds to the small backward
peak in the differential cross-section curve for
E=0.5 in Fig, 4. We expect this backward peak
to grow as the energy is increased further. The
total cross section of excitation, calculated from
the potential of Eqs. (2.4), increases at first, as
the energy is increased. After it reaches the
maximum, the compensation effect of the positive
and negative part of V, becomes so strong that the
total cross section starts to decrease. Then the
negative part overtakes the positive part, and the
cross section starts to rise again. Thus, the total
cross-section curves shown in Fig. 3 are not un-
expected. The reason the cross section calculated
from the present potential are much smaller than
those calculated from the perturbation potential is
that the anisotropy V,(R) is much smaller in the
present potential.

06

03

[ENENETE SRS R
5 10

FIG. 6. Probability of excitation as a function of
orbital angular momentum ! calculated from the per-
turbation potential [Egs. (2.3)].
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V. DISCUSSION

The distorted-wave approximation has been put
into a variety of mathematical forms by many
authors, ! although in essence they must reduce to
the form of Eq. (3.13). Most existing calcula-
tions of rotational excitations 2°s3° are carried
out in the formalism of Arthurs and Dalgarno,?®
who expand the cross section in terms of the total
angular momentum of the system. Without argu-
ing the advantage or disadvantage of methods we
simply evaluate the transition matrix of Eq.

(3. 13) with the potential [Egs. (2.3)] that was
used in the study of (H, H,) excitation by Dalgarno,
Henry, and Roberts? with that formalism. The
total cross sections obtained with the present pro-
gram agree well with their results. The differ-
ential cross sections also have very similar be-
haviors as theirs. (There are typographical
errors in all their figures. Although the cross
sections are labeled in the units of f\z, the curves
do not sum up to the values reported in the text.
Nor is there a single scaling factor which can nor-
malize all the curves in each figure to the re-
ported values.) This can be seen by multiplying
(27 +1) to each Ivalue in Fig. 6. The resulting
curves have the identical shape as their Fig. 1.
Therefore, it seems that there is no advantage of
one method over the other, as far as numerical
results are concerned.

The distorted-wave method will fail when the
elements of the scattering matrix is large com-
pared with unity. This particular problem has
been investigated by Allison and Dalgarno? with
a close-coupling calculation. They used the po-
tential of Eqs. (2.3). It is found that the depar-
ture of the distorted-wave scattering matrix from
unitarity becomes serious above energies of 0. 15
eV. The error of the distorted-wave approxima-
tion increases with increasing energy, at 0.25 eV,
it overestimates the cross section by 50%. How-
ever, with the potential proposed in the present
work [ Eqs. (2.4)], the elements of the scatter-
ing matrix are much smaller. As seen in Fig,

3, the total cross sections for E> 0. 15 eV obtained
with the potential of Eqs. (2.4) are smaller than
those obtained with the potential of Eqs. (2.3)

by more than an order of magnitude. Therefore,
the distorted-wave approximation may still be
very accurate with the present potential. In any
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case, the inaccuracy of the method is far less
than that caused by the uncertainty of the poten-
tial,

For (H,H,) excitation, there is a contribution
from the rearrangement process. Since the
three hydrogen atoms are indistinguishable, the
wave function must obey the Pauli exclusion prin-
ciple. Although this contribution can be included
by the appropriate antisymmetrization proce-
dure, 18 it is neglected because the cross section
of rearrangement scattering is very small, 18

Both the total and differential cross sections of
our calculation are drastically different from
those of the previous works. This means that
many relaxation processes including the cooling
of the interstellar clouds in regions of neutral
hydrogen should be reevaluated. Equally impor-
tant, it suggests that measurements of the rota-
tional excitation would yield useful information
about the all-important H, potential with three
particles at small distances of separation. This
information is essential for a clear understanding
of the fundamenal exchange reaction (H+H,~H,
+H). The elastic scattering is dominated by the
potential tail in the outer region. The reactive
cross section (if it is obtainable directly from
beam experiments) would be too small to be inter-
preted unequivocally. Therefore, an experimental
study of both the total and the differential cross
sections of the inelastic scattering of this system
is extremely interesting.

It must be pointed out, however, that the rigid
rotator approximation of the molecule is but a
zeroth-order approximation. To some extent, the
initial molecule adiabatically follows the incoming
atom. !” There is some exchange of energies
among various degrees of freedom, with the mole-
cule stretching and turning toward the incoming
atom. The effects of adiabaticity on excitation
cross sections are now under investigation.
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Total first Born-wave excitation cross sections are calculated for He(1lS) + H(1s) — He (28,
3ls, 413, 515‘, 21P, 31P, 41P, 3'p, 41D, 5!D) + H(Z) over the energy range 1.0 keV to 1.6 MeV.
The highly accurate numerical generalized oscillator strengths of Kim and Inokuti and of Bell,
Kennedy, and Kingston are used to describe the projectile excitations. The complete summa-
tion over target final states if performed both exactly by use of the analytic generalized oscil-
lator strengths and approximately by use of the closure relationship. The results are com-
pared with available experimental data and previous calculations, and the discrepancies are
discussed. The differences between results calculated by summation over all the target final
states and those calculated by the assumption of closure are also discussed.

I. INTRODUCTION

Paper I' suggested that first Born-wave direct
inelastic cross sections be calculated by the use
of elastic and inelastic x-rayformfactorstodescribe
the target and theoretical or experimental general-
ized oscillator strengths to describe particular

excitations of the projectile or target. A number
of excitation and ionization cross sections for
atomic hydrogen H in collisions with various tar-
get gases were calculated and compared with ex-
perimental data in order to demonstrate the ef-
fectiveness of a form-factor description of the
target atom. Similar first Born calculations have



