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Field Inhomogeneity in Electroreflectance*
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A criterion for the validity of the uniform-Geld approximation in electroreflectance experiments is de-
rived and discussed. lt is shown that a proper choice of impurity concentration can minimize the inhomo-
geneity for a given magnitude of the electric field. Using germanium as an example, the optimum doping
levels are given for various values of the electric Geld. These optimal impurity concentrations minimize the
mixing of the real and imaginary parts of the change in the dielectric function with electric field, so that the
observed line shapes can be easily interpreted. The results show that the uniform-field approximation can
he used with electric tields as high as 10 V/cm, provided the proper doping levels are used.

I. INTRODUCTION

HERE has been much discussion in the literature
concerning the correct interpretation of the line

shapes observed in electroreflectance (ER) by Aspnes
and Frova' and others. ' Since the electric field in the
space-charge region of a semiconductor surface varies
with the distance from the surface, so does the dielectric
function. The reflection of light from a surface region
where the dielectric function varies with distance has
been discussed by Aspnes and Frova. '

The results' ' show that for near-intrinsic Ge at
certain wavelengths and fields, the dielectric function
may vary rapidly enough over the penetration depth of
the light to cause the change in reflectance due to the
application of an electric field to be significantly differ-
ent from that due to a uniform field. However, in this
paper we will show that for the magnitude of the
electric fields used, there are samples with certain im-

purity concentrations or doping levels which will give
line-shape results very close to the uniform-field ap-
proximation. It will be shown that for each value of the
electric field there is an ideal doping level. The results
will be presented in terms of a product of the fractional
change in the electric field over an effective penetration
depth times a factor determined by the electric field

dependence of A~. Experimental line shapes as well as
the one-electron line shapes' will be discussed.

II. DISCUSSION

Aspnes and Frova' have recently shown that in a
modulated reflectance experiment, mixing of the real
and imaginary parts of the modulated dielectric con-

stant can occur due to a nonuniform perturbation over
the penetration depth of the light. In particular, the
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measured he denoted by (Ae) is given by
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where E = 27r(ts+ik)/X, s, is the surface coordinate, and
he(s) =he(8(s)) is the spatially dependent change in
the dielectric constant with field. Aspnes and Frova
mention that a field inhomogeneity can strongly modify
the ER line shape even when the uniform-field ap-
proximation would appear to be valid. We would like to
clarify this remark and point out the conditions for
validity of the uniform-field approximation.

In reality what one wants is a "uniform perturbation"
of the dielectric constant over the penetration depth of
the light. Because ~ may vary more rapidly as a function
of distance from the surface than does the electric field
8, an approximate uniform field does not always imply
an equally good approximate uniform perturbation. To
obtain a relation between the two, consider Eq. (1).
Expanding he(s') in a Taylor series about s„we have
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where y=s' —s, and Ae™-Ld(he)/ds ]s,. Upon inte-
gration we have
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(ae) =Z.(s.)l 1y P
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If the perturbation is uniform, all derivatives of Ae
vanish and (Ae) —+ Ae(s,). The uniform-perturbation
approximation requires that the sum in large parentheses
be small compared to 1. To show that we may ap-
proximate this sum by the first term, consider the
following example. Let de(s) ~e™,where a may be
complex. Then Ae( ) (s,)/Ae(s, ) =a and
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sorption coefficient, we can neglect the terms for m& 1.
Physically this means that the wavelength 1i/u or the
penetration depth 1/n of the light must be small com-
pared to the distance in which the perturbation changes
significantly, which is given by 1/

~

a
~

.We thus have the
result that even if the light penetrates to large depths,
when n is small, variations in A~ will be averaged out by
the rapidly oscillating factor e " ""'"in Eq. (1) pro-
vided 1i/u&(1/~ a I.

For perturbations of the type such as given in the
above example, only the first term in the sum of Eq. (3)
will be important. In order to obtain the uniform-
perturbation approximation this first term should be
small compared to unity. Thus, if the quantity

1 d(De)/ds
(5)

the ER signal can be treated as coming from a uniform
perturbation, which is identical with the criterion given

by Aspnes and Frova. ' This is just the fractional change
in Ae over the distance 1/~2%I. The same result is
obtained by keeping only the first-order term in the
Taylor-series expansion of Ae(s') in Eq. (2).

Equation (5) may be written

1 d ln8 d ln5& «1.
i2E'i ds „d luau „ (6a)

sinhl g —sinhlg
EI ID E(us, ua)

(7)

where

F(us, u~) =%2L(u~ —us) sinhuii+coshus —coshuii]'",

I.~ is the intrinsic Debye length, N8 is the surface
potential, and u& is the bulk potential in units of kT/q.
Of the three factors in Eq (6), only Ri can be minimized

by adjusting the impurity concentration (u&) of the
sample for a given field. Both E and R2 are determined

by the field and photon energy.
In Fig. 1, logEi is plotted versus log 8 for four different

sample dopings. For the N~ =6 sample, we have plotted
logRy for both the accumulation and depletion space-

K. Zaininger, in Field Egect Transistors, edited by J.%allmark
and H. Johnson (Prentice-Hall, Inc. , Englewood Cliffs, N. J.,
1966), p. 24.

6A. Many, Y. Goldstein, and N. 3. Grover, Semiconductor
Surfaces {North-Holland Publishing Co., Amsterdam, 1965),
p. 139.

That is, the condition for the uniform-perturbation
approximation is

(1/~ 2Z I)Z,Z~&1, (6b)

where Ri ——~d lnh/ds~ and E2= Id 1nke/d in'~. While
R2 depends on 8 and her through the functional de-
pendence of he(b, A&a), Ri depends only on the fractional
change of field with distance. From standard textss ' we
have that

IO
7

IO
6

luff'

It

K
IO

Ue=e

PLETION

IO

IO

I

IO

I I I

IO IO IO

ELECTRIC FIELD 6

1

IO

FIG. 1. E1 versus magnitude of surface electric field G for four
values of impurity concentration for Ge at 300 K. Except for the
N~ ——6 curve, only the depletion region is shown. Curves can be
used for n- or P-type material. Points A—C indicate the fields above
which it is better to use a sample with the next higher doping level
shown.
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Fzc. 2. Optimum doping e~ versus electric 6eld g for germanium
at room temperature. Ej is given at three points.

charge regions. We note that for a given
~
S~, Ei is

always greater for accumulation than depletion. Thus
the line shapes in ER experiments will always be better
when obtained from depletion layers. Because of the
diferent values of Ei. for accumulation and depletion,
the line shapes will not necessarily be of the same form
on either side of Rat band unless the fields are less
than 10' V/cm.

The second and most important feature of Fig. 1 is
that only for intrinsic material does increasing the field
always result in a larger R& and consequently a more
nonuniform field over a given depth into the semi-
conductor. As the doping level is increased, Ri as defined
in Eq. (7) has a minimum at higher and higher fields.
From Fig. 1 it can be seen that for a given 6eld there
will be an optimum doping level. Figure 2 shows the
optimum doping versus field. All other doping levels will
give larger R~'s at the given field. Since the optimum
experimental conditions require Ej to be as small as
possible, it is clear that by proper choice of doping level,
one can go to higher 6elds with less inhomogeneity with
extrinsic material. Consider, for example, the four
doping levels shown in Fig. 1. For fields larger than the
field corresponding to point A, a sample with N~ =3 has
a smaller value of R~ than intrinsic material. Likewise,
for fields larger than the field at point 8, R~ for a sample
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TABLE I. Optimum values of A/I2E I
for various doping levels

and photon energies in germanium at 300'K.
TABLE III. If&/ I 2' I for germanium at 2 2.eV using a sample with

an impurity concentration of ED = 1X10"/cm (I~=6).

Doping level

Ea =5 X10'4/cm'
(us=3)

Eu = 1X10"/cm'
(me =6)

Eg) ——2 X10"/cm'
(NB=9)

3 1X10'

2.2 X104

1.2 X10'

0.063 0,018 0.01

0.165 0.048 0.027

0.56 0.16 0.09

Optimum field +&/ I

(V/cm) 0.8 eV 2.2 eV 4.0 eV
Field

(V/cm)

0.5X104
1.1X104
2 2X104
3.1X10'

Rg/I 2E'I

0.15
0.10
0.048
0.20

TABLE II. Rr/I 2E
I

at 2.2 eV in germanium at 300'K.

Field
(V/cm)

fir/I21t
I

Optimum
dopIngIntrinsic

Improvement
ratio

6.5X103
3.0X104
2.5 X10'

0.11
0.53

0.033
0.063
0.21

3.3
84

21

!' Y. Hamakawa, P. Handler, and F. Germano, Phys. Rev. 167,
709 {1968).' K. Shaklee, J. Rowe, and M. Cardona, Phys. Rev. j.74, 828
(1968).
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with u& ——6 is always less than R& for u& =3 or u& =0.
Beyond the field at point C, n~ ——9 is superior to the
three lower doping levels. At the minimum of the N~ ——9
curve, which occurs at h=1.3X10s V/cm, Ri is ap-
proximately 14 times smaller than E& for intrinsic
material at the same Geld. YVhile it should be empha-
sized that each 6eld has a different optimum u~, for
practical purposes, a given doping can be used over a
range of fields.

The factor E2 depends on the form of the line shape as
a function of the photon energy and electric field.
Experimental observations~ at the direct edge and
above have shown that a strong excitonic component is
present in all line shapes. However, since there are no
explicit expressions which can be used for the exciton,
we have calculated E2 for the one-electron line shapes'
used by Aspnes and Frova in their calculation of (he).

Wefind

that

R depends only on tf where tf = pun Fg)/h0-
and 8= [(eh)'/2ph]'". For —3(rf(1.5, that is, close to
the critical point, Rs(tf) is of the order of unity. For
q& 1.5, E2 increases monotonously to about 10 at p =4.
Actually any thermal broadening will reduce E2, so that
these values represent an upper limit for the one-
electron theory. Therefore, assuming R& 1, the uni-
form-perturbation approximation will be valid when
R /~2iE~&(1 in regions near the critical point. For
p) 1.5, increasing inhomogeneity should be observed.
From Fig. 2 of the work of Aspnes and Frova, ' we
estimate that with Rs 1, Rt/~2E~ 0.1 is a rough

upper limit for the validity of the uniform-perturbation
approximation.

In Table I we have given Rt/ ~2E
~

at 0.8, 2.2, and
4 eV for Ge at three different fields corresponding to the

minima of the N~ ——3, 6, and 9 curves of Figs. 1 and 2.
This quantity is the fractional change in the electric
field over an "effective" penetration depth. The efI'ective
penetration depth 1/~ 2E~ =$(4se/)t)'+n') '' —

may be
much smaller than the actual penetration depth 1/n if
'A/tt is small enough. For example, in Ge at the funda-
mental edge, 1/n 3X104A while 1/~2E~ —400 A.

From Table I and Fig. 1, we see that for fields of the
order of 3.1 X10' U/cm a doping level of uB ——3 will give
the uniform-perturbation approximation at the direct
edge in Ge. At higher fields ()2X104) both intrinsic and
extrinsic samples give Ri/2

~

E
~

)0.1 at the direct edge.
At higher energies where the effective penetration depth
is smaller, larger fields are possible with other doping
levels.

Table II gives Ri/~ 2E( at 2.2 eV for the fields used
by Aspnes and Frova' in calculating (Ae) for intrinsic
Ge. Also given are the optimum values of Ri/

~
2E

~
for

the same fields found by interpolation of the minima of
Fig. 1.For an experiment conducted at field strengths of
8=6.5X10', 3X104, and 2.5X10 V/cm, Table II
indicates that the inhomogeneity in intrinsic Ge is
approximately 3, 8, and 21 times worse, respectively,
than that for the optimum dopings. It should be obvious
from the figures and Table II that there will be large
mixing effects when one uses intrinsic Ge over such a
wide range of fields.

III. COMMENTS

Ke have shown that by proper choice of doping level,
one can minimize the inhomogeneity for a given magni-
tude of the surface field. While RtRs/~2E~ cannot be
made &0.1 for certain fields and photon energies, the
improvement in the line shapes in such cases should
still be signidcant.

Since it is difficult for an experimentalist to use a
large variety of samples, Table III gives a few points
from the N~ ——6 curve of Fig, 1, and shows the range
over which the uniform-perturbation approximation is
satisfied near a critical point.

We also note from Eq. P) that Ri is proportional to
the differential space-charge capacitance'0

g dg80 Kep IF(N8)Q+)
C„= = IcepRi. (8)

/er d(es —&B) I.n dls
'o Reference 5, p. 27.
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A measurement of the minimum in C„at zero current
locates the minimum in E.1 and thus the optimum field.

For other semiconductors or germanium at other
temperatures the dielectric constant ~ and the intrinsic
carrier concentration e; will be different. Figures 1 and 2

can still be used with the following scale changes:

Rl(~,rt;, 7) =Et(Ge, 300'K) X (1.38X 10 ') X (rt,/aT)'",

h, (a,rt;, 2') = h, (Ge, 300'K) X (4.63X10 ') X (rt 2'/tc)'",

where it=16 and rt; =2.5X10'/cm' for Ge at 7=300'K.
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de Haas —van Alphen Effect in AuGa2
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New de Haas —van Alphen data on the metallic fluorite compounds AuGa2 and AuIn2 are presented.
Several new frequency branches have been observed, including two in AuGa&, which are tentatively ascribed
to electrons in the fifth zone. The results are in general agreement with recent theoretical calculations by
Switendick, which predict that the second zone is full in AuGa2.

' 'N what has recently been termed "the AuGa&
~ dilemma'" it has been observed that, of the three

metallic compounds AuA1~, AuGa2, and AuIn2, which

have the fluorite structure, AuGa2 shows anomalous

properties in the magnetic susceptibility, Knight shifts,
nuclear spin-lattice relaxation rate, and thermoelectric
power, ' whereas the de Haas —van Alphen (dHvA) re-
sults' to date show a remarkable similarity between the
three Fermi surfaces and the nearly free-electron (NFE)
model. More recently, superconducting critical points,
heat capacities, and magnetic susceptibilities of AuGa2

and its dilute alloys with palladium have been studied, 4

and further measurements on nuclear-magnetic-reso-
nance measurements have been performed. ' Switen-
dick' ' has performed augmented-plane-wave calcula-
tions of the band structure of these compounds and has
proposed that some of the above anomalous properties
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may be related to his result that, of the above three
compounds, the second band is full only in AuGa2.

In this note we present new dlvA data observed in
high-resistance-ratio ( 700) AuGas crystals using high

(up to 95 kG) magnetic fields. Previous dHvA data are
con6rmed, and the new data are consistent with the
interpretation that in AuGa2 the second band is fully
occupied at 4.2'K. Furthermore, there is strong evi-
dence for the existence of a 6fth-zone surface which is
predicted by Switendick's calculations.

In Fig. 1, we show the third and fourth zones of the
(NFE) model, ' along with the extremal cross sections in
the principal crystallographic directions. In Fig. 2, we
show the experimental results for II in the (110),for the
areas of the smaller extremal orbits, and in Fig. 3,
results for all orbits in (100) and (110) compared with
the results of StaQeu and van't Hof-Grootenboer' for
AuIn~ for a sample with a much lower residual resistance
ratio. Areas are measured in terms of (2sr/a)' through-
out, where a is the lattice parameter. We have assigned
areas to orbits according to the NFE labels in Fig. 1. In
addition to results which confirm those of Jan et ttl ,

' we.
present the following new data: (a) the assigned arms
83 84 C3, and A 3, which confirm the essential one-to-

'M. D. StaQeu and A. E. van't Hof-Grootenboer, in Pro-
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son, and D. M. McCall (University of St. Andrews Printing Dept. ,
St. Andrews, Scotland, 1969), Vol. 2, p. 1133.


