Free-Carrier Radiation Peak in GaAs Due to Valence-Band Maxima Arising from Terms Linear in k

M. A. GILLEO AND P. T. BAILEY Monsanto Company, Saint Louis, Missouri 63166 (Received 22 May 1969)

A new peak has been observed 0.4 meV above the direct band-to-band-transition radiation at 1.5202 eV in the 1.4°K photoluminescence spectrum of high-purity epitaxial GaAs. This new peak is attributed to the recombination of free electrons of nonzero \mathbf{k} with free holes in the linear-k valence-band maxima, which are estimated to be $\approx 3 \times 10^5$ cm⁻¹ away from and $\leq 1 \times 10^{-4}$ eV above the k=0 maximum.

MPROVED experimental technique has resulted in $\mathbf{I}_{\text{the observation of a radiation peak additional to}}^{\text{MPROVED experimental commuted}}$ those already reported¹ for low-temperature (1.4°K) photoluminescence in high-purity GaAs.² The signalto-noise ratio of the detector system has been increased by cooling a photomultiplier of smaller photocathode area (RCA C70102B) with liquid N₂ instead of solid CO_2 .

The new peak L is observed about 0.4 meV above the line $E_G = 1.5202$ eV ± 0.3 meV, which we previously identified¹ with the direct band gap at Γ (Fig. 1). That L is not due to a splitting of the free-carrier line by a residual strain is demonstrated by its observation at the

FIG. 1. Near-band-gap photoluminescence spectrum of high-resistivity GaAs (619940-5) at 1.36° K with 0.15-meV resolution. A neutral optical density 1 filter was present in the illuminating beam.

¹ M. A. Gilleo, P. T. Bailey, and D. E. Hill, Phys. Rev. 174, 898 (1968). ² The GaAs was supplied by F. V. Williams and K. L. Lawley.

same position, both absolute and relative to E_G , in different samples. The possibility that L, rather than E_G , should be identified with the direct gap at Γ is ruled out because the remaining intrinsic lines observed, which must be free-excition lines, do not yield a hydrogenic energy spectrum relative to L, whereas they do relative to E_{G} .¹

We believe that L arises from the recombination of free electrons of nonzero \mathbf{k} with free holes in the linear-kvalence-band maxima. Most of the energy difference between L and E_G is attributed to the large curvature of the conduction band ($m_e^* \approx 0.066$). Neither the position k_m nor the energy ϵ_m of a [111] linear-in-k maximum in GaAs is known, but they are expected to be smaller than the corresponding values $k_m \approx 3.8 \times 10^5$ cm⁻¹, $\epsilon_m \approx 1 \times 10^{-4}$ eV for InSb,³ since^{4,5} $k_m \sim \Delta_{so} a/Z$ and $\epsilon_m \sim (\Delta_{\rm so} a/Z)^2$. Here $\Delta_{\rm so}$, a, and Z denote, respectively, spin-orbit splitting of the valence bands, lattice parameter, and atomic number. From our data, we can estimate k_m in GaAs if we assume first that $\hbar^2 k_e^2/2m_e^*$ ≈ 0.4 meV, i.e., $\epsilon_m \ll L - E_G$, and secondly that $k_e \leq k_m$ $< k_e + k_{h\nu}$, where e and $h\nu$ indicate electron and photon, respectively. We choose the latter inequality rather than $k_e + k_{h\nu} = k_m$ because $k_{h\nu}$ affects the position of both the E_G line and the L peak, not just the position of L alone. Taking the refractive index of GaAs as ≈ 3.5 , we find $2.6 \leq k_m < 5.3 \times 10^5$ cm⁻¹. Since this estimate is of the right order, it follows that $\epsilon_m \lesssim 1 \times 10^{-4}$ eV for GaAs.⁶

⁸ C. R. Pidgeon and S. H. Groves, Phys. Rev. Letters 20, 1003 (1968)

⁴G. Dresselhaus, Phys. Rev. 100, 580 (1955).

⁵ E. O. Kane, J. Phys. Chem. Solids **1**, 249 (1957); in Semi-conductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic Press Inc., New York, 1966), Vol. 1, p. 95. ⁶ W. E. J. Pinson [Bull. Am. Phys. Soc. 14, 417 (1969)] has

studied intervalence-band infrared absorption in GaAs whose acceptor concentration was $N_A = 2.5 \times 10^{16}$ cm⁻³, much higher than that of any of our samples. Pinson concluded that $k_m \approx 5 \times 10^6$ cm⁻¹ and $\epsilon_m \approx 5 \times 10^{-3}$ eV.