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Polarons Bound in a Coulomb Potential. I. Ground State*
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Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173
{Received 29 May 1969)

We introduce a trial function for the ground state of a polaron bound in a Coulomb 6eld which yields,
in the experimentally important ranges of Coulomb binding and polaron coupling constant e lower energies
than have previously been reported. In distinction from earlier calculations, our ansatz gives, additionally,
the correct polaron mass renormalization in the weak-binding —weak-coupling limit. For the very weakly
bound polaron, our trial function is not continuous in n, a discontinuity occurs at 6.25 &n &6.5. We speculate
that this discontinuity is associated with a long conjectured breakdown of perturbation theory for the
free-polaron ground state near a=6. Methods for evaluating the perturbed bound-polaron ground-state
energy for weak coupling are discussed.

INTRODUCTION

N electron bound to a hydrogenic impurity center
~

~

~ ~ ~

~ ~

~

in a polar lattice will experience, in the effective-
mass approximation, not only the screened central
Coulomb attraction of the impurity but also additional
forces due to the lattice polarization charge induced by
the electron. Such bound systems are customarily
treated by invoking the Born-Oppenheimer approxi-
mation, in which one assumes that the electron-lattice
wave functions have the product form

where P, depends only upon the electron coordinate r,
and 41., the lattice-wave function, is independent of r.

We know, however, that a free slowly propagating
electron in a polar lattice carries lattice polarization
along with it, and that the mean value of the induced.
lattice polarization at some point rg is a function of
rl. —r. ' Wave functions of the form (1) clearly could
not describe such a situation. We expect, therefore, that
(1) will not accurately describe cases in which the elec-
tron is only weakly bound to the impurity center (either
because the binding potential is weak or because the elec-
tron is in an excited state of large radius). In such cases
the electron barely knows that a potential is present
and should carry along lattice distortion as it traverses
its orbit, much as a slow freely propagating polaron
does.

A major purpose of the present paper is to investi-
gate the accuracy of the adiabatic approximation (1)
for describing the ground state of the Frohlich Hamilton-
ian with a Coulomb potential added. Taking P,(r) to
be the Coulomb iS state with Bohr radius optimized
variationally, we vary Cl. to produce minimum energy.
We expect the energy so obtained, EPA, to lie only
slightly higher than the lowest energy attainable from
the product ansatz (Born-Oppenheimer) wave function

(1) when the Coulomb Rydberg divided by the LO

* Work sponsored by the U. S. Air Force.
' See, for example, Frolich, Pelzer, and Zienau, Phil. Mag. 41,

22I (1950). The result obtained on p. 232 there is essentially
correct well beyond the weak-coupling regimen((j. , but is probably
not valid for n~6.

phonon energy is not much smaller than the electron-
phonon coupling constant n. Various wave functions
are introduced to compete with (1), the most general of
which has enough parameters so that it not only can
assume the form (1) but also can describe accurately
the motion of an almost-free slow polaron in a 1S
orbit.

Using this wave function we have made a numerical
study of the self-trapping of a polaron in a fixed, ex-
tremely weak Coulomb Geld. We 6nd that for small n
the radius of the ground-state wave function is pro-
portional to (Ry) 'ts as in the hydrogen atom and is
therefore very large. However, when n exceeds a certain
critical value ( 6), the wave function cbrstptly shrinks
(self-traps) to an orbit radius which is determined es-
sentially by n and not by Ry. Ke are clearly observing
in the language of polaron theory a sudden transition
from the weak coupling to the strong coupling form of
the polaron wave function.

Results of Buimistrov and Pekar (BP)' and Platz-
man, ' the two previously published variational calcu-
lations, are discussed and compared to our best energies;
the BP ansatz turns out to be a special case of the wave
function used here.

We begin by discussing brieQy two approaches for
evaluating the simplest perturbative expression for the
ground-state energy of an electron bound in a Coulomb
Geld and interacting only weakly with the LO phonons.
Although unable to obtain an energy expression valid
for all Ry even in this limit, we suggest that Platzman's
lowest-order result for small Ry is correct and indicate
a calculational procedure which might be useful for
large Ry.

PERTURBATION THEORY

The Frohlich Hamiltonian for an electron in the con-
duction band of an ionic crystal acted on by an at-
tractive Coulomb center can be written in dimensionless
form [energy in units of the optical-phonon energy ttco,

2 V. M. Buimistrov and S. I. Pekar, Zh. Eksperim. i Teor. Fiz.
32, 1193 {1957}LEnglish transl. : Soviet Phys. —JETP 5, 9'M

(~957)g.' P. M. Platzman, Phys. Rev. 125, 1961 (j.962).
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length. in units of ro= (k/2m'&)'i' where m= band mass7, jectured that

lim ( DE—2) =8"+0(R') .
A~0

H =H p+IIi,
H p P' ——P/r—+Q Ni„

(&
—ik rg t+ e~k. rg )

(2)

p'/4= E= Ry/optical-phonon energy = me'/2eo'Ii'co,

p„= (47rnro'/0) '"1/k, nk bg"bk, —— —n —(1+-',n)R,

Comparison of 8' with the variational results to be
described suggests that lV is not a particularly accurate

where, using notation slightly different from Platzman's, approximation to —DE2 even for E as small as 0.1. A
much better approximation to the variational ground—
state energy for 0.(1 and 8&4 is

and 6k~ is the creation operator for a I 0 phonon of
wave vector k.

From (2) it is clear that the eigenvalues of H can be
regarded as functions of the two dimensionless parame-
ters E and n. In order to gain some insight into the g
dependence of the ground-state energy, EGH, for small

0,, we Inight try to calculate RGB from second-order
Rayleigh-Schrodinger perturbation theory using H& as
a perturbation on the eigenfunctions of II0. This pro-
cedure, found successful in obtaining an accurate
ground-state energy in the free-polaron ca.se (R=O)
for 0.& 1, would be expected to be quite accurate for E/0
in the same range of e. Denoting the unperturbed levels

of an electron in a Coulomb Geld by E„, we obtain for
the lowest-order shift in the ground-state energy

EGS =Eo+~E~
&

g
—ik r —=Q.lf() l~.&. (9)

which is just the simple weak-coupling effective-mass
result.

Finally, we note that the expansion (4) leads to the
upper bound

—AE2(n(1+ —',E)

erst derived by Platzman. As inight be expected (5)
and (8) do not bracket —AE, very closely for E)1.

A second method for evaluating (3) is based on the
procedure adopted by Dalgarno' and co-workers for
calculating the perturbation of hydrogenic levels by a
weak external potential. The idea of the method as
applied to evaluating (3) is to find a function f(r) such
that for all intermediate states

I p„&W I $0&

IM„o(k) I'
&E~= —Z Z

m E„—ED+1

~.0(k) = v~g„l e-""I@0&,

Eo= —E, (i' —e/) I~-&=E-I~.&

(3)
Once f(r) is found, (3) is evaluated immediately using
completeness; we obtain

~E2= —8 oI ~ '"'f(r) I@o&+&&oI f(r) l&o&&col ~ "'leo&
-l&~ l~-"'l~.&l'/' (1o)

and the sum is over both discrete and continuum inter-

mediate states.
Unfortunately (3) appears to be extremely difficult

to evaluate exactly. Platzman attempted an approxi-
mate evaluation by replacing the energy denominator
in (3) by an expression obtained by itera, ting the
identity

The partial-differential equation satisfied by f(r) is
obtained by observing that for n/0

«-—E.)Q-If(r) I@.&= 9-II (11.—2 ~.), f(r)7lyo&
= &O-I (—~'f(r) —»f(r) &) lko),

so that multiplying (9) by E„—Eo+a and using the
fact that I&0)=const&&e i'"", we obtain

E —Eo—k'( 1
(4)

k'+ a EE„Eo+a—
8f(r)

(4. I
~'f( )+rP —+af(r) l&o—&=—(&.l~ '"'I&o&.

Br

and then truncating to remove the term containing the
factor 1/(E„—ED+a). (The constant a in our case

equals I..)
Following this procedure, one can establish the

inequality4
—AEg) W= n(1+ -,'-E —-',E'),

where AE2 is the exact correction to the unperturbed
ground-state energy, —E, in second-order Rayleigh-
Schrodinger perturbation theory. Platzman has con-

' The expression for 8' given by Platzman has the wrong sign
for the R' term.

This equation is satisfied for all n if

8f(r)
~'f( )+r& -+af(r) =~ "'

l9f

Thus, in the Dalgarno approach we substitute the
problem of solving (11) for the problem of summing (3).
Unfortunately, (11) itself appears to be difficult to
solve exactly, although one can hope that replacing

'A, Da]garno and J. T. Lewis, Proc. Roy. Soc. (London) 233,
$0 (1955).
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e '"' by the 6rst few terms in its partial-wave expan-
sion might suffice for large R.

Bajaj and Clark' have suggested an approximation
for small R.

Having pointed out the computational difficulties
presented by even a lowest-order perturbative calcu-
lation of the ground-state energy of H, we turn now to
variational methods.

value p and
exp( —ir Zknj, )p(p)e'&' (15b)

(16)

is the exact free-polaron wave function expanded in
powers of p to order p' (e'&' is not expanded). x„(r)
satisfies

VARIATIONAL CALCULATION

It has been known for a long time that a trial func-
tion of the form (1) can give an excellent free-polaron
ground-state energy for n))1. One expects that even for
small n, (1) would also be excellent if R»1. The argu-
ment is that for R))1, the electron is tightly bound and
moves very rapidly in the Coulomb well —too rapidly
for the lattice to follow the instantaneous position of
the electron. In that case it would seem sensible to
take P,(r) in (1) to be the normalized Coulomb ground-
state wave function

Making this substitution in (1), and minimizing the
expectation value of H with respect to both the lattice
wave function C z and the variational parameter pa after
having integrated over I' in the expectation value gives

~r zk nay (p) &~y r (18)

with m*/m being the ra, tio of the polaron mass to the
band mass. Physically, (15a) represents a weakly
bound polaron moving in the orbit prescribed by (16).

Although, even a weak Coulomb potential (R((1)
is not slowly varying near the Coulomb center, the
perturbation results (5) and (6) suggest that, exercising
some caution, we might usefully attempt a trial func-
tion of the form (15a).

Our choice of P(p) is the form erst introduced by
Haga:

pa(p) = ULs(fA) [1+&A(P)4'j
~
0),

where fI,= —vq/1+O'. While (17) does not produce an
exact free-polaron wave function when @n(p) with

d~(p) optimized variationally is inserted for p(p) in
(15b), we have shown that the resulting wave function

where

= (p 3/8~)&i2& Ps~i&@-

Epg = —R—Sn/16 (2R'i2+ —'n)

and
exp LZFI, (bl,t —bq) j,

pa= p+8~

ULs(Fq) is the linear shift transformation

(13)

(14)

yields a ground-state energy of —n, an effective mass,
mzz*/m = (1+—,', n)/(1 —~', n) and a realistic energy-
momentum relationship for the polaron. ' In these latter
two respects the Haga wave function is superior to the
better known ansatz of Lee, Low, and Pines. "

Although our prescription calls for expanding @II(p),
and therefore d~(p) to order p', it turns out to be suK-
cient to expand dq(p) only to order P to obtain from (18)
the variational energy E~(p) given by

We remark that for n))R a better trial function of the
form (1) could be obtained by replacing the right-hand
side of (12) by a function which cuts off more rapidly
at large r (a Gaussian, for example).

For small R and n, we note that (13) does not ap-
proach the weak-coupling —weak-binding result (7),
conjectured by Platzman. This is not surprising in view
of our earlier intuitive discussion of the validity of (1).

We have shown previously' that a polaron bound in a
weak slowly varying potential, U(r), can be well
described by the wave function

exp( —ir. Zkng)y(p)x„(r), (15a)

where j is the electron momentum operator with eigen-

' K. K. Bajaj and T. D. Clark, Bull. Am. Phys. Soc. 14, 377
(1969).

'D. M. Larsen, Phys. Rev. 180, 919 (1969). Although no
explicit assumptions are made on size of the coupling constant
in the reference, it is suggested there that the argument leading to
(15a) could break down for large enough u.

E~(p) = —n+ mp'/m~ ~. (19)

The trial function leading to (19) for the free polaron
is obtained by replacing P~(p) in (18) by

V,s(f,)(1+ZD(h)(l p)b, )~0).

Thus we would expect that a good trial function for the
Coulomb ground state when R is not too large would be

a= (PB'/8~)' 'e ~r'z ~"ULs(fs)
X (1+Eh(h)k phd~)

~
0)e—i s"i' (20)

where the spherically symmetric function h(h) and the
constant P8 are to be determined variationally.

Observe that setting h(h)=0 and Ps=-P in (20)
produces a product of the LLP ground-state wave
function and the Coulomb 1S wave function, giving a

8 E. Haga, Progr. Theoret. Phys. (Kyoto) 13, 555 (1955).
9 D. M. Larsen, Phys. Rev. 144, 697 (1966).
~0 T. D. Lee, F.E.Low, and D. Pines, Phys. Rev. 90, 297 (1953).
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Turning now to the optimization of ib, we note that
Q lP) is a functional of h(k) so that BQ lP)/bk(k) WO.
We seek to render (P!H!f&/(Plik& stationary with
respect to variations of Fi„gs, and h(k) at fixed ps.
Denoting the stationary value of this ratio by X(ps) we
require

~(Q lJII~&/(~i~&)

—O.OI

hence,
gQ le —x(p,) l~t&=0. (24)

-0.001

I
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FIG. I. Lowest ground-state energies obtainable at n=2 from
(13), (19), (23), and (30), denoted, respectively, I''pz, EII, ), and
EBp. The straight-line asymptote to X+a+8 is Esz, +a+R,
where Esz, is the effective-mass energy given by i22l.

Thus, solving (24) gives us an optimized wave function
and energy X(Ps) for each Ps. The variational ground-
state energy X is found by choosing Ps to minimize

~(ps)
Evaluating the expectation values in (24) is straight-

forward but tedious. Noting from (23) that we can
introduce a unitary operator U such tha, t

P= U!0),
where

ground-state energy of

—n —R ) (21)

U= ULS(Fk) exp( —ir Zkmk) ULS(gk),

[0&=!1++k(k)k Ib, !0)j(P,'/S~) s-» I

we compute U 'H U= K. Ke drop terms in 3C which do
not contribute to (8

l
X

l 8&, thereby producing X,
sa,tisfying

this energy is lower than (13) when

n( (32/5) L(8/5) —R'I'].
(elml 0&=-(elscl 0&,

where

~ = Rs+P'+(Z «.)'+2 ~.—P/r

+P [vs+(1+k')gs](bl'+4)
+P Fi,(e'"'bl, +e '"'bk)+2 g(vs+gal)Fs cosk r.

—2p Q kgk(bat+by)+2 Q k Igigibatbt, (25a)

&s——Q [f/+ (1+k')gi'+2vsgi) (25b)

The expectation values are
(22)—~—(1+i's ~)/(1 —i's~)R

More generally, a product of the exact polaron ground
state and the 15 Coulomb wave function gives the upper
bound Fos(n) —R to the ground state of H, where

Eos(n) is the exact free-polaron ground-state energy
when the total momentum of the electron-phonon
system is zero.

Comparison of the energy of (20) and (13) is made in

Fig. 1 for n=2. It is not difficult to show that in the
limit R —& 0 the ground-state energy obtained from frI
is (for a(12)

in agreement with (7) for small n.
In order to interpolate between the weak-binding

result of (22) and the strong-binding result (13), we

introduce as our Anal and most general trial wave
function

QBPH ULS (Fk)4'H
= (Ps'/gs)'i'ULs(Fi) exp( —ir Zkns) ULs(gi)

Xl 1+Eh(k)k'pb jlO)e
— "", (23)

where all three spherically symmetric functions Fl„gj„
and k(k) and the parameter Ps are to be varied. By
inspection, if Fs= 0, gs ———vi/(1+ k'), we have

PispH=PrI, while, if gs = k(k) = 0, we have PnpH = lgp~.

Thus, we can expect (23) to provide a reasonable inter-
polation between the small R a,nd large R limits.

(8!3cl e) = ((1+2')p' p/r)+F.o—
+—', Q k'k'(k) (1+k'+M —X+Ep —f)(p'&
+—', X Q k'k'(k) (p'&+2&(1+ &)(p'&

+Q k'Fib(k) V„, (26a)

(Sl S& =1+-', g k'k'(k)(j') (26b)

where if A is an operator, (A) denotes (Ps'/Sm) J'dr
PSr/2g g

—pSr/2 an

$= ——', P k'gi, h(k),

f =- —2 P(vk+gi. )FgVr-, Vs ——(cask. r),
~= (k.i(P —P/ )k 1»/(lk'9'&) =- lpp +l5P '—
In deriving (26a), we have repeatedly exploited the
assumed spherical svnimetry of Fk, gk, and k(k) and, in
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addition, have used the relation

P h'(k)(k p(cosl r)k p)/(cosI r&=y=-' P k'h'(k)(P')

Setting

h(t)I(0(' —"(Ps))I 8& ~(eI(~—)t(P8))Ip&

6.25

—0.3—

gives

S(t) I(fC—) (Ps)) I e)-=0
u(k) 6.50

I-1+k +E,+m —t —) (P,)jh(k)
=2(1+kg —lR V /V'&

Rx= —(~~+gs) Vs ——,'k'h(k) Vs/(1+v),
(1+k )g„= —4 „—P,V„+-s'(1+t)k'h(k)( j'&/(1+7) .

(28)

—0;6—

a 675

I)sing (27) and (eI(K—X(Ps)) I
8&=0, we obtain after

some computation

) (P.)= (1+2~)4P" :PP. —lE(1+-~)~/(1+~)jP"-u
+Z ~&I gs+~s/(1+k') 7—P i s(gs+ us) Vs'

—I:1/2(1+v)j2 k'h(k)(~s Vs' —yRs Vs). (29)

Equations (28) are easily solved in terms of the unknown
constants Es, f, $, y, and X(PB). These constants are
determined in turn from (25b), (27), and (29). For
performing the numerical calculations, we convert all
sums to integrals, guess an initial set of values for the
constants and from the algebraic solution of (28) corn-
pute a set of new values. Using this new set of values,
we repeat the process until the computed value of X(Ps)
becomes stable. In practice we And only a few iterations
are necessary. Values of X(P8) are computed in this way
for a number of values of Ps and the lowest X obtained
is taken as the approximate ground-state energy.

A very interesting special case occurs when we set
h(k) = 0 in (23) but allow Fs and gs to vary freely. We
obtain an energy

Esp(Ps) = u+4Ps' s—PPs 2u&—(Ps)/rr, —
V'N4 (30)

S(Ps) =Ps' du-
o (1—V'+Ps'u') (1+Ps'u')

where V'= 1/(1+u') 4.

Esp(Ps) turns out to be precisely the energy expres-
sion which BP would have found had they used a 1S
electronic wave function instead of a Gaussian. "
Basically, then, the BP ansatz can be considered a
special case of our final ansatz (23).

R. C. Brandt and F. C. Brown, Phys. Rev. 181, 1241 (1969).
The expression quoted by these authors is, in our notation,

-0.9
0

FIG. 2. Dependence of polaron ground-state energy on Pz in
the transition region between weak and strong coupling. Arrows
indicate relative minima associated with the formation of the
small radius (large ps) strong coupling state. X(ps) is computed
from (27), (28), and (29) at fixed ps and 8=0.0025.

It is important to note from (30) that because
limd(Ps)=0(Ps4) as Ps~0 the BP ansatz does not
renormalize the bare mass at all. Thus, BP is essentially
a strong-field ansatz, although, as is evident from Fig. 1,
much better for intermediate values of R. than the
product ansatz (13).

In Fig. 1 we compare (for u= 2) Eps, EH, Esp and ),
each energy having been evaluated at its own optimum
value of Pa. As expected, X approaches Eps. for R»1
and EH for R&&jI, remaining lower than either of these
variational energies over the whole range of R. We
observe that, over a remarkably large range of R, X is
given by the effective-mass expression

)=—u —L(1+i'su)/(1 —i'su) jR (31)

To gain some insight into the transition between the
weak coupling and strong coupling polaron we investi-
gate the ground-state energy and wave function as a
function of n for R«1. For values of n obeying 6.25
&u&11, we find that the graph of 'A(Ps) versus Ps shows
two distinct relative minima for fixed, small R (see Fig.
2). One of the minima, occurring at Ps—L(1+iisu)/
(1—t'su)gP, is given by (31). We call this the weak
coupling minimum. Since R«1, both P and Ps are small
and the wave function is spread out. The second mini-
mum invariably occurs at a much larger value of Ps, a
value which is relatively insensitive to R. The energy
corresponding to this minimum is very different from

(31), varying like

which is equivalent to (30).

),-—C,(u) —C,(u)R'",

where Cs(u) and Ci(u) are positive.

(32)
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To understand the meaning of (32) consider the
ground-state wave function for the free polaron in the
strong coupling limit. We assume this can be written in

the form"

where P, is a localized electronic wave function centered

on ro. Since the energy of the free polaron in a continuum

model is independent of where its wave function is

centered, the states (33) with different rp are degenerate.
If we now turn on a very weak Coulomb potential the

degeneracy is broken —the state with ro located on the
Coulomb center having the lowest energy. Treating
the Coulomb term —P/r(= —2R'I'/r) as a perturbation,
we take its expectation value in (33) with rp ——0 and
obtain for the perturbed energy the expression (32) with
—Cp(o) the free-polaron ground state and Ci(n) a posi-
tive function which increases with n. Thus, we conclude
that (32), and therefore the energy of the minimum at
larger Ps, is chara, cteristic of a strong coupling wave
function.

Examining Fig. 2 we see that as o. increases from 6 at
fixed small E, a strong coupling relative minimum

begins to form, becoming deeper with increasing n

until it 6nally exceeds in depth the weak coupling
minimum. At this point the ground-state wave function
shifts abruptly from weak coupling to strong coupling
form.

This behavior suggests that the transition between
the weak and strong coupling free polaron may not be
continuous in n. If, as is generally believed, the strong
coupling energy of the free-polaron ground state ap-
proaches" —An' —8, as n —+ ~, then the perturbation
expansion of the polaron ground-state energy in powers
of n, I'(n), must have a finite radius of convergence.
This follows from the fact that if E(tr) has an infinite
radius of convergence, then E(a) As' Bwoul—d be-
everywhere analytic and therefore everywhere zero.

r' Wave functions of the form (33) give the lowest variational
energy yet obtained for the free-polaron ground state in the limit
a —+ ~ (see Ref. 13, especially p. 450).

r' G. R. Allcock, Advan. Phys. 5, 412 (1956).

But this would imply P(n)= —An' —8, which is not
so, since we know, for example, that lim pP(rr) = —n

In fact it has been conjectured that perturbation
theory breaks down near n= 6. Thus, it is not unreason-
able that we should find that the ground-state wave
function of the weakly bound polaron is not a continu-
ous function of n in this region. We must emphasize,
however, that the discontinuity in our variational trial
function does not imply that the true ground-state wave
function is likewise discontinuous in e. Our result is
only suggestive.

In the limit n ~~, R~ 0 Platzman has obtained'

8= —Ep(tr) —E'i(rr) g (34)

from. his adaptation of the Feynman theory to the
Coulomb problem. This result resembles (31) and not
(32). From the perturbation argument given earlier
it seems clear that (32) has the correct field dependence
as n —& ~, R —+ 0. Thus, Platzman's theory seems to give
a qualitatively incorrect behavior for the energy of the
weakly bound strong coupling polaron.

We have compared X from (29) with Platzman's
tabulated results for parameters pertinent to CdS over
the range 0.46& n&0.7. In every case we found X to be
somewhat more than 10% lower than the corresponding
energy of Platzman. As Platzman has pointed out, a
basic defect of the Feynman method for this problem
resides in the seemingly unavoidable use of a Gaussian
approximation for the Coulomb wave function.

We have argued that if for given n, the free-polaron
wave function has the form (33), then, at the same value
of n, the weakly bound polaron (R~ 0) likewise can
be represented by (33). The fact that (33) does not
give the lowest ground-state energy in our calculation
for small E and n(6, suggests, therefore, that the adia-
batic assumption, conjectured for n(6 by Kartheuser
and co-workers, '4 is incorrect for this range of n. Thus,
we would not expect to find peaked free-polaron absorp-
tion spectra in materials with 3&n(6 as suggested by
those authors.

~4 E. Kartheuser, R. Kvrard, and J. Devreese, Phys. Rev.
Letters 22, 94 (1969).


