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Theory of a Structural Phase Transition in Perovskite-Type Crystals
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Structural phase transitions in perovskite crystals involving displacements of the oxygen octahedra due
to the condensation of linear combinations of the triply degenerate I'» modes at the R corner of the Brillouin
zone are discussed with the help of a model Hamiltonian. These distortions are essentially rotations. We
consider separately the cases of rotations of the octahedra about a cube axis (SrTi03) and about a cube
diagonal (LaA103). The temperature dependences of the distortion angle and of the frequencies of the
soft F» optical modes have been calculated. An approximate self-consistently determined free-energy ex-
pression is given from which the internal energy and the speci6c heat are derived. The theory is compared
with the experimental results on the transition from the cubic to the tetragonal phase in SrTiO3 and to the
trigonal phase in LaA103.

I. INTRODUCTIQN

HE structural phase transitions in the cubic
perovskite compounds ABO3 involving rotations

of the 806 octahedra have been the subject of a number
of recent investigations. ' "These phase transitions are
associated with a phonon instability at the R corner of
the Brillouin zone, more specifically with the conden-
sation of linear combinations of the triply degenerate
F25 modes. ' ~' '"One may use as a basic set the three
modes corresponding to rotations of the 806 octahedra
around the three cubic axes."Because of the degener-
acy, various structures are possible for the condensed
phase. So far, phase transitions of this type are known
to occur in SrTi03, KMnF3, and LaA103 at about 105,
184, and 806'K, respectively, each of which exemplifies
a different case. In SrTi03 one of the triply degenerate
modes condenses, ' ' while in KMnF3 a linear combin-
ation of two of the modes condenses' and in LaA103 a
linear combination of all three modes. v "

Because the condensation of a linear combination of
two modes is more difficult to describe, we consider in
this paper only transitions for which one of the modes
and a linear combination of all three degenerate modes
condense. In SrTi03 the cubic high-temperature struc-
ture undergoes a tetragonal distortion at the transition,
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displacements, for convenience we shall usually refer to them as
rotations.

corresponding to a rotation of the 806 octahedra about
a cube axis. In LaA103 it undergoes a trigonal distortion
to a rhombohedral structure described by a rotation of
the oxygen octahedra about a cube diagonal.

By the distortion the primitive unit cell is enlarged
and the Brillouin zone is correspondingly reduced. In
the distorted structures the (original) E corner and the
center of the Brillouin zone are equivalent points.
Because of the symmetry breaking of the phase tran-
sition the mode splits into two branches in the con-
densed phase.

These phase transformations were recently discussed

by Thomas and Muller, "making use of an energy ex-
pression in terms of a three-dimensional vector de-
scribing rotations about each of the cubic axes through
the 8 ion. Depending on the relative magnitude of the
anharmonic coefficients, a transition to tetragonal or
trigonal phases was obtained. Using a Landau-type
theory of second-order phase transitions, the transition
temperature T and the temperature dependence of the
soft mode frequencies associated with the phase tran-
sition both below and above T, were obtained for
temperatures in the ilnlnediate neighborhood of the
transition point.

In this paper we study these phase transitions with
the help of a model Hamiltonian. The Hamiltonian may
be constructed directly in terms of a vector describing
the rotations of oxygen octahedra as in Ref. 12, or it
may be derived starting from the conventional lattice
dynamical approach. The model Hamiltonian we use
describes only tetragonal and trigonal distortion. It
does not allow for the condensation of a linear combin-
ation of two modes.

The soft mode frequencies are determined for arbi-
trary temperatures by calculating equations of motion
using the model Hamiltonian and determining the re-
quired correlation functions by means of self-consistency
conditions. By setting the static part of the equations of
motion equal to zero, we obtain a relationship from
which the amount of distortion may be determined.

"H. Thomas and K. A. Muller, Phys. Rev. Letters 21, 1256
{1968}.
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These results may be derived alternatively by a varia-
tional procedure from an approximate free-energy ex-
pression also determined self-consistently. From the
free-energy expression the specific heat is obta, ined in
the usual way. In all cases the temperature dependence
for T= T is exhibited explicitly.

II. DERIVATION OF THE MODEL
HAMILTONIAN

In the adiabatic approximation an effective potential
V exists for the ionic motion. "The nonkinetic part of
the Hamiltonian may then be expressed as a power
series in the ionic displacements of the 0th atom in the
lth unit cell, n(lk), from the fixed positions X(lk). In
order to study the structural phase transitions it will
be convenient to choose the reference configuration
(X(lk) }as the average positions of the ions in the high-
temperature phase. It is important to recognize that
the reference configuration is only a stationary point
of the potential energy. It is not necessarily an absolute
minimum and will, in general, be a saddle point. Corre-
spondingly some of the harmonic eigenfrequencies may
be purely imaginary. These modes are then stabilized by
the anharmonic forces.

Because the potential is stationary for the reference
configuration, the Hamiltonian will have no linear terms
in the displacement

JI=-', P msu (lk)u (lk)

+s g V~ys(ltkt~ lsks)ttg (itkt)st~ (l'gksr)

tO

+ Q —V., ~„(ltkt l„k.)st~, (ltkt) .tt.„(l„k„). (1)

Here V, ... „(ltkt . . l„k„) is the nth derivative of
the potential with respect to the displacements indi-
cated in the arguments of the function and nsJ, is the
mass of the 4th ion in the unit cell. The derivatives
V, ... „(liki l k ) satisfy synunetry requirements
rejecting the symmetry of the reference configuration.

u(lk) = -', g(k) && LR(i+ k) —R(l))(2msa') —'t', (2)

where R(l+k) =R(Xt+(s), and where Xt is the position
vector of the center of the lth unit cell, while the vectors

(t ——a(1,0,0), gs
——a(0, 1,0), gs ——a(0,0,1),

connect the nea. rest-neighbor positions l and l+k.
Further, mo is the mass of the oxygen ion and u is the
lattice spacing. By de6nition R(l) is directed along the
axis of rotation. For the particular normalization we
have introduced, its magnitude is equal to

R= (-,'ttssa')'" tan&p, (3)

where y is the angular displacement of the oxygen ions.
In terms of these operators the kinetic energy associ-

ated with these three degrees of freedom may be written

T= ', Q R(l) 8(l,l-') R(l'),
L, l'

where

while 8(l,l') =0 for higher-order neighbors. Introducing
the momentum P(l) canonically conjugate to R(l),

P(l) =Q e(l, l') R(l'),

The perovskite structure has five ions per unit cell
and therefore altogether 15 degrees of freedom. The
perovskite unit cell with the inscribed oxygen octa-
hedron is shown in Fig. 1. We shall consider three
branches which at the R corner describe the triply
degenerate I'2~ mode and neglect all other degrees of
freedom. This mode can be built up from localized
displacement fields R(l) associated with each unit cell
describing the rotations of the oxygen octahedra about
the cell center. "The three independent rotations about
the cube axes permit the construction of three branches
as required.

The displacements of each of the oxygen ions in the
unit cell may be expressed in terms of the vector R(l).
We write'4

asos ~

where R&,(l ) and Px(l) satisfy the commutation
relations"

t Rx(l),Px.(l'))= ibex. hatt. ,

the kinetic energy may be written in the alternate form

T= ,' P P(l) e- (t,i'). P-(l'). (8)

We note that e plays the role of an effective-mass tensor.
From Eq. (5) its Fourier transform

8xx (q)=+ 8xx (l,l')e'& lx"' x&"l X V=1, 2, 3 (9)

FzG. I. Unit cell of the cubic perovskite structure with
the 8 ion at the origin.

"In the following derivation it will be convenient to use a
coordinate system with the B ion as origin, as in Fig. j..Otherwise,
the standard convention with the 2 ion at the origin has been

's M. Born and K. Huang, Dyrtomica/ Theory of Crystal Lattices used throughout.
(The Clarendon Press, Ltd. , Oxford, England, 1954). "In this paper @=1.
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may be written
3

8zx (q) = &h» (1+2 cosy', a —
2 P cosy&,a). (10)

We wish to emphasize, however, that the fact that
6(l,/') WO only for nearest neighbors does not represent
an approximation. Equations (8)—(10) are a completely
general representation of the kinetic energy associated
with the three degrees of freedom we consider.

The harmonic interaction is given similarly by an
expression of the form

Whereas according to Eq. (10), e» (q) may every-
where be taken to be diagonal, the interaction si, i, (q)
is expected to be anisotropic for an arbitrary point in
the Brillouin zone.

For the anhannonic interactions we shall assume a
very simple form containing only two anharmonic force
constants. The dominant contribution to the potential
at the oxygen sites is due to the four nearest-neighbor
3 sites. Including only this interaction and keeping only
the lowest-order terms in the oxygen displacement
field u(l, k) the anharmonic Hamiltonian may be
written

H2 ——-', Q R(l) v(l, l') R(l'). (11)
H4=4di Q t'u„4(li)+u, 4(11)+u '(l2)+u, 4(l2)

v» (l=l')=Go'4v. (12)

Further, because all the ions remain at rest when the
octahedra all rotate in phase, it follows that

Because R(l) transforms like a vector, v(l= l') must, for
the cubic perovskite structure, be proportional to the
unit matrix. We write

+ u4(13)+ u4(13))+-', dog Lu '(11)u,o(li)

+u, '(l2) u. '(l2)+u. '(l3)u„'(l3)j. (15)

In terms of the R operators this Hamiltonian takes the
form

v» (q= o) = tt» (q =o) = o (13)
H, =,' Q I'» (l,l')L-Rg(l) —Rg(l'))'

We require that this Hamiltonian describe at the E.
corner the F» phonon modes. This requirement yields
the conditions that

~» (qa)=~»,
i » (qz) =~o'(qz) 4), ,

(14)

where coo'(qz) is the haimonic frequency of the triply
degenerate F» phonon mode. The normalization for
R(l) in Eq. (2) has been chosen in such a way that the
expression for 8» (q) given by Eq. (10) reduces to this
form at q=q&.

where

I'» (l,l') =y» (1—b»)(1 —&vl), for Xi—Xi ——(g,
(17)

0, otherwise

and where in terms of the force constants di and d2
introduced in Eq. (15),

q» ———,',di/mo'—=—,', I „

The Fourier transform of the F matrix is given by

I (q) = —,',
I'&(cosy„a+ cosq, a)

2F2 cosy, a
2F2 cosgyQ

2F, cosy, c
I i(cosg a+cosgza)

2F2 cosy, a

2F2 cosy„c
2Fg cosg~G

I'&(cosq a+ cosy„a).
(19)

Because PRi, (l) —Rq(l')$—=0 when all the octahedra
rotate in phase, there is no condition analogous to Eq.
(13) for the I' matrix. The particular q dependence of
the F matrix given by Eq. (19) depends on the assump-
tion that the dominant contribution to 84 is due to
the four nearest-neighbor A sites.

We discuss in the Appendix how a Hamiltonian of this
form may be constructed when one follows the usual
procedure of 6rst determining all the eigenmodes of the
harmonic Hamiltonian. However, no attempt will be
made, in this paper, to relate the model Hamiltonian to
a real crystal Hamiltonian.

The model we have just discussed differs from that
introduced by Thomas and Muller" in two important
respects. Firstly, their kinetic energy is local, whereas
because the oxygen iong forming a given octahedron

belong to more than one unit cell, it must necessarily
be nonlocal. Secondly, their Hamiltonian does not
vanish when all the octahedra rotate in phase as re-
quired on physical grounds.

However, the discussion in Ref. 12 was based not on
the model Hamiltonian, but on an energy expression.
This expression may be derived by taking the expecta-
tion value of either of these model Hamiltonians and
approximating the correlation functions of the R oper-
ators by all possible factorizations in terms of lower-
order correlations. Thus the fourth-order term in their
energy expression is identical to that obtained when each
of the operators Rq(l) in the Hamiltonian H4 is replaced
by their expectation values (with 5= 21'&, c= 21'&). The
coefFicient for the second-order term obtained from H2
and H4 will depend on correlation functions containing
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82
—~~(q) =t}» '(q) 2 ~» (q)r'(q)+4t}» '(q)

8$ X'

&Z fL (o) —r (q )+r '(q —q ) —r (q)7
V

&&(2A) A ~ r~. (q)+A g, 'r), (q)jIII. EQUATIONS OF MOTION: SELF-
CONSISTENCY CONDITIONS

1
+—E Lr '(0)-r» (q)+r- (q'-q) —r. (q )~

qr

XL26» (q')rq (q)+Dq q (q')rq(q)$) . (26)

The equations of motion for the displacement Geld

Eq(l) X= 1, 2, 3 are obtained from the model Hamilton-
ian by means of the commutation relations equation (7),

pairs of operators Eq(l). Whereas in a Landau-type coupled set of equations:
theory as considered in Ref. 12, a certain temperature
dependence has to be assumed for this coefficient, in the
present calculation, the required correlation functions
are calculated explicitly, and all the temperature de-

pendences are derived from the model.

8
i—gg(l) = $8),(l),Vg=i Q(|} ')yr(i, l)&r(l),

83 Xl

82—g„(i)=i P(e-')»(l, l)P' (l),&j
812 'Al

(20)

(g (l))= A &g&cR x(t)' (23)

The equation of motion for r&, (l) will be linearized by
replacing products of pairs of operators rq(l) with their
average values

6» (l,l') = (rg(l)rg (l')).

=Q(|}—') -(l,l)(v- (t,l')E (l')+2r- (l, l')

ll'

XL&-(l)—~ (l')X~ (l) —& (l')&')

Distortion of the crystal from cubic symmetry corre-
sponds to a nonvanishing expectation value of Rq(l).
In Eq. (21), we therefore set

~.(i) =(~.(i))+"(i), (22)

where the bracket denotes the thermal average, and
where rq(l) describes the fluctuation about this average
value.

The expectation value (R&,(l)) may be related to the
displacement of the individual ions (n(lk)) by Eq. (2).
As the direction of the displacement (n(lk)) alternates
from one cell to the next, we Inay write

Introducing a canonical transformation of the form

(q) =Z » (q) '(q),
(27)~.(q) =2 p~ (q)bv~ '(q)

Eqs. (20) and (26) may be diagonalized and written in
the form

(8/8/)s~(q) =p~( —q),
—(~'i~l') s~(q) = ~~'(q)»(q),

(28)

where the coeKcients b» (q) may be determined from
Eqs. (20) and (26). The eigenfrequencies e&p(q) depend
on the correlation functions 6» (q).IFrom Eqs. (24)
and (27) the latter may be written

&» (q) =Q b»(q)b), p( —q)(sp(q)sp( —q)). (29)

For arbitrary values of g and nondiagonal interaction
potentials the determination of b» (q) and thus eq'(q)
requires the solution of a general cubic equation.

For the subsequent calculations it will be convenient
to introduce the following definitions:

~» "'=—P a» (q)
q

Then, making use of the Ructuation-dissipation theorem,
we obtain the following self-consistency conditions:

~» (q) =p b»(q)4 ~(—q)L2ez(q) j ' coth~pe„(q). (30)

=—E Lr» (q —q ) —I' (q) jd,„.(q), (31)
g

Setting the static part of the equation of motion equal Lr„„,(0) r „,(q )jg
to zero then gives a relationship between the expecta-
tion values (Eq(l)) and the correlation functions 6».
Making use of Eqs. (21)—(24), we obtain

~0'(qa)A ~+8 2 Lr» (o) —r~v(qz) jA) A),' Lr„(0)—r„„,(q )jg„„& &

+4—2 (Lr» (o) —r» (q~)+r» (q —q~) —r» (q)j
XI.A~A~ ~ (q)+2A~ a» (q)j) =0, (25)

where g». (q) is the Fourier transform of 4» (l,P). 1V

is the number of unit cells in the volume.
For the Fourier transform of the fluctuation rq(l),

we obtain from Eqs. (21) and (22) the following

Z t rzv(q —q ) —I' (q)gD ~ (q).

A. Tetragonal Distortion

For tetragonal distortion corresponding to the rota-
tion of the 806 octahedra about a cube axis, only one of
the components of (R(l)) will be different from zero,
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We set or, alternatively, making use of the de6nition of T,
Eq. (37),

Further, we may set e '(q ) = (3r,+2r,) I
6&'&(T) —6&'&(T,))

+2r I:~"&(T)—~"'(T-)i
+(r.+2r.)L~ (T)-~ (T.)j (40)

6),), ( )=0, A/X'

and for the diagonal components it follows that
The latter expression explicitly exhibits the fact that
eg'(qg) boas T —+ T also for T)T,.

The model parameter must satisfy the stability
con dktkons

g]] ( ) gy( )

(0,) —g (e)—g (a)

We write the eigenfrequencies in the following form:

(41)

~&,'(qa) & o

'" (q")+L "(q) "(» )~' ( 2) For the q dependence of the modes given by Eq. (32)
For g= qg, the equations of motion reduce to diagona
form 4(q) )&&&'&, (qz)

4& (qz)=~&,&, ,

and the eigenfrequencies are given by

e&'(qg) =o)0'(qg)+3r&(2A'+6)&'&)+2r, h, &'&

+2rgh&&"+(r&+2r )6&&'&, (34)

~2, s'(qz) =~a'(qz)+r2(2A'+&i ' )+(3ri+ru)62 "&

+2r&h "'+(r&+2r )6,&'&. (35)

Note that two of the eigenmodes are degenerate at q= q~
for all temperatures.

For tetragonal distortion the relationship Eq. (25)
takes the form

A L~o'(q~)+ ri(2A'+3&i"')+2r2~2"'+2ri&i"'
+(r,+2r,)z, & &)=-0. (36)

This equation has a solution A = 0 corresponding to the
undistorted phase. By symmetry it follows that in
this phase

g, (~) = g, (~)=g(~)

and that all three eigenmodes are degenerate at the R
corner. For AWO, Eq. (36) provides a relationship
between A and the correlation functions 6~,2( ). The
transition temperature is de6ned by taking the limit
A ~ 0, A~, 2( ) —+ 6( ) when T~ T . We obtain

~ '(qz)+ (3r&+2I'2) 6"'(T,)+2r&h "&(T,)
y(r, +2r, )a&»(T.) =0. (37)

For T(T, we make use of Eq. (36) to write the eigen-
modes in the following form:

&&2(qa) =4r&A',

~, ,'(q~) =2(r, —r,)A + (r, —3r,)(s, & & —a, &'&)

+ 2r& (h2 &'& —6&&'&)+2r, (h, &'& —6& &'&) . (38)

for all «~»a. For q=q„
h~(q) =&~(q~)+Z ~""(q~)(q—q~)'(q —«~) (42)

Then for T= T the eigenmodes take the form

~~'(T., «=«~) =2 '"(q~)(q —q~)'(q —q&) ' (43)

The eigenfrequencies have a linear dependence in the
neighborhood of the R corner and are, in general,
anisotr opic.

B. Trigonal Distortion

For trigonal distortion the octahedra rotate about a
cube diagonal and the components of (R(l)) are all
equal. We set

A '= —'A'
and

a, (»=0.

The condition LEq. (25)g that the static parts of the
equations of motion vanish now takes the form

ALMQ (qa)y(r&/2r2)(3A'+6&&'&+ 6&'&)

+2r, (~, & &+~,& &)+4r,(~, & &y~, & &)j=O. (44)

Again for A/0 this gives a relationship between A
and the correlation functions A~( ) and A2( '. As
T —+ T„A —+0, A2( ' —+0, and 6&( ) ~ 6( ), where by
definition A~( ) = 6( ' for T& T . The equation for the
transition temperature is seen to be the same as for the
tetragonal case.

From Eq. (26) the equations of motion for q= qz may
be written

From the dehnition of T it follows that as T~ T
then A -+ 0, D2&~& —+ A&&~&, and the eigenmodes e&,'(q)
all go to zero at the R corner. For T&T the modes where

(—&'/&&&')r&(qa) =&&&(q~)+I' 2 r& (q~), (45)

take the form X= (og (qg)+ (3r&+2r2) (-,'A, '+ Ag &'&)

~~'(qz) = ~0'(q», )+(3ri+ 2r2) ~ "& +2r, h& &'&+ (r&+ 21'2)6&'&, (46)

+2rgh&'&+(rg+2r )6&'&, (39) I"=2r (—A'+5 &'&+5 &'&).
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Solving the secular determinant for Eq. (45) we obtain We obtain the immediate simplification that
a singlet mode Z„.(&=O and ~&, &')=0,

p12(qual) =X+2I' (50)

and a doubly degenerate mode

p2, 22(q22) = X—I .

The matrix bid (qi2) which is diagonal for the tetrag-
onal case now takes the form

1/~3 —
2 (1/~3+ 1) —2(1/v3 —1)'

bye (qi2) = 1/W3 ——,
'

(1/W3 —1) —-,'(1/v3+ 1) . (47)
.1/K3 1/V3 1/&3

As might be expected, this represents a rotation such
that the (1) axis in the rotated coordinate system is
parallel to the rotation axis.

For T(T, we make use of Eq. (44) in order to
rewrite the expressions for the eigenmodes. We obtain

A=M ' coth-'2pM,

M2= 2Qp2+ (3I'1+2r2)h.
(52)

as seen from their definitions, Eqs. (31). Consequently,
we drop the superscript on Aqq &»),

&11,—= ~1v &'& = (rl, (l~)rl, (lt)). (51)

We note the molecular field equations are independent
of the particular form of r&,1 (q) given by Eq. (19) pro-
vided certain conditions, such as Eq. (49), are satisfied.
The now q-independent coe%cients b),z are equal to v2
times the q-dependent coe%cients evaluated at g=qg,
which are given by Eqs. (33) and (47) for the tetragonal
and trigonal cases, respectively.

For T)T the molecular field equations take the
form

p12(qil) = 4(rl+2r2)-'232,

,, '(q ) =4(r —r )-', A' —6r, (h."&+6,&'&).

For T(T, we obtain for the tetragonal case

~1=M1 CothppM1 y +2 M2 Coth2pM2 y (53)

From the definition of T, it follows that

pl, 2(qadi) -+ 0, as T ~T..

For T&T„ then, A=A~("=62(')=0 and the eigen-
modes p12(qi2) =p2, 22(qil) are given by either Eq. (39)
or (40). For T) T, there is, of course, no difference
between the tetragonal and trigonal cases.

IV. MOLECULAR FIELD CALCULATION

In the previous section we derived a set of self-
consistency equations from which A, 6»' &, and 62& ~

may be calculated. However, in order to avoid compli-
cated summations over the Brillouin zone we have
instead, as a first approximation, determined the ther-
mal expectation values A, 6»("', and h2& ~ explicitly
only for the case in which the interaction between the
different cells is treated in the molecular field

appl oxlmatloIl.
The molecular field equations are obtained by replac-

ing the interaction tensors 811 (q), vie (q), and rid. (q)
by their averaged values over the Brillouin zone. "
From Eqs. (10), (12), and (19) it follows that

—2 e),1 (q) = 24), ,
iY q.

—2 2» (q) =tip'&11,
Q7 q

(49)

—Z rid(q)=o
E a

'6An alternate derivation of the molecular field equations is
outlined in Sec. V.

and where A' is determined by

Mp (qi2)+ rl(23 +361)+2r262 =0.

For the trigonal case we obtain

I-Ll 2 [Ml ' coth-', pM1+ (2/M2) cothppM2j,

+2= 2[M1 ' cothppM1 —M2 cothppM2$,

Ml =4(ri+2r2)2~ +[2flp Mp (q&)j

(55)

(56)

, =4(r, —r, )-', a2 —6r,a,+[2&,' —M, '(q~)], (57)

Mpp(qii)+ (I'1+2I',)(2'2'+&i)+2rl&1+4r2a2= 0.

We note that if in the set of equations for the trigonal
case we replace —',(rl+2r2) by I'1, and rl by I'2, then
these equations become identical to those for the tetrag-
onal case with I'», F2 replaced by I'», I'2.

The transition temperature is in both cases given by

Mp'(q22)+(3rl+2r2)h(T, ) =0. (58)

Because A(T) is a positive and monotonically increasing
function of temperature there will be no phase transition
unless

Mp2(q22)+ (3I'1+2I'2)6(0) (0. (59)

It should be emphasized that the molecular field
equations are used only to determine the expectation
values A, 6», and D2. The wave-vector-dependent
excitation spectra pi(q, A, A1,62) describe the fluctuations
about these average values. The frequencies co&' do not
represent, even approximately, the excitations of the

where

Ml =4I 1A + [20p —Mp (qi2) j,
,'=2(r, —r )A'+(r —3r )(61—L4) (54)

+ [20p' —Mp'(qi2) j,
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where
a(T) —a(T.)=a,(T—T.),

h(T,) = ht(T, )= A, (T,)= ross/(3 Fr+ 2Fs) .
For the triply degenerate eigenmodes e&P(qg) we there-
fore obtain the usually assumed Curie-Weiss behavior.

e)P (qg) = c(T—T,) .

We note that the molecular fieM approximation gives
the limiting behavior assumed in Ref. 12, for A and for
the eigenfrequencies eq'(q~).

In the high-temperature limit T~~, we obtain from

'7 In model calculations for SrTi03 such purely imaginary
harmonic I'2~ phonon modes have been obtained by R. A. Cowley,
Phys. Rev. 134, A981 (1964). See in particular Fig. 8, model V.

"These coefhcients are rather complicated functions of the
model parameters and will not be given explicitly.

system. This is a situation familiar from the study of
exchange models in the theory of magnetism, where the
molecular field energy is quite different from the p-de-
pendent low-lying spin-wave excitations.

The requirement that ez'(qz)) 0, gives the following
stability conditions for the tetragonal phase:

Ft)0, 2(Fs —Ft)A'+(hs —3ht)(Ft —Fs))0. (60)

Similarly, for the trigonal phase we obtain

I' +2F,)0, 2(F,—F,)A' —9F,A,)0. (61)

These conditions differ from those given in Ref. 12 by
the presence of the correlation functions 6» and 62.
From Eqs. (40) and (50) the stability of the cubic phase
requires

3Ft+2F )0. (62)

This condition together with Eq. (59) shows that the
harmonic soft-mode frequency toe(qz) must be purely
imaginary with a certain minimum absolute value,
in order for a phase transition to be possible. '~

The limiting behavior for T=T and for T —+~ is
easily extracted from these molecular field equations.
For T&T we obtain

A'= ar(T T)—
with a diferent constant u~ for the tetragonal and tri-
gonal cases. ' For the tetragonal case,

(d, t —6s) = asA',

while the for trigonal case we find

d,2= a2'A'.

From Eqs. (38), (48), and (50) the eigenmodes may then
be written

ex'(qz) = b),(T.—T),
where b~Ab2=b3, and where these constants are dif-
ferent for tetragonal and trigonal distortions. For
T&T we find

Eqs. (40), (50), and (52)

6 —+ (3Ft+2Fs) 'I'(kT)"',
eg'(qgg) —+ (3Ft+2Fs) '"(k T) '~'.

In this limit the eigenfrequencies depend only on the
anharmonic terms in the interaction potential. This
temperature dependence differs from the modified
Curie-Weiss law,

1/s), s ——a/(T —T.)+b,

which has been proposed in order to fit the neutron
scattering data. 4 The latter expression yields a constant
value for e),' in the high-temperature limit. The data
were, however, taken only over a limited temperature
range, and the observed deviation from Curie-Weiss
law is compatible with the high-temperature limit pre-
dicted by the model. With increasing temperature,
higher-order anharmonic terms neglected in this model
will, of course, also become increasingly more important.

For arbitrary temperatures the molecular field equa-
tions may be solved numerically by iteration for given
values of the model parameters. We have made use of
the experimental information available to test the pre-
dictions of the model. The value of A is related to the
measured rotation angle by Eq. (3). We obtain

q =v2A/(msa')'~' (63)

for small angles such that tang = y. This relationship
may be derived alternatively from Eq. (A18), making
use of the known position vectors X& of the oxygen ions
and the polarization vectors e(q~XXs) for the Fss modes.

For SrTi03 the temperature dependence of the rota-
tion angle has been measured by electron paramagnetic
resonance (EPR),s the soft-mode frequencies by neutron
scattering, 4' and for T&T, also by Raman scattering. '
These experimental results are qualitatively in good
agreement with the predictions of the model. A singlet-
mode frequency is obtained which, within experimental
error, is proportional to the order parameter A, in
agreement with Eq. (38), whereas the frequency of the
doubly degenerate mode is found to have a more compli-
cated temperature dependence as allowed by the theo-
retical expression Eq. (38). In the neighborhood of the
transition temperature A' and e&' are well fitted by a
linear dependence with the possible exception of E2, 3'
for T&T where the experimental uncertainties are
largest. This indicates that the data in the temperature
range considered are well described by the Tn.olecular
field approximation. An improved statistical mechanical
treatment of the model" will presumably give devia-
tions from the linear behavior su%ciently close to T .
However, more sophisticated calculations do not seem
to be justified by the experimental data currently
available.

"Any calculation going beyond the molecular field approxi-
mation would require a specific model form also for spy (ql. This
may be constructed in a straightforward manner by arguments
analogous to those used to obtain I'qq. (q).
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FIG. 2. Angle of rotation of the oxygen octahedron in SrTi03
normalized to its value at T=0, as a function of reduced tempera-
ture. y Experimental points obtained by EPR. (a) Theoretical
curve giving best fit to all the available data. b: Theoretical curve
giving best fit to the observed temperature dependence of the
angle. (c) Predicted curve based on a fit to the neutron data.
(d) Predicted curve based on a fit to the Raman data.

I I I I I

SrTiOg

The molecular 6eld equations contain four model
parameters, two harmonic interaction parameters
&es'(q~) and Qs', and two anharmonic constants I'r and
I"2. These parameters are well overdetermined by the
data available. Making use only of the value of the
transition temperature T, the order parameter and
the soft-mode frequencies at T= 0, A(0), et(0), e, ,(0) and
the slopes of these quantities for T=T, a~, b~, b2, 3 and c,
alone provide eight experimental values.

We determined the model parameters by a best-6t

procedure using all the available data. ' However, only
relative values of the rotation angle were used for
reasons discussed below. To demonstrate the extent
to which the model parameters are overdetermined, we
have also obtained the model parameters by using in
turn only the neutron data, Raman data, and the
temperature dependence of the angle of rotation, and
then predicted the behavior of the remaining quantities.

The results of the numerical calculations are shown in
Figs. 2—4 and in Table I. The only predicted curve
which lies clearly outside the experimental error is
et(q@) when the model parameters were determined by
the temperature dependence of the rotation angle alone.

In these calculations we have, however, made no
use of the absolute magnitude of the rotation angle. We
see from Table I that the predicted value of p(T = 0) = ps
is always much larger than the experimental value
F 0=2.0&0.I'.' ' It was not possible to obtain a good
6t both for the absolute magnitude of p and its tempera-
ture dependence. Any attempt to 6t the value of (po

seriously distorted the shape of the p(T) as well as the
6y, 2 curves.

This suggests that additional anharmonic forces
neglected in the simple model may be very important
in order to stabilize the crystal and to determine the
minimum of the free energy as a function of angle. The
good agreement for the temperature dependence of q
and the soft mode frequencies indicates that the shape
of the free-energy minimum is well described by the
model although the location of the minimum is not.

For I aA103, the displacements have been measured
by EPR, ' and the behavior of the soft mode in the cubic
phase has been studied by neutron scattering. ' It is
reasonable to assume that additional anharmonic inter-
actions may be important also for LaA103. Thus, we
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FrG. 3. I'2~ optical-phonon frequencies in SrTio~ as a function
of reduced temperature in the distorted phase. o Experimental
points obtained by neutron scattering. g Experimental points
obtained by Rarnan scattering. (a) Theoretical curve giving best
6t to all the available data. {b) Predicted curves based on a fit to
the KPR data. {c)Theoretical curve giving best 6t to the neutron
data. (d) Theoretical curve giving best fit to the Raman data.

Fyo. 4. I'zq optical-phonon frequency in SrTi03 as a function of
reduced temperature in the high-temperature phase. o Experi-
mental points obtained by neutron scattering. (a) Theoretical curve
giving best fit to all the available data. (b) Predicted curve based
on a fit to the KPR data. {c)Theoretical curve giving best ht to the
neutron data. (d) Predicted curve based on a fit to the Raman data.

20 The data reported in Ref. 5 were not available to us prior
to completion of the numerical calculations.
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TA&xz I. Model parameters giving best 6t of theory to experiments with the transition
temperature and the angle of rotation y(T =0) at best Irt.

Material

SrTiOg

LaA103

Data used for fit

EPR, ' neutron
and Raman scattering

Rotation angle EPR~
Neutron scattering
Raman scattering
Rotation angle EPR'
Neutron scattering

00~
(meV)'

51

34
35

—~op(qs)
(meV)'

40
34
32

178

~1
(meV)'

41

40
33
33

I'2
(meV)'

49

20

105

105
104
104b

v(T =0)
(degrees)

4g

5.4
5.5
5.2

90

a Using only the relative values for the rotation angle.
b The temperature scale for the Raman scattering data of Ref. 2 has been multiplied by 0.91 in order to give a transition temperature equ» to that

obtained for the neutron data.

have used only the relative values o'f po(T) together
with the neutron data in order to determine the model
parameters. The fit for q(T) is shown in Fig. 5. The
values obtained for the model parameters are given in
Table I. The soft mode frequencies are shown in Fig. 6
together with the experimental results of Axe et al."
It should be noted that the modes for T&T„par-
ticularly ~2, are very sensitive to small changes in the
model parameters, and that the neutron data have
fairly large uncertainties due to the fact that the modes
are overdamped in the neighborhood of the transition
temperature. "

For cpo we obtain 9.0' as compared with the experi-
mental value of 6.3'. The agreement is somewhat better
than in the case of SrTi03. We note that for SrTi03
the values obtained for Fj and F2 lie very close to the
stability limit. "For T= 0 the stability condition for the
tetragonal phase, Eq. (60), reads Fs) Fi when we neglect
zero-point motion corrections, whereas according to
Table I, I'2=1.21'&. The corresponding stability con-
dition for trigonal distortion I'y) F2 is seen to be well
satisfied for I aA103. We expect therefore that the

10

additional anharmonic interactions will be more im-
portant in stabilizing the crystal for SrTi03 than for
I.aA103.

The interactions with the strains and the importance
of the sixth-order anharmonic interactions are currently
being investigated.

V. FREE ENERGY AND THE SPECIFIC HEAT

The results presented in Sec. III may be derived
alternatively by a variational procedure. %'e introduce
a trial density matrix of the form

p rr
—p Prier'/T—rp Prren-

where H,~f is a diagonal Hamiltonian

H rr =Ep+ P eg(q)a&t(q)aq(q)

(64)

(65)

expressed in terms of temperature-dependent energies
Ep, and ez(q). By definition, ai, and an't are linear
combinations of the set of operators (r&,P&) satisfying
Bose commutation relations

1 a~(q), a~'(q') j= 4v&qq'

In terms of this density matrix the free energy may be

20—

LaAIOg

0.5— 15)
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0
0
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~ 10
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O
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Fxo. 5. Angle of rotation in LaA103 normalized to its value at
T=0 as a function of reduced temperature. ~ Experimental points
obtained by EPR. Theoretical curve giving best fit to the EPR and
neutron data.

0
0 0.5 1.0 1.5 T/Ta 2.0

2j In fact, using a best-fit procedure including the magnitude
of the rotation angle led to values of 1'l and I'q outside the stability
region for tetragona]. distortjon,

Fxc. 6. F25 optical-phonon modes in LaA103 as a function of
reduced temperature. ~ Experimental points obtained by neutron
scattering. Theoretical curve giving best 6t to the EPR and
neutron data.



wl ltten
F= Tr(p, nH+P 'p f& 1np, n). (66)

Here H is the original Hamiltonian given by Eqs. (8),
(11), and (16). The effective Hamiltonian is used only
to define a density-matrix diagonal in the occupation-
nurnber representation of the excitations eq(q). We note
that p.fq and F are independent of Eo(T) introduced in
Eq. (65).

For noninteracting Bose excitations the entropy con-
tribution to the free energy,

5= —kg Ti"p « lnp fg

may be written in the form

S=ke P {L1+n),(q)j

Xlnl 1+eq(q)j —nq(q) inn'(q)}, (67)

where n&, (q) is the Bose occupation number factor

n~(q) = 1/("""'—1)

In order to evaluate (H) we express {rq,Pq} in terms
of the new normal-mode coordinates aq and aq~. It will
be convenient to make use of the operators sq(q) intro-
duced in Eq. (27). We assume that sz may be expressed
in terms of az and a&~ with equal amplitudes for forward
and backward propagating waves, "

»(q) = l:2e~(q)j '"La~(q)+~~'( —«)j (68)

The foim of Pz(q) follows from the requirement that
the transformations be canonical. For this choice of
s&,(q) the expectation value of the kinetic energy takes
the simple form

The expectation value Aj, and the excitation energies
will be determined by requiring that the free energy,
F= (H) —TS, be stationary with respect to variations
of these parameters. The condition

BF/BA), = 0 (72)

immediately gives the relationship Eq. (25), whereas
the functional variation

BF/Beg(q) = 0

yields the following expression for eq(q):

e~'(q) = P ~),~ (q)b),~(q)be~( —q)

(73)

+4 E LI'&g (0)—I'gv(qp)+I')-, ), (q —qg) —I'z~ (q)j
XL2~z~~ br~(q)» ~(—q)+~~'b~ x(q)b~ ~(—q)j
+4—P Ll'u, (0) —I'» (q)+I'~~ (q' —q) —I'~v(q'))

H.n =ED+P ~~~~I(q) ~~(q)

XL2~» (q')b»(q)b), ~(—q)

+~rr(q')4 ~(q)b~ ~(—q)j . (7&)

This corresponds to Eqs. (26)—(28), and we have re-
derived the result obtained by the equation of motion
method in Sec. III.

The molecular field equations may be obtained
similarly. To define the density matrix p,«we use an
effective Hamiltonian of the form

(T)=l 2 (q)l (q)+lj. (69)

For (H,) we obtain

BF/BA =0, BF/8&v), = 0

with a Oat spectrum co),. Introducing the corresponding
canonical transformations to Eqs. (27) and (68) with
wave-vector-independent coeKcients b», the extremum

XV q, hV

where Q» (q) is dined by Eq. (30). Because the
density matrix is diagonal, the fourth-order correlation
functions involving az and an't which occur in (H4) may
be decomposed using Wick's theorem. We obtain

(H.) =2@P LI'». (0) —I'». (q, )ja,'a ~'

give the molecular field equations discussed in Sec. IV.
We choose the arbitrary function Eo(T) in Eq. (65)

such that the self-consistency condition

(H) = (H, ff)

is satisfied. Then we may write
+2 P Ll», (0)—1»,(q&)+I» (q —q&) —1»,(q)j

X l
~ ~'~), v(q)+2~ x~ ~ ~» (q)3

Lr„,(0) -r„,(q)+r„,(q —q) -I'„,(q')3

(H) =Ep(T)+Q e),(q)n), (q),

F =Eo(T)+keT Q ln(1 —e e'"«').

(75)

(76)

XL&»(q')~~ ~ (q)+2~» (q')~» (q)7 (71)
22 A more general canonical transformation would introduce

additional variational parameters but would yield the same 6naj.
resgjt,

The specific heat is obtained either from the free energy
or the internal energy in the usual way,

d'F d
C, = T =(H). ——

dT
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When we make use of the conditions Eq. (72) and (73) way, "
we obtain either from Eq. (75) or (76); ~=l 2 P'.(«)P (—«)+ o'(~q)e. (q)e.(-q)j

1
Z e"(q) ~(q)D+&&(q)j

k~T' &'i

d
X (q) —T (q) (77)

dT

1
+P —p U&"&P rqr X.q.)Q",(qr) Q),„(q.'), (A1)

where

P'(q) = 1/Q.V P (gm")e (Xqk)it~(lk)e'& x&'~'

Theformoftheq-dependentmodesisgivenbyEq. (32),
Q () 1~g" p (g )e sp, k)~ (g,)e

—'&.x(t")
where in the molecular field approximation,

eg'(q') ~ a),(T,) ~

T—T.
~

AC„=
E d T —+T+

Ig(T,)- eg'(T), (78)
2k~T & dT T~ T—

where Iq is the nondivergent integral

as T —+ T from either side of the transition point
with uq in general diA'erent for T& T and T&T,. For
the q dependence given by Eqs. (41) and (42) a finite
discontinuity is then obtained for the specific heat,
given by

a, k, 2

U&"'P rqr X.q.)

V, ... „(lrkr ik)
'(Z q')

(mp, nap„)'"

Xe ,(Xrkrq&) e „P..k q.)

Xexpfiq& X(lrkr)+ +iq X(l k„)j .

(A2)

1
I~ ———g e'(q) $1+n&(q)j.

lV a

VI. CONCLUSION

From the altogether 15 degrees of freedom per unit
cell in the perovskite structure, we have separated out
the three degrees of freedom directly connected v ith the
structural phase transition, and constructed a model
Hamiltonian describing these three degrees of freedom.
The anharmonic interactions were approximated by a
simple form containing only two anharmonic force
constants. With this model good agreement with the
experimental results for SrTi03 and I-aA103 could be
obtained except for the magnitude of the angular dis-
tortion. For SrTi03, the model parameters were over-
determined in the sense that when part of the available
data was used to determine the model parameters, the
predictions for the remaining quantities were in good
agreement with the experimental results.

The disagreement for the magnitude of the rotation
angle suggests that additional anharmonic interactions
need be taken into account.
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APPENDIX

Further, cv''(Xq) are the 3k eigenvalues of the harmonic
dynamical matrix, where h is the number of ions per
unit cell and e(Xkq) are the corresponding polarization
vectors for branch P and momentum q which satisfy
the completeness and orthogonality relations

P e.*(Zqk)e. P qk') =S..S»',

Q e ~(X«k)e (X'qk) =8» .
(A3)

The operators Q"(q) and Pz(q) are canonical conjugate
variables,

(Q (q),P (q')j=i' '»" (A4)

We introduce spa, ce-dependent normal-mode coordin-
ates defined by

1
P'(1) = 2 e """'T»(q)P'(q)

(A5)

Z, (t) = P e'q""&Q" (q)(T-')» (q).

The matrix Tqq has been introduced to account for
degeneracies of the ~~'(Xq) eigenfrequencies. If there is
no crossing of the harmonic eigenfrequencies anywhere
in the Brillouin zone, then T may be replaced by the
unit matrix. This procedure is analogous to that used
to construct Wannier wave functions for degenerate
energy bands. " In addition, the introduction of the
matrix T permits the imposition of desired symmetry
properties on the operators R"(l) and P~(l). fn order

The Hamiltonian, Fq. (1), may be expressed in terms "See, for exa~Ple, E. I. Blou"t, 'n S'l'd State h&s'cs, e i e
by F. Seitz and D. Turnbull (Academic Press Inc. , New York,

of the harmonic normal mode coordinates in the usual f963), Qpj. j.3, p. 3()6,
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for P& (l) and R&,(l) to be Hermetian we require that

T» (q) = T» *(—q) . (A6)

By construction, Rx(l) and P&,(l) satisfy the canonical
commutation relations

ERA(l), Px'(l )j= zS& v&&lv ~ (A7)

In terms of these operators the Hamiltonian may be
written

&=-. Z P (1)(t& ') '(V )P (1 )

&&u, (1=1') = flo'4v, &&» (1=1)=Hyv,

we obtain from Eqs. (A9) and (A6) the following con-
ditions on the matrix T», , (q):

transform like vectors, and identify these with the
vectors introduced in Eqs. (2) and (6). For the anhar-
monic terms we assume as before that the dominant
interaction is described by Eq. (16), and we obtain the
Hamiltonian given by Eqs. (S), (11), and (16).

From the syInmetry requirements on the harmonic
terms

+-', Q R&,(l)v» (l,l')R&, (l')

00

+Q —I'&"&P.ili X„l„)R&„(li) Ri„(l„), (AS)
~t

where

(0-') (V') =—Z "'*"'""'"(T ') .(q)E q)

X( ')», (q),
(A9)

1—Z T»(q)~o'P&q)(T+)&~ (q) =flo'&~v,
+ q)

—2 T»(q)(T+)zi (q) =+», , ,
qX

(A14)

where furthermore, according to Eq. (10), we ma, y
choose 8= io. From Eq. (13) it follows that

Z T», -,(0) (T+)»-, , (o) =o,

o», (1 P) — Q e
—'o &x&&i—x&&'&]T»(q)

.V q)

X~o'(q7) Tv&-, (—q),
P T», -, (0)o&o'($0) T&,i (0) =0.

(A15)

I"&"&(&&ili. ~ .&&„l„)=E ""Q T», -, (qi). . .

&& T,„;„(q„)U &.&(Z,q, l&.q„)
g &

—[&II.X(lI)+" +gn'X(ln) J (A10)

Ri(q) =2 Q~(q)(T ')» (q). (A11)

We choose the matrix T equal to the unit matrix at the
E corner such that

From the definition Eq. (A5) the Fourier transform of
R&,(l) is given by

In Eqs. (A14) and (A15) the sum X is over all the 15
modes, whereas X, X' are restricted to the values

Because of the choice that T», , (q&i) = &&» we obtain
from Eq. (A9),

6v(qz) = ~~v, ~» (qz) =~o'(qz) 4&, , (A16)

when we note that the harmonic frequencies o&o p&qg)
of the I"25 phonon modes are independent of X. From
Eqs. (A2) and (A5), R&,(l) may be related to the dis-
placement of the individual ions u (lk) by

(A12)
R&,(l) =—P e'o &'& Q (Qm )e *P.'qk)

R~(qz) =Q~(qz) .

g qx' O, al'

&&(T ')», ,(q)e 'o'x&"+"&~&&u (l'k). (A17)

This very complicated relationship involving two
Fourier transforms and a dependence on the matrix
T» (q) should be compared with the equivalent very
direct relationship given by Eq. (2) in the text.

The expectation values are related by

A&,
——P Q(m&)e 'o &x&'&+x&~»—e *'P&q&ik)A (k), (A18)

where

However, for an arbitrary point in the Brillouin zone,
Rq(q) will in general be a linear combination of all the
harmonic normal-mode coordinates as indicated by
Eq. (A11).

In order to obtain from the Hamiltonian equation
(AS) a reduced Hamiltonian which describes only the
three degrees of freedom in which we are interested, we
separate out all the terms which contain only the oper-
ators fRz(l), P&(l)), X= 1, 2, 3 for which R&,(q~) is equal
to the normal-mode coordinate Q(q») of the three
degenerate I'~5 modes. Further, we choose the matrix
T» (q) such that the two three-component objects

R(l)=—(Ri(l),Ro(&&),Ro(l)),
P(1)—=(P (~)» (1),P (1)),

(A13)
(R&,(l)) =A &,

e*'o&i x&"

(u (kl))=A (k)e'oui x&'&.
(A19)


