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Theory of Resonant Optical Second-Harmonic Generation from a
Focused Gaussian Beam*
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Optical second-harmonic generation (SHG) from a focused beam is studied using the methods and
results developed in the previous paper. We consider specifically SHG from a Gaussian beam in a uniaxial
medium such as lithium niobate, where phase matching is possible perpendicular to the optic axis, so that
it is possible to neglect double refraction. An analytic expression for the single-harmonic output is given
for the limiting cases: (a) when the nonlinear medium lies in the near fields of both the single-harmonic
resonator and the Gaussian fundamental beam; (b) when the nonlinear medium lies in the far field of both
&hese. For the general case, numerically computed curves are given for the dependence of the output on
phase matching, focus position, and focusing. The optimum value of the focusing parameter l/eo (where i
js the length of the nonlinear crystal and so is ~ the confocal parameter of the fundamental beam) for
conversion into the Gaussian single-harmonic mode is i/so=5. 65.

To avoid reQection and refraction at the surfaces of
the nonlinear dielectric it is assumed to be imbedded in
a material of the same refractive index. It is also as-
sumed that the mirrors of the resonator are transparent
to the fundamental beam and that the alignment of this
beam to the cavity is perfect. The theory may be
extended to cover the case of imperf ect alignment as
indicated in I.

In the small-conversion approximation the problem
splits into two parts. First, there is the calculation of
the increase in the various second-harmonic mode
amplitudes produced by a single pass of the dielectric.
This calculation is also relevant to the case of "free"
(i.e. , in the absence of the second-harmonic resonator)
SHG, where the second-harmonic beam parameters are
determined directly by the fundamental beam param-
eters. In the resonant case these parameters are deter-
mined by the cavity. The second calculation is the
determination of the mode amplitudes in the resonator
and hence the output using the previous results and the
loss parameters of the resonator. This part follows
exactly the method of ABD and BK. Absorption in the
nonlinear media will be neglected in the calculation of
the single-pass outputs since its inclusion produces no
new effects except that an optimum crystal length can
then be defined which depends on the amount of absorp-
tion present at each frequency. ' All absorption is in-
cluded in the calculation of the resonator output as
part of the resonator losses.

From I, we see that the mode functions of the second-

1. INTRODUCTION

HE problem of resonant second-harmonic genera-
tion (SHG) in the small-conversion approxima-

tion has been treated by Ashkin, Boyd, and Dziedzic'
(ABD) and by Boyd and Kleinman' (BK) using plane-
wave theory and the concept of coupling coefficients due
to Kogelnik. ' We show in this paper how this problem
becomes more transparent and much simpler using the
coupled-mode formalism developed in the previous

paper, ' hereafter referred to as I. This problem is the
simplest to which this formalism may be applied, since
in the small-conversion approximation there is no
reaction back on the fundamental and hence only its
original Gaussian mode need be considered.

We consider a traveling-wave Gaussian beam
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FIG. 1. Second-harmonic resonator cavity.

where (t——2s/&swot'='/'o, and so is s the confocal

parameter of the fundamental beam in the medium.
This beam impinges on an open resonator containing
uniaxial nonlinear dielectric orientated with its optic
axis perpendicular to the axis of the resonator (Fig. 1).

As before, lithium niobate is taken as the nonlinear

dielectric. The phase-matching condition can then be
satisfied and can be controlled by means of the crystal
temperature. '
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harmonic cavity are given by
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The rate of change of the 2n2mth second-harmonic
mode amplitude 8&„,& in the nonlinear medium is given
by Eq. (5.13) of I:

dB„ /ds= C„„A', (1 3)

where, since by symmetry only even modes will be
generated, the notation has been simplified by replacing
2n2m by nm. The fundamental mode parameters have

(1 2) also been omitted since only one mode of the funda-
mental beam is being considered. The coupling coeffi-
cient C„ is given by the equation
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where Dk=kp —2&1, w=wol/v2W02 The expression for the coupling coefficient may be simplified by noting that
for Qk«k ik 2, we have

and

where 0= —(1—1/e'). Thus C becomes

w'$1 —$2= 0

PW2$1 —$2 = —epw2$10,

(1.5)

n„mel/2(pW2 —1+iPW2$10) n(W2 1)mel~»
C„

w0(21 i() (e—'w'+ 1+iPW'g, p) "+«(2W+21) m+'/'
(1 6)

where n represents the normalizing coefficients.
In the small-conversion approximation the funda-

mental mode amplitude is assumed constant; hence

and (1.7)
o/Opd 2
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where s= 2 ~, s'2 are the boundaries of the nonlinear
dielectric. The physical length of the dielectric is thus
l= zg —s2 ~

2. NEAR-FIELD WEAK-FOCUSING LIMIT

This is the case treated by ABD when the nonlinear
dielectric lies within the near field of both the second-
harmonic and the fundamental beams, i.e., where both
$1«1 and $2«1. By this method, two important aspects
of the problem are brought out immediately ~ first, the
variation of the coupling coefficients with the relative
spot sizes of the two beams; second, the new phase-
matching condition.

A. Lowest-Order Coupling Coo

To the first order in $1, we may approximate

(PW2+]+ie2w20(1) 1/2

—ie w 0)1= (epw2+1) '" exp . (2.1)
2 (epw2+1)

Thus the variation of the output in the lowest-order
mode with spot size is given to a good approximation
by the function

F(w w ) =e'/'/w (Pw'+1)'"(w'+1)"' (2 3)

This has been referred to as the optimum phase-match-
ing condition. ' When m = 1.01, this becomes

Ak = —0.99/klwp12. (2.5)

For constant mo~, this function increases with decreasing
w (i.e. , decreasing wpl). Since the resonator mode
functions are only valid for m 0&))X, this just implies
that for maximum output the fundamental spot size
'Ko] must be as small as possible, as would be expected.
For constant wol the variation of F(woi, w02) is shown in
Fig. 2. The function has a maximum at zv= e '~', which
for P = 0.96 (an approximate value for lithium niobate)
is equal to 1.01.

Substituting for b ——2s/kiwp12 in Eq. (2.2), the new
phase-matching condition can be seen ilrimediately to be

gk = —(k,wpi') —'t 1—e'w'0/2(e~w'y1)). (2.4)

6 D. A. Kleinman„A. Ashkin, and G. D. Boyd, Phys. Rev. 145,
Using this approximation, we have from Eq. (1.6) 338 (1966).
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V
1.0

I xG. 2. Variations of the output amplitude of various modes of the
second-harmonic with the relative spot size m= mo]/V2og.

In the plane-wave limit mpy~ ~, this expression
tends to the usual 6k=0 as expected, but it can be
substantially different from this limit for normal experi-
mental spot sizes ~10 ' cm.

B. Higher-Order Coe%cients

'g/hen t.zg —1 is not near zero, the same approximation
procedure as that used for the lowest-order coeKcient
may be used, and from this we obtain

(w2 1)m(epw2 1)n

C = exp i6ks+ipi
(W2+1)m+1/2(e2W2+ 1)n+1/2

/2 2/2+1
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The spot size function

(w2 1)m(e2w2 1)n

~nm(WP1, WP2) = (2.7)
el/2W (W2+1 )m+1/2(e2W2+1 )n+1/2

again has the property that when the second-harmonic
spot size mp~ is held consta, nt, it increases with decreas-
ing fundamental spot size mo~. %hen the fundamental
spot size is held constant, the function has two distinct
maxima which for e= 1 occur at reciprocal points. The
variation of a few of the lower-order functions is plotted
in Fig. 2 for 8= 0.98. It can be seen that the value of m

at which the maximum occurs increases with increasing
mode number. This is shown by the similar function
which occurs in the two-dimensional problem:

1 (2/2+1)e'w'
Xexp 2s Dk+ —1—

kiwpi' 2(e'w'+1)
(2.11)

and are negligible compared with Cpp, which has its
maximum in this range of m.

3. FAR FIELD

The second limiting case which ma, y be evaluated
analyti'cally is the case when the nonlinear dielectric
lies in the far field of both the fundamental and second-
harmonic beams. This case has little practical impor-
tance, but it is included for completeness. Under the
far-Field approximations ti))1, (2))1 Cpp can be written

Coo=
—npp / ki wpi')

~id, kz

wp2(w2+1) '/'w ( ieppsP)—

and hence the second-harmonic output from a slab of
dielectric length I= a~ —sq is proportional to

z2 ~iDkz

dz)
~3/2

a

which becomes, on the assumption that the thickness of
the slab is much smaller than its distance from the focus
of the beams l/s(&1,

~ihkzI l

I— ~iZ!kzd~ )
s 3l2

to the erst order. The phase-matching condition in this
limit is just that which arises in the plane-wave case and
the output varies with the usual sin(-,'dkl)/-, 'Akl.

Phase matching for the nmth mode occurs when

1
— ) /2 222+1—1+- (2.10)

kiwp12 — (epw2 —1 2(e2w2+1)

This expression depends on n, the xs-plane mode
number, but not on the other mode number m. Thus it
can be seen that by suitably adjusting the phase match-
ing and the relative spot size to some extent, the output
in a particular mode may be enhanced, although, in
general, the output in the lowest-order mode will
always be dominant.

If ~ew —1~&(1, then all the coefFicients except Ci,
are of higher order in (1 than the first and hence may be
neglected in the near-held approximation. The C~, are
given by

Qim(w —1) M w pfi
Cg

wp2(w2+ 1)m+1/2(e2w2+ 1 ) n+1/2

(w +1) ~ (2 8) 4. INFINITE-CRYSTAL STEEp-FOCUSING LIMIy
for wliich

w', =4n+1& f(4n+1)2 —1)'/2.
In the limit of an infinitely thick slab of dielectric, or,

(2.9) equivalently, the steep-focusing limit, the expression
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asynonetric. The optimum phase-m t h'a c Hlg PosltloIl
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moves away from 6k=0 and the central peak becomes
wider on the side 6k=0, engulfing the smaller peaks.
This marks the increasing effect of the focusing terms
in the denominator of the integrand of Eqs. (5.1)
a,nd (5.2).

If the Gaussian beams are considered as a sum of
plane waves propagating over a range of directions, the
reason for the asymmetry becomes apparent. When
Ak &0, the fundamental and second-harmonic refractive
index ellipsoids do not intersect for any direction of
propagation; hence none of the constituent plane waves
is phase-snatched. When 6k&0, the index surfaces

FIG. 13. Variation of the second-harmonic output in the 0-2
mode with phase matching, with the focus at the face of the
crystal.

intersect for some direction of propagation, and so
there exist plane waves in the sum which are phase-
matched. The steep-focusing infinite-crystal effect can
be seen clearly in Fig. 9 as was previously pointed out.
All these curves are consistent with those given by BK.

Figure 11 shows the variation of the output with
focusing, at the optimum phase matching and optimum
relative spot size for three positions of the focus. With
the focus at the center of the crystal the maximum
occurs at l/so=5. 65, which may be compared with the
result given by BK for "free" SHG of l/so ——5.68. The
slight difference between the two results may be ex-
plained as follows. If the second-harmonic generated in
the absence of a resonator is regarded as being Inade up
of a number of resonator modes, the higher modes will
contribute a small amount to the total. The higher
modes have their maximum output at a higher degree of
focusing than the lowest-order Gaussian mode and
hence the maximum output from the sum will occur at
a higher degree of focusing than the maximum output
for the lowest-order mode.

With the foci of the beams at the entry face or exit
face of the crystal, the maximum occurs at l/so= 3.09 as
shown in the second curve of Fig. 11.This figure would of
course be the optimum required if the second-harmonic
resonator were planoconcave. The third curve repre-
sents the case when the focus is ~ the crystal length
outside the crystal. There the curve has an early maxi-
mum and falls off sharply as the focal region withdraws
from the crystal. Also shown in Fig. 11 is the output in
the 0-2 mode under this same conditions of phase
matching and spot size as the corresponding curves for
the Gaussian mode.

Figure 8 shows the variation of output with focus
position for several relative crystal lengths at optimum
phase matching and spot size. Figure 9 shows the
variation of the shape of the output curve with phase-
match angle as the foci move away from the center of
the crystal. As expected from the consideration of the
far-field limit, the optimum phase-match position moves
toward 6k=0 and the shape of the curve approaches

sin(-', hkl)/-', Dkl.

A greater range of Ak is shown on Fig. 10 for the case
when the focus is at the face of the crystal. It can be
seen that the minima have moved up from zero and the
curve has taken on much of the form of the steep-
focusing limit. These effects may be shown to be due to
the increasing effect of the anisotropy of the medium by
expanding the integrand in Eq. (4.1) in powers of
e= —(1—E~/Eg).

B. 0-2 Mode

When the various parameters have been adjusted for
optimization of the second-harmonic output in the
Gaussian mode, the 0-2 mode n=0, m=1 of the higher
modes will contribute the most to the output. The
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output in this mode is given from Eqs. (1.6) and (1.'1) by

(Xo]
&0~=-

~O2

gm (eP~P 1+MP~Ppt&)eikkz
ds.

(e'w'+1+ie'm'pb) "'(1—i&&)

when the foci are at the center of the crystal and

[Cpp/Cpi. (
-50

when the foci are at the entry or exit face.

6. CALCULATION OF OUTPUT FROM
RESONANT CAVITY

The calculation of the output of the cavity follows
the method given by ABD. Referring to Fig. 1, Co is
deined as the amplitude of the relevant mode just inside
the crystal exit face, and re'& is the power loss parameter
of the cavity. This parameter includes all losses, diffrac-
tion, reQection, absorption, and the loss due to the
output. In the absence of SHG after a single round trip
the mode amplitude would thus be

C= Cpre'&. (6.1)

Since the second-harmonic power is only generated as
the wave travels from left to right, the amplitude in the

The same computer program was used to evaluate
this integral as was used for the Gaussian mode. Figures
12 and 13 show the output variation of this mode with
phase matching for a crystal of length //sp=5. 65, the
optimum value for the Gaussian mode. Kith the foci
of the beams at the center of the crystal (Fig. 12) the
output exhibits a marked double peak which is present
at all the crystal lengths. The relative heights of these
peaks change with crystal length. As the focus moves
away from the center (Fig. 13) the second peak de-

creases in height and the curve takes on the form of
those of the Gaussian mode. The position of the twin
peaks in Fig. 13 changes very little with varying crystal
length; this gives rise to the dip in the curve for the
0-2 mode, foci at the center, in Fig. 11.Both curves for
the Gaussian and 0-2 modes are drawn under the same
phase-matching conditions, those which are optimum
for the Gaussian mode. The dip occurs as the optimum
phase-matching position for the Gaussian mode moves
through the region between the twin peaks of Fig. 12.

Although the output variation with relative spot size
for the Gaussian mode has the form indicated on Fig. 2

at the optimum length, the curve for the output in the
0-2 mode differs from that of the 2-0, a,nd is shown
dotted in Fig. 2.

When the Gaussian mode is optimized, the relative
outputs for the two modes are

i Cpp/Cpl i
100

presence of SHG is given by the equation

Cp= Cpre*i'+Cg, (6.2)

where Cq is the second-harmonic generated in a single
pass, the quantity which has been discussed in the
previous sections.

Rearranging Eq. (6.2), we have

Cp= Cg/(1 re'i')—, (6 3)

V'. CONCLUSION

In this paper, we have discussed the theory of
resonant SHG from a Gaussian beam using the methods
and results of I.Resonant SHG from a Gaussian beam
is the simplest situation to which this theory can be
applied. We have shown that the results are consistent
with those given by previous authors using a different
method.

We have examined in detail only the output into the
lowest-order mode. The theory applies without modi6-
cation to any higher-order mode. Thus the contribution
from each mode to the total output can be determined
for any value of the various resonator parameters. The
erst sections of the paper also apply to "free" SHG
(i.e., in the absence of a second-harmonic resonator),
when the parameters of the second-harmonic modes will
be determined by those of the fundamental.

The theory can be extended using the results of I to
SHG in the low-conversion approximation from any
given mode and hence from a sum of modes, and also
to the case of sum and difference frequency mixing in
the low-conversion approximation.

ACKNOWLEDGMENTS

I acknowledge with pleasure the help and encourage-
ment given by Dr. E. H. Hutten and the many helpful
discussions with Dr. M. J. Colles and Dr. R. C. Smith
of Southampton University.

and thus the power output of the resonator is given by

r=~~c,
t /(1 —2 co yy '), (6.4)

where t is the transmission coe%cient of the output
mirror. As pointed out by ABD, this output I' can be
much greater than the single-pass output ~C~t', and
hence the second-harmonic conversion can be much
enhanced by the resonator.

The tuning of the resonator through the parameter
p can be used to discriminate against unwanted modes,
since the modes resonate at slightly different fre-
quencies. When the resonator is tuned for optimum
output in the lowest-order Gaussian mode, the output
in the 0-2 mode ca,n be as small as 10 4 of that in the
Gaussian mode. This ratio of course depends on the
resonator parameters.


