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A general method of approach to nonlinear optical problems involving traveling-wave beams produced
by the spherical Fabry—Perot-type open resonator has been developed. It is shown how coupled-mode
equations can be obtained for the nonlinear interaction of these modes from Maxwell’s equations describing
the wave propagation in the nonlinear medium. The coupling coefficients for second-harmonic generation
are calculated as an example of the use of the method. From these general results, effects arising from

position and strength of focusing may be obtained.

1. INTRODUCTION

REVIOUSLY'* the theory of nonlinear optical
effects has been formulated in terms of plane-wave
interactions. The effects produced by focused beams
have been studied by analyzing the beam into its con-
stituent plane waves and then appealing to the plane-
wave theory.>=8 This method has been used with success
by Boyd and Kleinman® (BK) to study second-harmonic
generation in the small-conversion approximation in
detail. Since the method precludes studying the inter-
action between two or more focused beams, it cannot be
used in a more complicated situation. For example, BK
have to make a drastic approximation which is valid
only for the very small gain region when applying the
method to parametric amplification when there is
interaction between the signal and idler beams. The
basic difficulty arises since the plane-wave method
leads to an infinite set of coupled differential equations
for the amplitudes of the constituent plane waves in
each beam. This set of equations cannot be approxi-
mated in any sensible fashion.

We put forward in this paper a method by which this
problem may be overcome. We show that by basing the
analysis on the modes of the open optical resonator,
which are the natural modes of the physical situation,
a set of differential equations may be obtained which
can be approximated in a logical fashion. Boyd and
Gordon'® and Boyd and Kogelnik!! first derived the
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Hermite-function approximation to these modes by a
diffraction-theory approach, and later Kogelnik and
Li2 (KL) derived the same form from the scalar wave
equation. KL considered an almost plane wave propa-
gating in a homogeneous isotropic linear dielectric in
the positive z direction. In the absence of absorption,
the electric field of this wave may then be written in
the form

(1.1)

where k= 2m/\, and 8(x,y,2) is a slowly varying function
of x, 9, and z which represents the differences between
the waveform considered and a plane wave. Substituting
this form into the Helmholtz equation arising from the
wave equation and making the approximation

E(x,y,2)= 8(x,y,2)e =,

|628/032|<<k|88/9z] , (1.2)
they obtained the following equation for &(x,y,2):

I?E 928 a8

—4——2ik—=0. (1.3)

dx?  9y? 03

KL obtained a set of solutions to this equation which
may be written in the form

P \/j(1+is)(n+m)/2

B wo( 27 Im ) 2(1 —4§) (vt 1241

xV2 yV2 —(%*+y%)
Xf] ,l<—;‘)—>H m(‘“w—> exp(;vm) , (14)

where £=2(z— f)/kwe?, w=wo(14£)%, z= f denotes
the focus position, w, the spot size at the focus position,
and H,(x) the Hermite polynomial of degree ». Multi-
plied by the factor e~%= this equation then describes
the form of the traveling wave derived from the #mth
mode of a resonator cavity which is centered on the
axis x=0, y=0. The traveling wave may be considered
as part of the standing wave in the resonator cavity, or
the wave which propagates into space when one of the
mirrors of the resonator is partially transmitting.

11 G. D. Boyd and H. Kogelnik, Bell System Tech. J. 41, 1347
(1962).
12 H. Kogelnik and Ti Li, Appl. Opt. 5, 1550 (1966).
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Using the orthonormality relations of the Hermite
functions, we may derive the relations

/ / Enm* 8rsdxdy = 0nrOms -

Subsequently, the analysis is restricted to the class of
traveling-wave fields which may be written as a sum of
the resonator modes:

E= Z Z A nmgnm(x,y,z)e—ikz. (1.6)
n=0 m=0

Thus for the optical fields considered these traveling-
wave modes form a complete orthonormal set. For the
fields of interest, those inside an optical resonator and
those emanating from an optical resonator through a
partially transmitting end mirror, an expansion of the
form (1.6) is obviously possible.

2. PROPAGATION IN UNIAXIAL MEDIUM

The method is developed for nonlinear interactions in
uniaxial media, since this is the most important case,
but the general approach is obviously valid for isotropic
media where the equations are simpler. We consider a
beam propagating in the positive z direction in a
uniaxial medium which is oriented so that its optic axis
is perpendicular to the axis of the beam and is in the
x direction. It is assumed that phase matching may be
achieved with this configuration. Lithium niobate is
taken as an example of a material for which this
criterion is satisfied. The method may be generalized to
the case when the beams propagate at some angle to the
optic axis, but then the assumption of small anisotropy
has to be made.

The axes chosen are principal axes of the dielectric
tensor, which therefore may be written

ez 0 O
e= |0 ¢ O0].
0 0 e

Maxwell’s equations governing the propagation in a
linear medium at frequency w may be written

2.1)

VX(VXE)—(w?/c?)e-E=0, (2.2)
and the divergence equation is
V-(e-E)=0. (2.3)

In the two-dimensional problem when there is no
variation of the fields in the y direction, i.e., 9/dy=0,
these equations split into two groups. The first for the
ordinary wave is

OE,

dx?

9E, w?
+—e.E,=0,
dz2 2

2.4)
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and the second for the extraordinary wave is
0k, 0, w?
—————€E,=0, (2.5a)
(1.5) dxdz 922 2
02E, 9’E, w?
————€.E.=0, (2.5b)
0xdz 9x? (2
0E, OJE,
€ €, =0. (2.5¢)
dx 0z

Following the method of KL, each set of equations
may be reduced to a two-dimensional equation of the
form of Eq. (1.3) for a set of resonator modes. The
derivation for the ordinary set follows exactly that of
KL. For the extraordinary set (2.5), we put

Ex(x;y7z) = gz(x)yrz)ehikez ’

. (2.6)
E.(x,y,2)= 8.(x,y,2)e" %,
where k2= (w?/c?)e,. From (2.5¢) we see that
PR P @7

and hence the longitudinal field may be neglected, as
in the three-dimensional isotropic case. Substituting
from (2.6) and (2.5¢) into (2.5a) and making the
approximation (1.2), we obtain the equation

€, 028, 08,
— ———=2tk—=0.
€, O0x? 9z

(2.8)

This equation leads to a set of modes in the usual way.
These modes have been studied in detail by Bhawalkar,
Goncharenko, and Smith.¥ Thus a two-dimensional
resonator supports two independent sets of modes with
orthogonal linear polarization. The spot sizes of the two
sets are related by

€ 1/2
(wo)extraord = (—) (wo)ord . (29)

€z

In three dimensions the situation is more complicated
since the extraordinary and ordinary waves do not
propagate independently. However, it is possible to
define a set of ordinary modes in the absence of an
extraordinary polarized field and vice versa. Equations
(2.2) and (2.3) written in full are

E, 8E, 9E, 0E, w?
-1 —

+ - ——e,E,=0, (2.10a)
0xdz 0xdy 032 0y c?
9’E, 02E, O9*E, 9%E, w’

} - - ——e,E,=0, (2.10b)
0ydx dz0y 0x? 022 (?

13D, D. Bhawalkar, A. M. Goncharenko, and R. C. Smith,
Brit. J. Appl. Phys. 18, 1431 (1967).
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9’E, 9*E, 9*E, O°E, w?
4 — e.E,=0, (2.10c)
9z0y 9z0x 9dy? 9x? (2
dE, OJE,

dE,
+e,—t e, =0. (2.10d)
dx dy Jz

and

€z

It may be seen immediately that there exists a
solution for which the extraordinary field is identically
zero. Then the equations reduce to

oroE, JE,
s Iy
dxL dy 0z

O°E, OE, OE, o

(2.11a)

- e, =0, (2.11b)
9z9y dx* 9zr  (¢?
02E, 0*E, O0%E, o?
czEz=0, (211(:)
dzdy 9y?  0x? (P
dE, OE,
=0. (2.11d)
dy 0z

Equations (2.11b)—(2.11d) are just the equations
which arise from Eq. (2.2) in the case of an isotropic
medium. As before, by making the substitution

_ — ik
Ey,.= &y.e7%,

(2.12)

where k2= (w?/c?)e,, and making the approximation
(1.2), we obtain

38,

0x?

928,
O ik

9y? 0z

98,
=0.

(2.13)

From (2.11d), |E.|~k;,!|E,|, and the longitudinal
field may be neglected. There does not exist a solution
of Eq. (2.10) for which the ordinary field is identically
zero; however, there is a solution consistent with the
assumptions

E,, .= 8,6 "0 (2.14a)
and

|Ey| ~ | Eo| ~k71| E| . (2.14b)

Neglecting terms of order k!|E;| in Egs. (2.10)
leads to

9’E, 0°E, O0’E, w?
e E,=0, (2.152)
dxdz 09z 9y? c?
9?E, 9*E, IE, o?
{ - Cz-Ey =0 N (2.15b)
dydx 9dydz 9z (P
9E, 9*E, o’
——eE,=0, (2.15¢)
929y 9z0x c?
dE, OE,
e—+e—=0. (2.15d)
ox 9z
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Substituting from (2.15d) and neglecting Eq. (2.15c)
for the longitudinal component, we obtain

e; 0°E, O0°E, O’L, o?
= L !

T T [ Can:=0 (216a)
e, 022  9y? 922 ¢?
and
’E, w? e\ 02E,
-I———ezEy=<1 —-—) . (2.16b)
022 ¢? €./ Oxdy

Equation (2.16a) leads to a set of modes in the usual
way. Note that because of the €./, factor the surfaces
of constant phase will be ellipsoidal and not spherical
as in the usual case. Thus a resonator designed to sup-
port the extraordinary modes must have ellipsoidal
mirrors. This was first pointed out by Bhawalkar et al.3

Substituting Eq. (2.14) into (2.16a) gives

a8, €\ 928,
—2ik ;= <1 —~—>——e‘i(’°@_’“ﬂ>z .
0z €,/ 0xdy

(2.17)

Since k.#k,, the magnitude of the ordinary wave
cannot grow but just oscillates throughout the medium
and remains negligible.

Because the two different sets of modes are supported
by differently shaped end mirrors to the cavity, a given
cavity can only support one set polarized either as an
ordinary or an extraordinary wave.

3. COUPLED-MODE EQUATIONS
In a nonlinear-medium equation (2.1) becomes
VX (VX E)—(w?/c?)e- E= (4me?/c®)PVL | (3.1)

where P¥Z denotes the polarization arising from the
nonlinear response of the dielectric at frequency w.
Under the same condition the divergence equation

becomes V-(e-E)= —4zV.PVL, (3.2)

Proceeding exactly as in the linear case, we obtain
the equations

28, 9%*§, a8, 4drw?
—t———2ik—=———P, Ntz (3.3a)
ox?  0y? 9z c?
and
€, 028, 0%8, 98, 4rw?
— —2ikg— = ———P Nleikez  (3.3b)
e, 9x* 9y? 0z c?

for the ordinary and extraordinary beams, respectively.
The term arising from V-P¥Z has been neglected, since
PVL will, in general, arise from fields which vary slowly
in the x-y direction, and the relations

9
—y.PNL
ox

4rw?
<<_—] PINLI ’
c2
(3.4)

4rw?
K2

l 0
—V-PNL
dy c
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will hold. Since the nonlinear polarization is a small
perturbation in Egs. (3.3), the coupled-mode approach
may be used for their solution. Thus writing the fields

6=5 £ Am@bumer), (50
E:=2 2 Bum(2) Enm®(%,9,2), (3.5b)
n=0 m=0

where the coefficients 4 .., and B, are slowly varying
functions of z, leads to the equations

. o A dre?

ZO ZO —2iky 8nm°=——2—~P,,NLe”°v’ , (3.6a)
n=0 m= 2 ¢

. @ dBom drw?

ZO ZO —2iks y Eum®=—— PNtk (3.6b)
n=0 m= 2 ¢

where the second derivatives of the coefficients have
been neglected.

Using the orthonormahty of the modes, we obtain
the equations

dA om 27ruo2
gikoz / / n*P,Nldxdy, (3.7a)
dZ 062 —o0 J —0
dB,m, 211'1@2

eikez e*P Ndedy (3 7b)
dz koc? —o0 J —0

for the rate of change of the amplitude of each mode of
the field due to the nonlinear polarization. These
equations apply to any nonlinear interaction. To
proceed further, we must specify the functional form of
the nonlinear polarization in order to evaluate the
integrals. We will consider second-harmonic generation
(SHG) as the simplest case and then briefly parametric
amplification.

4. SECOND-HARMONIC GENERATION

Second-harmonic generation arises from the polariza-
tion quadratic in the electric field. Taking lithium
niobate as our example, the relevant coupling polariza-
tion is given by

Po=di B E2e, (4.1a)

PRo=1duE,E”. (4.1b)
The ordinary field at the fundamental frequency w is
coupled to the extraordinary field at the harmonic
frequency 2w, and other couplings are negligible because
of the phase-matching effect.

11 W, H. Louisell, Coupled Mode Theory and Parametric Elec-
tronics (John Wiley & Sons, Inc., New York, 1960).

15 G. D. Boyd, R. C. Miller, K. Nassau, W. L. Bond, and A.
Savage, Appl. Phys. Letters 5, 234 (1964).
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Substituting from Egs. (1.6) into (4.1), we obtain the
form for the nonlinear polarization

va —_ d15 Z A "w*Bkl2w g”w* gkl2we—i(k2—k1)z , (4.28,)
7,k,r,8
Pro=1ds Y A, Ari® 8@ Erive 1, (4.2b)
jk,r,8

where &, is the wave number of the extraordinary beam
at frequency 2w, and k; is the wave number of the
ordinary beam at the fundamental frequency w.

These expressions may now be substituted into
Eq. (3.7) to obtain the coupled-mode equations for
SHG:

dA mn®/dz=C,

mnrsklwA "w*Bkl2w ) (4-334)
dBna2¢/dz=C

(4.3b)

mnrsklzwA "“’A klw Py

where we have used the summation convention, and
the coupling coefficients are defined by the equations
21riw2d15

Cmnraklm =— g~k
k1C2

X/ / 8mnw* g“w* 5kzz"’dxdy , (4.48.)

Amiw?ds

k262

Comnrart®® = — Al

<[ [ switsimy, @

where Ak=Fk,—2k;.
The form of the coupling coefficients suggests the
relation

2ok 4.5)

'ﬂwcvmm'sklw= "'7l2mcmnrskl

for interaction in a lossless medium when Kleinman’s
symmetry condition relates ds;= di5. This relation may
be proved, in general, as follows.

The total energy flux carried by the two fields is
represented by the expression

Z Z (ﬂwAmnwAmnw*+772men2menzw*)

n=0 m=0

(4.6)

(where 7 denotes the refractive index), which must
remain independent of z in a lossless medium. Differ-
entiating this expression and substituting from Eq.
(4.3), we obtain, on rearranging the dummy indices,
the equation

(ﬂwcmnrsklw+ ﬂZownrakl2w*)A mnw*A rsw*Bklzw
+c.c.=0. (4.7)
This relation must hold for all possible values of the

mode amplitudes; hence Egs. (4.5) must be satisfied by
the coupling coefficients.
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5. CALCULATION OF COUPLING in the form
COEFFICIENTS FOR SHG
w0 J=n i=2] g=n—j l=u v—q( 1)""‘1
In order to calculate the coefficients we need only ——(27r)”22 X X Ty —
substitute the explicit form of the modes from Eq. (1.4) w0 5=0 =0 ¢=0 1=0 v=0 7!
into Eqs._ (4.4) and carry out the integration. Copreri2® NN NN,
is then given by X
7/\1 q I/ \v

Cmnrskl2w ) .

8\/'2“iw2dalemkz(1+i£2)(m+n)/2 Xb—2;(a\/j)2J—rpl+2vsi-—l—Zq—Zvﬂn-i—?q_ (5_6)

Foc?(2mtntrtathtly, by ly 15 1k 1l 1) 12(1 — i £y) (mtn) 1241
(1 +i£1) (H—&HHJ)/2Imrky[nsl:c

(1 —2f)) rtetbtDdI2t2(¢, /e ) 49097001

, (.1

where the integrals In.x¥ and I, are given by

0 yV2 V2 V2
e[
—o0 Wa w1 w1y

y? 292
Xexp<— ) , (5.2a)
wozz(l'i‘ifz) w022(1 —ifl)

€\ 2xV2 xV2 V2
tue= [ s ((2) )
—o0 w1 w1
€42 242
Xexp(— -
ewe (1+it)  wa(1—ik)

In these equations the subscript 2 refers to quantities
associated with the second-harmonic field, the subscript
1 to those of the fundamental field. The integrals (5.2)
are essentially the same; they may be evaluated with

the help of the generating function for Hermite
polynomials

) . (5.2b)

o Hn(x)s"
exp(2sx—s?) =3 —

n=1 n!

(5.3)

L will be the coefficient of t”s"p* multiplied by mlrlk!
in the expansion of the following integral in powers
of £, 5, and p:

00

» .
I =:/~2i exp[ —6%u?4-2u(V2at+s+p)

- —2—s2—pdu, (5.4)
where

u=xV2/wi, a=wi/wV2,
and
= 042(1 —152)+ (1+ ’l«fl) .
Carrying out the integration, we have
I=(y/8) (31
Xexp[ (eV2+s5+$)2 /02— 2 —s?—p*].  (5.5)

Expanding the exponential as a power series and
using the binomial theorem, Eq. (5.5) may be written

Now the required coefficient will be given by the sum of
the terms in this expansion, for which

2n—i—2q=mn,
i—l—2g—2v=r, (5.7
I42v=kF.
Adding these three equations, we obtain
n=31(m+r+k). (5.8)

Therefore m-+7-k must be an even integer, which just
expresses the symmetry conditions: An odd plus an
even fundamental mode couples to an odd second-
harmonic mode, an edd plus an odd fundamental mode
couples to an even second-harmonic mode, and an even
plus an even fundamental mode couples to an even
second-harmonic mode.

The coefficients can be evaluated although the final
expression is rather complicated in general. However,
the low-order coefficients are simple in form; for
example,

Tooo"= (w1/b)(3m)1/2,
Toaq¥= (w1/b)(3m)'*(1/6—1),

L= (w1/b)(3m)'/21/2b.
The most important set for which we will give an
explicit expression are those coefficients resulting from

the coupling between the lowest-order Gaussian
fundamental mode and the 2%th second-harmonic mode:

Tooga¥= (w1/0) (37) V(22 /0 —1)"(2n) /m!.  (5.10)

Substituting for «, b, and w from Eq. (5.4), and
defining

(5.9)

w=w01/w02V2, (511)
Eq. (5.10) becomes
@2n)! (1 —ig) (1+4-ig)nH1/2
Too2n? =wor(5m)" -
n! (1—ig)n
21 —i(wlt —&)Tn
[w (w1 —&2) | 5.12)

X .
[wH1—i(w?ti—&) ]2

To obtain the final expression we substitute this
expression together with that for Top2.* into Eq. (5.2).
Too2m® is obtained from Eq. (5.12) by just substituting
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ew for w, where &= (e,/¢,)!/? [see Egs. (5.1)]:
AVZr 2ot dg itk [(2m)1(2)1]

k262

Clodenzm?® =

OPTICAL-MODE INTERACTION

The factors f=[(2n)!]'/2/n!2" have values

n 0 1 2 3 4 6 10
f 1 07071 0.6724 0.5590 0.5229 0.4749 0.4197

and so decrease as # increases, reducing the coupling
between the lowest-order fundamental mode and the

IN NONLINEAR MEDIA 1067
ml2mp 2"
[w2 —1 —i(w2£1 - Eg)]"[é2w2— 1 —i(é2w2£1 —Ez)]m
X . (5.13)
& we(1—ik) w1 —i(w?E — &) ]2 2wl 41 —i(BwiE — &) /2
Carrying out the integration, we have
w1
I=—(mye
b
. (A4+3&)\  (V2+s4p)?
XeXpl:—g“"’(l -I—i&)(l - >+ 5

(2#, 2m)th second-harmonic mode with increasing #,m.

6. MISALIGNMENT

In calculating the expression for the coefficients
(5.13) we have made the assumptions that the two
beams propagate on the same axis and have coincident
foci. If the two beams are misaligned in any way, the
coupling will be reduced. Misalignment may occur in
one of three ways: (i) The foci of the two beams do not
lie in the same xy plane. (ii) The beam axes may be
parallel but separated. (iii) The axes may be inclined
at an angle to each other.

(i) The modification of the theory to include the
first possibility is trivial. We consider the fundamental
beam to be focused as before at z=0 but the 2uth
harmonic beam to be focused now at z= f. Therefore &,

becomes
b= 2(z—f)/k2w022 ,

and this does not affect the calculation of the coupling
coefficients.

(i) If the axis of the fundamental beam is removed
from the z axis by a distance v in the y direction, the
equation describing the mnth mode is

P V2 (1428) (mtmri2

o (2malmlr) 2 (1—ig) v 241

() ()

[x*+(y—2)?]
X exp(———w012(1 —ES) . (6.2)

With this modification, Eq. (5.4) becomes

6.1)

I=i—/v—21 exp{ —#20*+2ulatV2+s+p+ (1418 ]

—l—s*—p*)dy,

—o

6.3)
where {=9V2/w;.

._12_5-2_P2_|_

atV2
(at 2+s+1>)s“]‘ 6.4)

Thus the separation of the axes has introduced two
extra factors. The first factor is

Fyi=exp{—¢* (1) [1-(1+i&)/61},  (6.5)

which modifies each coupling coefficient since it is
independent of ¢, s, and p. The modulus of this expres-
sion is, on substituting for b,

Fy=exp(—65%),

w (1462 (w?+1) S
(0 +1)*+ (s — £)?

Thus the coupling between any two modes has an
over-all exponential decrease with increasing separation
of the axes, although, of course, there may be local
increase.

The second factor,

Fy= exp[ 2(atV2+s+p)5/b], (6.7)

has as the argument of the exponential function an ex-
pression which depends on an odd power of ¢, s, and p
and therefore it will break the symmetry condition
expressed by Eq. (5.8). Consider as an example Ipg¥,
which is identically zero under the symmetry condition
(5.8). Now it is given by

(6.6)

where

w1
Ton?=—"(3m)'/2

—P(1E) \ 2
Xexp( - . (6.8)
[w+1—i@a—£)1) b
Substituting for ¢, we have
| Cor00002¢| | 9/w01] exp(—2600? /wo12). (6.9)

Thus this coefficient is zero at »=0 as expected and
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increases with increasing separation to a maximum at
v=:tw01/2(0 ”2, (610)

and thereafter decreases asymptotically to zero. Since 6
depends on sz, this does not give immediately the
separation of the axes for maximum coupling in a given
crystal, except for the near-field case when £; and £<1
throughout the crystal.

(iii) For the case when the axis of the fundamental
beam is tilted at a small angle 6 to the axis of the second-
harmonic beam in the xz plane, the equation represent-
ing the mnth fundamental mode may be written!s

1 (1ig) w2

wor (2™ Im ) 2 (1—ig) tmtm 241

xV2 YV2
XHn(—_’>Hm<'__’>
w1 w1
s k0 6.11)
Xexp(————_———i y) . (6.
wmz(l —’I,S)
Following the previous argument, Eq. (5.5) becomes

I= (w1/b)(37)"'* exp[ (atV2+-s+p)*/b?
—V2ikOw1(ctV2+-5s+p)
— R — 2 —s2— p?].

(gmnw =

(6.12)

Again the modification introduces two new factors, one
of which modifies each coefficient and the second of
which breaks the symmetry condition (5.8). Jon? has a
form similar to Eq. (6.8):

10017/: - (wl/b) (%7!') 1/2 exp( —%k2w1202)2ik0w1a . (6 13)

The maximum coupling occurs at 8= ==1/kw;. § depends
on z.and so again this condition will not give im-
mediately the maximum coupling, except when £; and
£<1 throughout the crystal.

7. PARAMETRIC AMPLIFICATION

There are now three optical fields at frequencies w;,
w2, and w3, where wz=wi+w,. We assume that each
field satisfies the conditions such that it may be ex-
panded in a set of resonator modes.

Again taking the example of lithium niobate, the
relevant second-order polarization is given by?15

P,,‘”: d15Eyw2*E¢”3 s
_ *
Pyor=dysE, o Epn,

P = dle,,“’lEyw .

(7.1)

The pump field w; propagates as an extraordinary field
and the signal w; and idler w, propagate as ordinary
fields. Any other combination may be treated similarly.

18 H. Kogelnik, in Proceedings of the Sympossum on Quasi-Oplics,
New York, 1964 (Polytechnic Press, Brooklyn, N. Y., 1964), p. 333,
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Expanding the fields in terms of the resonator modes
and proceeding exactly as for SHG, we obtain the
coupled-mode equations

dA-mn‘”/dz= CmnrsklwlA rswz*Bklwa 3 (7'23')
dA mnwz/dZ = CmnrskleA ”wl*B“ws ) (72b)
danwl/dZ: CmnrsklwsArswlAklw2; (72(:)
where
27r1:w12d156~iAkz
Cm"rsklwl ="
k162
X/ / B 8,097 8y 3dxdy
and —0 J —w
Ak=k3—k1—k2. (7.3)

For a lossless medium we have by the same argument
as used for SHG

(7.4)

Note that this result does reduce to that expressed
by Eq. (4.5) because of the factor % in Eq. (4.1b) due
to the wy—w; symmetry.* The coupling coefficients may
be calculated exactly as in the previous case. Now they
will be complicated by the presence of three sets of
beam parameters.

In the small-conversion approximation, the case
studied by KB, only the Egs. (7.2a) and (7.2b) need be
considered. If also the approximation is now made that
in the interaction of a lowest-order (Gaussian) mode
pump beam with a Gaussian mode signal beam only
the lowest-order modes of each field need be considered,
Egs. (7.2) reduce to

dA®1/dz= C1BA*
dA*r/dz=C*BAwr*,

'r)wlcmnrsklm‘"'_ nwgcmnrsklwzz - ﬂwscmnmklwa* .

(7.5a)
(7.5b)

These equations may then be solved without further
approximation. A detailed analysis will be given in a
further paper.

8. EFFECT OF ABSORPTION AND
PRESENCE OF RESONATOR

Both the presence of absorption in the unijaxial
medium which for any medium of interest must
necessarily be small and the presence of the resonator
produce perturbation in the wave number % of the beam
considered.

In the presence of absorption, £ may be written

k=Fk4-ik", (8.1)
where k"'<<k’.
The resonant frequencies of the open optical resonator

are given by the equation
kqma=[gr+ (m+n+1) tan~1(y)]/d, (8.2)

where ¢ and_d are functions of the resonator, and qis
an integer, the longitudinal-mode number; d is the
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length of the resonator, and
¥=L[d(r+r—d)/(rn—d)(r.—d) ',

where 7; and 7, are the radii of curvature of the two end
mirrors. For any physical situation we may assume
mm<100 and hence |kgmn—FEqo00|<<kq0, for optical
frequencies. In both cases, writing k4% in place of %,
Eq. (1.3) becomes

28 9%8 a8
—+———2i(k+06k)—=0.
dx?  9y? 9z

(8.3)

(8.4)

To the approximations that have been used to obtain
this equation, the term involving 6k may be neglected.
Hence the mode shape, and thus the foregoing theory, is
unaltered by these modifications. These variations will,
of course, appear in the term ¢~ in each case.

9. CONCLUSION

A method has been developed with which nonlinear
optical problems involving the interaction of the
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traveling-wave form of the modes of the open optical
resonator can be studied directly. In general, the
coupling coefficients between the various modes may be
calculated analytically and so their variation with the
various parameters may be studied directly. Explicit
expressions have been given for some of the important
coefficients for SHG. From these general results, effects
arising from strength and position of focusing can be
obtained. It has been shown!? that the results for SHG
are consistent with those found by other authors.5?
These results will be published in further papers.
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