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Optical-Mode Interaction in Nonlinear Media*
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A general method of approach to nonlinear optical problems involving traveling-wave beams produced
by the spherical Fabry —Perot-type open resonator has been developed. It is shown how coupled-mode
equations can be obtained for the nonlinear interaction of these modes from Maxwell's equations describing
the wave propagation in the nonlinear medium. The coupling coefficients for second-harmonic generation
are calculated as an example of the use of the method. From these general results, effects arising from
position and strength of focusing may be obtained.

1. INTRODUCTION
' PREVIOUSLY' e the theory of nonlinear optical

effects has been formulated in terms of plane-wave
interactions. The effects produced by focused beams
have been studied by analyzing the beam into its con-
stituent plane waves and then appealing to the plane-
wave theory. ' ' This method has been used with success

by Boyd and Kleinman' (BK) to study second-harmonic
generation in the small-conversion approximation in
detail. Since the method precludes studying the inter-
action between two or more focused beams, it cannot be
used in a more complicated situation. For example, BK
have to make a drastic approximation which is valid
only for the very small gain region when applying the
method to parametric amplification when there is
interaction between the signal and idler beams. The
basic difficulty arises since the plane-wave method
leads to an infinite set of coupled differential equations
for the amplitudes of the constituent plane waves in
each beam. This set of equations cannot be approxi-
mated in any sensible fashion.

We put forward in this paper a method by which this
problem may be overcome. We show that by basing the
analysis on the modes of the open optical resonator,
which are the natural modes of the physical situation,
a set of differential equations may be obtained which
can be approximated in a logical fashion. Boyd and
Gordon' and Boyd and Kogelnik" first derived the
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they obtained the following equation for b(x,y,z):

8'h 8'b 88—+ —2ik —-=0.
8S2 By2 Bs

KL obtained a set of solutions to this equation which

may be written in the form
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where )=2(z—f)/kwo', w=we(1+@)'", s= f denotes
the focus position, neo the spot size at the focus position,
and H„(x) the Hermite polynomial of degree n. Multi-
plied by the factor e '~', this equation then describes
the form of the traveling wave derived from the neth
mode of a resonator cavity which is centered on the
axis x= 0, y= 0. The traveling wave may be considered
as part of the standing wave in the resonator cavity, or
the wave which propagates into space when one of the
mirrors of the resonator is partially transmitting.
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Hermite-function approximation to these modes by a
diffraction-theory approach, and later Kogelnik and
Li" (KL) derived the same form from the scalar wave
equation. KL considered an almost plane wave propa-
gating in a homogeneous isotropic linear dielectric in
the positive s direction. In the absence of absorption,
the electric field of this wave may then be written in
the form

E(x,y,s) = B(x,y, s)e '~*

where k = 2sr/X, and 8(x,y,s) is a slowly varying function
of x, y, and s which represents the differences between
the waveform considered and a plane wave. Substituting
this form into the Helmholtz equation arising from the
wave equation and making the approximation
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B'E, O'E co'——eE =0,
BxBs Bs2 c(1.5)8„*8„,dxdy=b „6,.

Using the orthonormality relations of the Hermite and the second' for the extraordinary wave is
functions, we may derive the relations

(2.5a)

Subsequently, the analysis is restricted to the class of
traveling-wave fields which may be written as a sum of
the resonator modes. '

O'E B'E o)'
——e E,=O

xBs Bx c

BE, BE.
+s.

(2.5b)

(2.5c)
E= P g A.„b.„(x,y,e)e *".

n=o m=o
(1 6)

Thus for the optical fields considered these traveling-
wave modes form a complete orthonormal set. For the
fields of interest, those inside an optical resonator and
those emanating from an optical resonator through a
partially transmitting end mirror, an expansion of the
form (1.6) is obviously possible.

2. PROPAGATION IN UNIAXIAL MEDIUM

The method is developed for nonlinear interactions in
uniaxial media, since this is the most important case,
but the general approach is obviously valid for isotropic
media where the equations are simpler. We consider a
beam propagating in the positive s direction in a
uniaxial medium which is oriented so that its optic axis
is perpendicular to the axis of the beam and is in the
x direction. It is assumed that phase matching may be
achieved with this configuration. Lithium niobate is
taken as an example of a material for which this
criterion is satisfied. The method may be generalized to
the case when the beams propagate at some angle to the
optic axis, but then the assumption of small anisotropy
has to be made.

The axes chosen are principal axes of the dielectric
tensor, which therefore may be written

Following the method of KL, each set of equations
may be reduced to a two-dimensional equation of the
form of Eq. (1.3) for a set of resonator modes. The
derivation for the ordinary set follows exactly that of
KL. For the extraordinary set (2.5), we put

E,(x,y,s)= 8 (x,y,e)e '" *,

E,(x,y,s) = h, (x,y,s)e '~'*,

where k.s= (~'/c') e,. From (2.5c) we see that

(2.6)

(2.7)

and hence the longitudinal field may be neglected, as
in the three-dimensional isotropic case. Substituting
from (2.6) and (2.5c) into (2.5a) and making the
approximation (1.2), we obtain the equation

B'8~ BB,—2ik, =0.
Bx Bs

(2.8)

This equation leads to a set of modes in the usual way.
These modes have been studied in detail by Bhawalkar,
Goncharenko, and Smith. " Thus a two-dimensional
resonator supports two independent sets of modes with
orthogonal linear polarization. The spot sizes of the two
sets are related by

0
0
.0 0

0
0
6z&

(2 1)
t/2

~0 extraord 0 ord ~ (2.9)

Maxwell's equations governing the propagation in a
linear medium at frequency or may be written

&X(VXE)—(cu'/c')e E=O,

and the divergence equation is

v ('E)=o
B2E B2E B2E B2E ~2

——..E,=O, (2.1Oa)
BxBs BxBy Bs' By' c'In the two-dimensional problem when there is no

variation of the fields in the y direction, i.e., 8/By—=0,
these equations split into two groups. The first for the
ordinary wave is

B2E B2E B2E B2E ~2—+ — — ——s,E„=O, (2.10b)
ByBx BsBy Bx' Bs2 c2

B Ey B Ey co

+ + s.E„=O, —
Bx Bs c

(2.4) ~'D. D. Bhawalkar, A. M. Gorlcharenko, and R. C. Smith,
Brit. J. Appi. Phys. 18, 1431 (1967).

In three dimensions the situation is more complicated
since the extraordinary and ordinary waves do not
propagate independently. However, it is possible to2.2
define a set of ordinary modes in the absence of an
extraordinary polarized field and vice versa. Equations
(2.2) and (2.3) written in full are

(2.3)
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~ ~s & Substituting from (2.15d) and neglecting Eq. (2.15c)

BC' BGBX Bp Bx c
gEg =0

~
2.iO for the longitudinal component we obtaj

BE, BEy BE,
+e. +e, - =0. (2.10d)

BS Bp Bs and

e, B'E B'E B'E co2

+ + + ezEe
6g Bx Bp Bs c

(2.16a)

B BEy BEg
+ =0,

Bx By Bs

BEg BEy BEy 4)

Kg~y
BsBy Bx' Bs' c'

(2.11a)

(2.11b)

It may be seen immediately that there exists a
solution for which the extraordinary 6eld is identically
zero. Then the equations reduce to

8'P.„cu' ( e.)a'Z.

as' c' k e,) axdy
(2.16b)

Equation (2.16a) leads to a set of modes in the usual
way. Note that because of the e,/e, factor the surfaces
of constant phase will be ellipsoidal and not spherical
as in the usual case. Thus a resonator designed to sup-
port the extraordinary modes must have ellipsoidal
mirrors. This was erst pointed out by Bhawalkar et al."

Substituting Eq. (2.14) into (2.16a) gives

BEy BEg BEg 6) —O

BsBp Bp BS c
(2.11c)

Bh„( e,) 82$

as k ~,J away
(2.17)

BEy BE,
+—=0.

Bg Bs
(2.11d)

e—ikpg
ytg (2.12)

where k,'= (oP/c') e„and making the approximation
(1.2), we obtain

Equations (2.11b)—(2.11d) are just the equations
which arise from Eq. (2.2) in the case of an isotropic
medium. As before, by making the substitution

Since k./k„ the magnitude of the ordinary wave
cannot grow but just oscillates throughout the medium
and remains negligible.

Because the two diRerent sets of modes are supported
by differently shaped end mirrors to the cavity, a given
cavity can only support one set polarized either as an
ordinary or an extraordinary wave.

3. COUPLED-MODE EQUATIONS

In a nonlinear-medium equation (2.1) becomes

PX(PZE) (~%2)s. E= (4~~~/c2)P» (3 1)B By B By BBy—+ —2ik, =0.
Bg Bp Bs'

(2.13)
where P~~ denotes the polarization arising from the
nonlinear response of the dielectric at frequency co.

Under the same condition the divergence equation
becomes + ( E) 4 + pNI

From (2.11d), lE, l
k.—'lE„l, and the longitudinal

6eld may be neglected. There does not exist a solution
of Eq. (2.10) for which the ordinary Geld is identically
zero; however, there is a solution consistent w'

assumptions
Proceeding exactly as in the linear case, we obtain

the equations
(2.14a)—B —i JI;O,ggE,,„„—B y.e—

'

B By B By B By 4' 4)

+ 2ik. —= P„~~e*"' —(3—.3a)
Bx Bp' Bs cIEwl-l&. l-k 'I&.

l (2 14b)

Neglecting terms of order k 'lE,
l

in Eqs. (2.10)
leads to 6g B Bg B Bg BBg 47l M

—+— —2ik,—= P,~~e'~" (3.3b)——
z Bg2 BY2 BO'E, B'E B'E co'——gE =0

BEBOP

Bs Bp c
(2 15K).

BE BE BE 07
—+ — —e,E„=O,

ByBS ByBs Bs2 C2

for the ordinary and extraordinary beams, respectively.
The term arising from V'. P~~ has been neglected, since

(2 15b) p» will, in general, arise from Gelds which vary slowly
in the x-y direction, and the relations

B Ey B E~ 07

+ e.Z.=O,
Bs'Bp BzBs c

BE BE,
+em

Bg BS

(2.15c)

(2.15d)

B 4' co
p. pivt « lP»l

Bx C

B 4m.co'
v' P» «—

l
P—"'l

Bg c

(3.4)
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th nonlinear p
'

small

p ~ 'o
q (. ,

may be use od for their solution. u

s. 1.6 , we obtain theSubstituting from Eqs. ( .
in ear olarization

ad15 re ky
j,k,r,e

&.= 2 2 ~-(s)h-'(x, yz,
n=o m=O

(3.5a) cdg i2kgz3„,"elk&"8„," kI, 831
j,k,r,e

(4.2b)

~.= Z Z ~-(s)h-'(x, ys
n=O m=o

(3.5b)

and B„are slowly varyingthe coeKcients A m an
eads to the equationsfunctions of s, lea s o

ber of the extraordinary beam
2' and k1 is the wave num

h k is the wave num er o
umber of thecy

1 d- od toEq. (3.7) to obtain the couple -mo
SHG:

n=o m=o

0 P ivL~ikps (3 6a)P P —2ik„B.~'=——,
ds'

re ~kl )d+tae lds +mnrski ~te'
2cog cog codB „'"/ds=C „y,i

(4.3a)

(4.3b)

n=o m=o

NL~ikez
4'7i CO00 00 '= ———I'2ik-,

ds
(3.6b)

sed the summation connvention, andw
6 d. b th ticients are de nethe coupling coefIici

h con
' '

es of the coefficients haveh cond derivatives o ewhere tne secon
been neglected.
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the equations

~mnrek L

2vruo2d15
'I Z
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dA„ 2z'zG),
g~koz

k,c2
h '*P ~zdxdy, (3.7a)nm y

271"1'
g'Aez h '*P ~zdxdy (3.7b)

k,c2ds
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5. CALCULATION OF COUPLING
COEFFICIENTS FOR SHG

iD the form

=q (—1)n-roo y n i=2' q=n —j l=u
I=—(2~)"'2 2 Z

~=o ~=o ~=o
In order to calculate the coeKcients we need only

substitute the explicit form of the modes from Eq. (1.4)
into Eqs. (4.4) and carry out the integration. C „„212"
is then given by

q=o l=o e=o

xi. il . I

fn) t'2j) n —j) (24) (q)

& )«~&.)
2(0Cmnrekl

Xb—2j(&V2)2j i'pl+—2nsi l 2—q——2ntqn ~ 2q——
(5 6)

(1+i (,) l."+ +'+'»2I„„pI„,*
X , (5 1)

(1. 2$ ) (r+4+k+l)/2+2(p /0 )1 4w w 2
2n —z —2q= n,

z—I—2q —2m= r,
i+22)= k.

(5.7)
where the integrals I „I,& and I„,E* are given by

g~2,~2d„~;112,(1+2(,) (m+n) (2

b2c (2 +"+'+'+2+'nt)n!r!s!Ilj!qr)'l'(1 ig—2) & +")l2+' Now the required coefficient will be given by the sum of
the terms in this expansion, for which

fyV2) /yV2 (y&2)

kw, ) kw, kw l
Adding these three equations, we obtain

n= '2(m +r-+k) . (5.8)

Xexp — — — i, (5.2a)
w022(1+is) wo2'(1 —ib) &

p t' &,q
'l'xVZ

p (xV2) (x&2)

4(q 1nW2 ) (W11 (W1)

2x2
Xexpl ——, . — . ( (5 2b)

(
pnw02 (1+2/2) wol (1 2/1)l

II„(x)s"
exp(2sx —s') = P (5.3)

I „2 will be the coefficient of t s"PP multiplied by n2!r!k!
in the expansion of the following integral in powers
oft, s, andp:

00I=-
42

expL —b2242+ 224(&2nt+s+ p)

where

In these equations the subscript 2 refers to quantities
associated with the second-harmonic field, the subscript
1 to those of the fundamental ield. The integrals (5.2)
are essentially the same; they may be evaluated with
the help of the generating function for Hermite
polynomials

Iooo"= (w /b)(-' )'"
Io2o"= (w1/b)(2~)'"(1/b —1),
I1010= (wl/b) (2'qr) 't'1/2b.

(5.9)

The most important set for which we will give an
explicit expression are those coeKcients resulting from
the coupling between the lowest-order Gaussian
fundamental mode and the 2nth second-harmonic mode:

I002„0= (w1/b) (-'qr) '"(2a2/b2 —1)"(2n)!/n! (5.10).
Substituting for u, b, and w from Eq. (5.4), and

deining

Eq. (5.10) becomes

'w =w01/w02&2, (5.11)

Therefore n2+r+k must be an even integer, which just
expresses the symmetry conditions: An odd plus an
even fundamental mode couples to an odd second-
harmonic mode, an odd plus an odd fundamental mode
couples to an even second-harmonic mode, and an even
plus an even fundamental mode couples to an even
second-harmonic mode.

The coeS.cients can be evaluated although the anal
expression is rather complicated in general. However,
the low-order coeKcients are simple in form; for
example,

24= x&2/wl, u= wl/w2&2, (2n)! (1 i /1) (1+i—p2) "+'t'
I002n wol(2qr}and

(1- S)"b'= 422(1 —i&2)1(1+i&1) .

Carrying out the integration, we have pw' —1—i(w'(1 —p2) 7"
(5.12)

Lwp+1 i( &
w2b—l)7n+'t2I= (wl/b) (-;qr)'t2

x exp/(ntvz+s+ p)'/b' —t' —s' —p'7. (5.5)
To obtain the anal expression we substitute this

Expanding the exponential as a power series and expression together with that for Ippq into Eq. (5.2).
using the binomial theorem, Eq. (5.5) may be written I„, * is obtained from Eq, (5.12) by just substituting
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ew for w, where e= (p,/p, )'t' Lsee Eqs. (5.1)]:
4v27r" 'i(p'dpie'~~'

I (2m)!(2B)!j
~(0)2n2m "=—

k2c' 18 |2m@ |2n

I
w' —1—i(w'$i —$p)j"I e'w' —1 i—(e'w'$i $—p)j

X (5.13)
(."t'wpp(1 i—Pi) (w'+1 i—(w'Pi P—p) g"+'"(e~w'+1 i—(e'w'gi —

&2)g~+'"

The factors f= L(2n) tg'"/nt2" have values

n 0 1 10

Carrying out the integration, we have

I=—(—',~)'"
f 1 0.7071 0.6724 0.5590 0.5229 0.4749 0.4197 b

and so decrease as n increases, reducing the coupling
between the lowest-order fundamental mode and the
(2n, 2m) th second-harmonic mode with increasing n, m

(1+i&i)) (nlrb 2+s+ p)'
&«xp —f'(1+ib)

I
1— ——I+)

0. MISALIGNMENT
(ntv2+s+p) f'

]p sp pp+
b

(6.4)

In calculating the expression for the coefficients
(5.13) we have made the assumptions that the two
beams propagate on the same axis and have coincident
foci. If the two beams are misaligned in any way, the
coupling will be reduced. Misalignment may occur in
one of three ways: (i) The foci of the two beams do not
lie in the same xy plane. (ii) The beam axes may be
parallel but separated. (iii) The axes may be inclined
at an angle to each other.

(i) The modification of the theory to include the
first possibility is trivial. We consider the fundamental
beam to be focused as before at a=0 but the 2nth
harmonic beam to be focused now at s= f. Therefore $p

becomes
&,= 2(s f)/k, w p, ', — (6 1)

and this does not affect the calculation of the coupling
coeKcients.

(ii) If the axis of the fundamental beam is removed
from the s axis by a distance e in the y direction, the
equation describing the meth mode is

(1+z()(my~) t p

wpi(2~+&~ kg t7r) &&& (1—jP) (~+&&&2+&

/x&2q t'(y —()42q

Thus the separation of the axes has introduced two
extra factors. The first factor is

where

I',= exp( —g'),

w'(1+ &i') (w'+1)
0= &0.

(w'+ 1)'+(bw' —h) '

(6.6)

Thus the coupling between any two modes has an
over-all exponential decrease with increasing separation
of the axes, although, of course, there may be local
increase.

The second factor,

F,= expL2(nt&2+s+P)f /b$, (6.7)

has as the argument of the exponential function an ex-
pression which depends on an odd power of t, s, and p
and therefore it will break the symmetry condition
expressed by Eq. (5.8). Consider as an example Ippi",
which is identically zero under the symmetry condition
(5.8). Now it is given by

I'i= ex& ( —V(1+i&)L1—(1+is)/b3), (6 5)

which modifies each coupling coefficient since it is
independent of t, s, and p. The modulus of this expres-
sion is, on substituting for b,

L~'+(X p)'3) — w,
Xe PI . I

' (6 2) Ippi" = ( tr)
wpi (1—zfi) ) b

With this modification, Eq. (5.4) becomes

ZOyJ=-
V2

where f =v&2/wi.

exp( u'b'+2utt nlrb—2+s+P+f'(1+inst) j
s' p') dy, (6.3)——

—i'w'(1+ $y') )2$(n) 'tp

&(expI (6 8)
kI w'+1 —i(w'(i —(p)7f

Substituting for f, we have

I
C»«pp'"I "

I p/wpil exp( —20"/'w»'). (6.9)

Thus this coefficient is zero at v=0 as expected and
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increases with increasing separation to a maximum at

t = awet/2(8)'/s, (6.10)

/' x'+y'
pexp( — ikey

~

—. —(6.11)
wpts(1 —s$)

Following the previous argument, Eq. (5.5) becomes

I= (wi/b) (-,'pr)'" exp/(nM2+s+ p)'/b'
v2t'k8wt(n—tv2+s+P)

—k'8sw ' t' —s' P'j—. (6.1—2)

Again the modiGcation introduces two new factors, one
of which modiGes each coe%cient and the second of
which breaks the symmetry condition (5.8). Ippto has a
form similar to Eq. (6.8):

Ippto= —(wi/b)(stsr)'/' exp( ss'kw—is8) i2k8win (6.13.)

The maximum coupling occurs at 8= &1/kwi. 8 depends
on s and so again this condition will not give im-
mediately the maximum coupling, except when $t and
gs((1 throughout the crystal.

and thereafter decreases asymptotically to zero. Since 8
depends on s, this does not give immediately the
separation of the axes for maximum coupling in a given
crystal, except for the near-field case when $i and $,((1
throughout the crystal.

(iii) For the case when the axis of the fundamental
beam is tilted at a small angle 8 to the axis of the second-
harmonic beam in the xs plane, the equation represent-
ing the anth fundamental mode may be written"

(1+it) {m+n)/s

g co

(2m+ntt [t/t (~)1/2 (1 i() {m+n)/2+1

Expanding the Gelds in terms of the resonator modes
and proceeding exactly as for SHG, we obtain the
coupled-mode equations

dAmn /dS Cmnrskl Ars Bkl (7.2a)

(7.2b)

(7.2c)

dA „"'/ds= C „„,k&"'A„,"'*Bk"{s,

dBmn"'/dS —Cm nrskl"'A rs"'A ki"',
where

27l ZC01 d1 8
Cmn r sic l

k1C'

"&~b„,"'~
hA )"'dxdy,

dA "s/ds= C ~BA "s*

dA "'/ds = C"'BA n&*

(7.5a)

(7.5b)

These equations may then be solved without further
approximation. A detailed analysis will be given in a
further paper.

(7.3)

For a lossless medium we have by the same argument
as used for SHG

S)sssCmnrskt +'gsssCmnrskl r/sssCmnrskl ~ (7 4)

Note that this result does reduce to that expressed
by Eq. (4.5) because of the factor ss in Eq. (4.1b) due
to the ~&—or& symmetry. 4 The coupling coeKcients may
be calculated exactly as in the previous case. Now they
will be complicated by the presence of three sets of
beam parameters.

In the small-conversion approximation, the case
studied by KB, only the Eqs. (7.2a) and (7.2b) need be
considered. If also the approximation is now made that
in the interaction of a lowest-order (Gaussian) mode
pump beam with a Gaussian mode signal beam only
the Lowest-order modes of each GeLd need be considered,
Eqs. (7.2) reduce to

8. EFFECT OF ABSORPTION AND
PRESENCE OF RESONATORThere are now three optical 6elds at frequencies +&,

{os, and {os, where {os={o&+{os.We assume that each
Geld satisGes the conditions such that it may be ex-
panded in a set of resonator modes.

Again taking the example of lithium niobate, the
relevant second™order polarization is given by'"

Both the presence of absorption in the uniaxial
medium which for any medium of interest must
necessarily be small and the presence of the resonator
produce perturbation in the wave number k of the beam
COQsldel ed.

In the presence of absorption, k may be writtenjP co g d g co/4+ co3
y 15 y

jD con d g coping co3
7

I'~co3= d31E "'E "'.
(7.1) k =k'+ik", (8.1)

where k"(&k'.
The resonant frequencies of the open optical resonator

are given by the equationThe pump Geld co3 propagates as an extraordinary Geld
and the signal co1 and idler co2 propagate as ordinary
zelda. Any other combination may be treated similarly. k, = L{fn.+ (ttt+n+ 1) tan —'(lt))/d, (8.2)

where lt and d are functions of the resonator, and q is
an integer, the longitudinal-mode number, ' d is the

se H. Kogelnik, in Procee{tirsgs of the Syslposistsrt ort Qmosi Opticsr-
Eeso Forks it){t& lPolytechnic Press, Brooklyn, N. Y.s 1964),p. 333.
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length of the resonator, and

P~(rl+r2 d)/(rr —d)(r2 d)3 (8 3)

where r~ and r2 are the radii of curvature of the two end
mirrors. For any physical situation we may assume
fB»s& 100 and hence

( k» k»sp t«k»pp for optical
frequencies. In both cases, writing k+8k in place of k,
Eq. (1.3) becomes

(8 4)

traveling-wave form of the modes of the open optical
resonator can be studied directly. In general, the
coupling coeScients between the various modes may be
calculated analytically and so their variation with the
various parameters may be studied directly. Explicit
expressions have been given for some of the important
coefficients for SHG. From these general results, effects
arising from strength and position of focusing can be
obtained. It has been shown' that the results for SHG
are consistent with those found by other authors. ''
These results will be published in further papers.

To the approximations that have been used to obtain
this equation, the term involving bk may be neglected.
Hence the mode shape, and thus the foregoing theory, is
unaltered by these modihcations. These variations will,
of course, appear in the term e—'~' in each case.

9. CONCLUSION

A method has been developed with which nonlinear
optical problems involving the interaction of the
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