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The far-infrared optical properties of KCl and KBr have been measured at 7'=300°K by the method of
asymmetric Fourier-transform spectroscopy. This method allows the simultaneous measurement of the
amplitude and phase shifts of the radiation reflected or transmitted by the crystals. From reflectance data,
the real and imaginary parts of the complex index of refraction were obtained in the spectral region from
approximately 40 to 360 cm™. Detailed numerical calculations for KCl were performed by employing a model
in which the radiation was assumed to interact with the k=0 TO phonon mode via the first-order dipole
moment and the subsequent decay of this mode by two-phonon processes. The frequency-dependent Her-
mitian and anti-Hermitian parts of the k=0 self-energy, arising from the cubic-lattice anharmonicity, were
calculated by using the phonon frequencies and eigenvectors obtained from the Karo-Hardy deformation-
dipole model. The complex index of refraction of KCI was calculated from the self-energy and the results
are in reasonable agreement with experiment. Finally, a comparison is then made for KBr between the
calculations performed by Cowley and our experimental data.

I. INTRODUCTION

URING the last decade, there has been consider-
able theoretical and experimental interest in
examining the infrared lattice absorption in polar crys-
tals. In diatomic crystals, such as KCl and KBr, the
fundamental lattice-vibration absorption peak, at room
temperature, is rather broad and exhibits sideband
structure due to multiple-phonon interactions. The
purpose of this paper is to investigate experimentally the
optical properties of these two crystals in the spectral
regions neighboring their fundamental absorption peaks
and to compare the results with detailed numerical
calculations.

The real and imaginary parts of the complex index of
refraction have been measured at room temperature by
the relatively new technique of asymmetric Fourier-
transform spectroscopy.!:? One of the salient features of
this method is that both the real and imaginary parts of
the index of refraction can be measured directly in a
single experiment. This is in contrast to standard tech-
niques, where a spectrometer is used to measure, say,
the reflectivity spectrum and then a Kramers-Kronig
dispersion analysis is employed to obtain the phase
spectrum.? The difficulty with the Kramers-Kronig
procedure is that the alkali halides have a very low
reflectance in the spectral region of interest, which leads
to an inaccurately calculated phase. The asymmetric
Fourier-transform method avoids this difficulty and, as
will be discussed in Sec. II, is capable of yielding quanti-
tative and qualitative information about the shape and
sideband structure of the fundamental absorption peak.
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In Sec. IT1, detailed numerical calculations are carried
out for KCl, at 7’=300°K, which utilize the phonon
frequencies and eigenvectors provided by the deforma-
tion-dipole model employed by Karo and Hardy.* The
calculations are based on a theoretical expression for the
dielectric constant which includes the contributions
from the linear dipole moment and the lattice anhar-
monicity. First, the frequency-dependent Hermitian
and anti-Hermitian parts of the self-energy matrix, for
the k=0 wave vector, were evaluated by summing the
contributions arising from the cubic-lattice anharmonic-
ity for 1000 evenly distributed wave vectors lying in
the first Brillouin zone. The real and imaginary parts of
the dielectric constant were then computed from the
k=0 self-energy matrix in the spectral range from 40 to
300 cm™L.

Finally, the complex index of refraction of KCl was
evaluated from the dielectric constant in this spectral
region to permit comparisons to be made between the
numerical calculations and experimental results. Such
comparisons show that the secondary phonon structure
present in the imaginary part of the index of refraction
appears to be reasonably well accounted for, especially
on the high-frequency side of the fundamental lattice
absorption peak. The experimental data on the real
part of the index of refraction show some structure be-
tween 180 and 240 cm™! that is qualitatively reproduced
by the calculations although the quantitative agree-
ment is only fair.

Cowley® has performed calculations on the optical
properties of KBr and Nal at several temperatures. His
work was based on the phonon frequencies and eigen-
vectors provided by the shell model of Woods et al.,5
and he included the contributions to the dielectric con-
stant from the second-order dipole moment in addition
to the first-order moment. Cowley did not have de-
tailed experimental data with which to compare his

4 A. M. Karo and J. R. Hardy, Phys. Rev. 129, 2024 (1963).

5R. A. Cowley, Advan. Phys. 12, 421 (1963).

6§ A. D. B. Woods, B. N. Brockhouse, R. A. Cowley, and W.
Cochran, Phys. Rev. 131, 1025 (1963).
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Fic. 1. Experimentally measured power reflectance R(R)
and phase spectrum ¢,(2) for KCI.

results and, therefore, in Sec. IV such a comparison is
made for KBr using our experimental results.

II. EXPERIMENTAL

Alkali halides are very strong absorbers of infrared
radiation neighboring their lattice eigenfrequency. In
order to obtain the optical constants of these materials
by transmission measurements extremely thin (<100 u)
samples are required whose surfaces are parallel and
well polished.! Such samples have proved difficult to
prepare, and therefore all of our measurements were ob-
tained from single surface reflection. The complex ampli-
tude reflectance can be expressed in polar form as

Q) =r(Q)ei+ @, (M

where Q is the frequency, 7(Q) is the amplitude reflec-
tance, and ¢,(€) is the phase shift of the reflected radia-
tion. The caret indicates that the quantity beneath it is
complex. The power reflectance R(2) of the sample is
given simply by R(Q)=7%(?). Bell! has shown that
asymmetric Fourier-transform spectroscopy is capable
of simultaneously measuring both the amplitude and
phase over the entire spectral region of interest.
Figures 1 and 2 show the experimentally measured
power reflectance R(?) and phase ¢,(?) for KCl and
KBr, respectively. Figure 3 shows the power reflectance
for KCl and KBr on an expanded vertical scale in the
spectral region where the reflectance is less than 3%,.
The data for the reflectance and phase represent an
average of at least four separate experimental runs. The
vertical error bars that are drawn at various frequencies
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F16. 2. Experimentally measured power reflectance R(R)
and phase spectrum ¢,(2) for KBr.
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Fi1c. 3. Experimentally measured power reflectance for KCI and
KBr in the spectral region where the reflectance is less than 37%.

on the curves shown in Figs. 1-3 represent the range of
the peak-to-peak reproducibility of the data from the
individual runs. It can be seen that the range of repro-
ducibility is not constant but varies in different spectral
regions.

Because the experimental results are to be compared
with theoretical calculations, it is more convenient to
express the optical properties in terms of the real and
imaginary parts of the complex index of refraction
N@Q)=N(Q)+iK(Q) rather than the amplitude re-
flectance and phase.! Here N(Q) is the ordinary index
of refraction, and K(Q) is called the extinction coeffi-
cient. Using the values for the power reflectance and
phase, as shown in Figs. 1 and 2, the index of refraction
and extinction coefficients for KCl and KBr were calcu-
lated and the results are shown in Figs. 4 and 5.

It should be mentioned that the values of the extinc-
tion coefficients K(Q2) below 120 cm™! for KCI and 100
cm~! for KBr are not as accurate as those in the remain-
ing spectral region. In this region the phase ¢,(Q2) be-
comes very small and it is difficult to measure accurately
by the reflection technique. The uncertainty in the
measurement of the phase A¢, is given by the height of
the vertical error bars shown in Figs. 1 and 2. At 80
cm™~, for example, A¢,/¢,~0.3 for both KCl and KBr,
and it is easy to show that AK/K =~0.3, where AK is the
uncertainty produced in the value of X due to the uncer-
tainty in the measured value of the phase. In the spec-
tral region where the phase is small, a more accurate
determination of the extinction coefficient can be ob-
tained if the measurements are made in transmission
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F1c. 4. Index of refraction N(Q) and extinction
coefficient K(Q) for KCI.
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F16. 5. Index of refraction N (2) and extinction
coefficient K(2) for KBr.

rather than by reflection. Berg and Bell” have made
some preliminary transmission measurements on thin
(approximately 115 u) crystals of KBr. Because of the
strong absorption that occurs around 120 cm™, their
results are limited to the two spectral regions of 30 to
105 cm™! and 180 to 270 cm™!. Their values of K in the
latter region agree quite well with our values. However,
in the lower-frequency region their results indicate that
our values for K are some 209, too high as shown in
Fig. 5.

An examination of Fig. 3 shows that extremely small
values of the power reflectance can be measured. The
reason for this is that it is the amplitude reflectance 7,
rather than the power reflectance R, which is experi-
mentally measured. For example, values of # as small
as 0.02 can be measured to within an accuracy of 0.005.
This means that the power reflectance is 0.0004 with an
accuracy of 0.0002.

One final word is in order concerning the value of
making direct experimental measurements of both the
phase and amplitude reflectance. It is well known that,
in principle, the phase spectrum can be obtained from
a knowledge of the power reflectance by using the
Kramers-Kronig relations. However, in practice, it is
questionable whether the structure present on the
phase curves could be discerned by using these relations
if the power reflectance was measured in the conven-
tional manner by using, for example, a spectrometer.
An examination of Figs. 1-3 shows that the phase spec-
trum has significant structure due to phonon interac-
tions in the region where the power reflectance becomes
less than 0.05 (225 to 285 cm™! for KCl and 170 to 220
cm~! for KBr). Values of the power reflectance as small
as 0.0004 must be carefully measured if the Kramers-
Kronig relations are to yield meaningful results,
and spectrometers are not capable of making such
measurements.

The power reflectances of these crystals have been
previously measured by Mitsuishi ef /.8 Using a grating
‘spectrometer, their results are generally compatible

7J. Berg and E. Bell (private communication).
8 A. Mitsuishi, Y. Yamada, and H. Yoshinaga, J. Opt. Soc. Am.
52, 14 (1962).
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with the present ones. Our measurements indicate that
the maximum values of the power reflectance tend to
be slightly higher (0.9 versus 0.88 for KCl and 0.84
versus 0.8 for KBr), and the shoulders occurring at 185
cm~! for KBr and 240 cm™! for KCl (see Fig. 3) cannot
be seen in their data.

III. THEORETICAL
A. Numerical Calculations

Our calculations on the far-infrared optical properties
of KCl are based on an expression for the dielectric sus-
ceptibility that has been derived by Wallis and Mara-
dudin,® and by Cowley.? This calculation uses only the
first-order dipole moment and includes the contribu-
tions from the third-order anharmonicity coordinates.
For crystals possessing cubic symmetry, the dielectric
susceptibility tensor X,.g is diagonal in the « and 8 in-
dices, and we shall adopt the notation that X.s=Xagd.8
=X,, where 8,p is the usual Kronecker §. The suscepti-
bility, as a function of the frequency €, is given by

1
Xo(@) =X ——
Noh

x 26(07)M 22(07)
7 @(0) —2+20(0/)[A(05; @) —il'(05; )]

In this expression X, is the electronic contribution to
the susceptibility, v is the volume of the KCI unit cell,
N is the number of unit cells in the crystal, and w(07) is
the angular frequency of the phonon mode, in the
harmonic approximation, belonging to the wave vector
k=0 and branch index 7. M ,(07) is the a component of
the coefficient of the leading term in the expansion of
the crystal dipole moment operator in powers of the
phonon field operators.® A(07; ) and I'(07; @) are the
frequency-dependent Hermitian and anti-Hermitian
parts of the proper self-energy matrix, which arise from
the anharmonicity of the lattice, for the k=0 mode be-
longing to the phonon branch j. Ipatova et al.? have
shown that the coefficient M ,(07) is nonvanishing only
if the branch index j refers to any one of the two TO
branches. Therefore, the summation appearing in Eq.
(2) is only over the two TO branches. Contributions to
X,(Q) arising from the second-order dipole moment
have been worked out by Cowley,® although they are
not included in our calculations because we have as-
sumed that they are less important than that due to
anharmonicity alone.

The lowest-order expressions for A(07; ) and
T'(07; Q), which arise from the thermal expansion and
anharmonicity of the lattice, have been derived by

)

9R. F. Wallis and A. A. Maradudin, Phys. Rev. 125, 1277
(1962); 1. P. Ipatova, A. A. Maradudin, and R. F. Wallis, Fiz.
Tverd. Tela 8, 1064 (1966) [English transl.: Soviet Phys.—Solid
State 8, 850 (1966)].

10 P_N. Keating and G. Rupprecht, Phys. Rev. 138, 866 (1965).
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Cowley®!! and by Maradudin and Fein.!? The Hermit-
ian part of the k=0 self-energy A(04; Q) is given by
a sum of three terms

A(07; 2)=A1(0/)+2:(0/)+45(07; ),  (3)

where A;1(07) and Ay(0j) are frequency-independent
terms that arise from the thermal expansion of the
crystal and the fourth-order anharmonicity of the lattice
potential. A3(07; Q) is frequency-dependent and is
written as®

—18
8507; D=—- 3 |V®(O07; kujs; kejj2) [2R(D), (4)

12 ki1 kesz
where

R(Q)=[n(kiji)+n(kejz2)+1]
X {[w(kij)+w(ksfo)+0]5
+[ew(kigi) +o(kegz) — 2]}
+[n(ksj2) —n (ks jr) K Lw(kifr) —w (ko) — Q15
—[—w(kij)Folkyjs) =211}, (5)

Each of the two summations appearing in Eq. (4) ex-
tends over all of the phonon modes of the crystal, where
k is the wave vector of the mode and j is the branch
index. V®(04; ki71; kog2) is the cubic-coupling coeffi-
cient that connects the three modes (07), (kij1), and
(kejz) via the cubic anharmonicity of the lattice. An
explicit expression for V® that is used in our calcula-
tions is given later in this section. #(ky) is the occupa-
tion number for the mode (k7) and it is given by

n(kj)=[exp(fw(kj)/ksT)— 11", (6)

where w(ky) is the frequency of the mode in the har-
monic approximation, 7" is the temperature, and kz is

V(3)(0j; kljl; k2j2)
1 / 73
6312\ 84(0 7 )co (ks j1)co (ke j2)
(mﬂ(kljllK)
X P
MK1I2

<m.,(k2j 2 ] K)
X P

K

In this expression X(L) is a vector from an arbitrary
origin in the lattice to the Lth unit cell and X(K) is
a vector from the origin of the Lth cell to the equilibrium
position of the Kth atom located within that cell. The
double summation Y_rx means that L sums over the V
unit cells in the crystal and K ranges over the two

1 R. A. Cowley, in Phonons: In Perfect Lattices and in Laitices
with Point Imperfections edited by R. W. H. Stevenson (Plenum
Press, Inc., New York, 1966).

( 12 A) A. Maradudin and A. E. Fein, Phys. Rev. 128, 2589
1962).
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—oxp(2riky: [X(L)+X(K)D—
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Boltzmann’s constant. The notation 1/[X]r means
that the principal part of the expression is to be used,
and hence the X=0 contributions to the summations
appearing in Egs. (4) and (5) are excluded. Expressions
for A1(07) and A4(07) have not been written because,
being independent of frequency, they contribute only
a constant term to A(07;). In Sec. III D it is shown
that if A(07;2)<w(07), where w(05) is the k=0 TO
phonon frequency, one can work within the approxi-
mation that

A(07; @)= A3(05; @), Q)

which obviates calculating A; and A,.
The anti-Hermitian part of the k=0 self-energy is®

187
IN(UF 9)=; 2 X VO05; kijr; keja) [2S(R),  (8)

ki1 keje
where

S(@) = —[n(kijr)+n(ksj>)+1]
X {8[w(kij1)+w(ksfz)+2]
— [ —w(kij1) —w(kej2)+Q]}
— [k j2) —n (ks jo) J{Lew (ke ja) — (ki) + 2]
—o[w(kif) —w(ksfo)+2T}.  (9)

The notation appearing in Egs. (8) and (9) is the same
as that used in Eqgs. (4)-(6), except that §(X) repre-
sents a Dirac & function. The format for calculating
Xo(Q) was to first evaluate A(07; ) and T'(04; Q) over
a broad spectral region (approximately 0-300 cm™)
and then substitute these functions into Eq. (2) to
determine the dielectric susceptibility.

The cubic-coupling coefficient that appears in Egs.
(4) and (8) is given explicitly by!®

ma(0j1K)  ma(07|K’)
Mgli2 M2

exp(2mik, - [X(L")+X(K') ]))
J(kejal K')
i”_ﬂ_[_fl_,'z_exp<zﬂk2-[X(L'>+X<K'>J))]. (10)

K’

atoms in the unit cell. The prime appearing in Eq.
(10) on the summation symbol 3~ means that the terms
in which L'K’=LK are to be excluded from the sum-
mation. M is the mass of the Kth kind of atom, w(ky)
is the frequency of the normal mode described by the
wave vector k and branch index j, and m.(kj| K) is the
ath component of the eigenvector belonging to this
mode. This eigenvector is the one defined by Karo,

13 A, A. Maradudin, P. A. Flinn, and R. A. Coldwell-Horsfall,

Ann. Phys. (N. Y.) 15, 337 (1961), especially p. 340.
14 A, M. Karo, J. Chem. Phys, 31, 1489 (1959).
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Taste I. Quantities used in the calculation of the complex
index of refraction of KClI at room temperature.

Lattice constant® 70 3.139X1078 ¢cm

Compressibility* I¢] 5.63X10712 cm?/dyn

Electron charge e 4.8X10710 esu

Madelung constant a 1.7476

Parameters of the p 0.324X 1078 cm
potential function C 3.60X1079 erg

First, second, and ¢’ (ro) —6.25X107% erg/cm
third derivatives of @""(ro)  +1.93X10* erg/cm?

—5.96X10*2 erg/cm?

64.916X107% g
58.867X107% g

the potential function ¢"(ro)

Mass of the K+ jon M,
Mass of the CI~ ion M,

mz(OjIO)_mz(Oﬂl) 0.18X1012 g1/

M2 M2
Volume of the

KCl unit cell ? 6.192X107% cm?
Ionic oy 1.201X1072 cm?

polarizabilities? . 2.974X10724 cm?®
“Effective charge’ |e*| 3.84X10710 esu
Coefficients of the € 5.35X10710 esu

linear dipole moment

operator M:07) 96.31[N#/2w(05)]*1/2

Electronic susceptibility xa” 0.094

s See Ref. 4.

and it is related to the eigenvector used by Born and
Huang® ¢,(kj| K) by

malkj| K)=ealkj| K)emexeo. (1)

The A function in Eq. (10) shows the conservation of
crystal momentum, and it has the property that

A(ki+k;)=1 if ki+ky=0 or G, where G is
a reciprocal-lattice vector
=0 otherwise.

(12)

dapy(LK; L'K") is the atomic force constant between
two ions, the first one of which is located at X(L)+X(K)
and the second one at X(L)+X(K’). a, 8, and ¥ each
extend over the three Cartesian components x, y, and
z. An explicit expression for ¢a.s,(LK; L'K’) is given
later in Eq. (17).

B. Potential Function and Third-Order Force Constants

In order to evaluate the cubic-coupling coefficient
V®(07; kij1; keoge) certain assumptions must be made
about the nature of the forces that interact between the
ions in the lattice. In our calculations we have chosen
a potential function which is of the form®

p(r)=+Ce e, (13)

where ¢(r) is the potential energy between a pair of
ions separated by a distance 7. Equation (13) represents
the short-range central-force repulsive potential which

15 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, Oxford, 1954), p. 298.
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results from the overlap of two neighboring ions; the
Coulomb contribution to ¢(r) has not been included be-
cause the overlap term dominates the anharmonic
effects. C and p are parameters that can be evaluated,
for a given temperature, by relating the first derivative
¢'(r) and the second derivative ¢”/(r) of the potential
function ¢(r) to the experimentally observed values of
the lattice constant 7o and the compressibility 6.16 C
and p are evaluated by the relations

p=(c€?/2r¢®) (970/ B+ ae®/r¢®)!

C=(ape®/6re?)etmls,

(14)
(15)

The values of the constants used in the lattice calcu-
lations are given in Table I together with the derived
values of p, C, ¢"'(r0), and ¢'" (ry).

The third-order force constants ¢as,(LK; L'K’) that
appear in Eq. (10) depend only on the equilibrium dis-
tance 7o between the ions (LK) and (L'K"). ¢ay(r0) is
defined as

0%p(r)

0707807

and

, (16)

r=r0

bapy(ro)=

where 7, is the ath Cartesian component of the distance
between two ions. It is straightforward to evaluate Eq.
(16) with the result that

Yot g7y
3

¢aﬁy<ro>=[ (¢"'<r>—§¢"<r>+f—2¢'m>

+(0asryt8s+7at04ars)
Lo”(r)—(1/7)¢’(r)]
X

72

where 84p is the usual Kronecker 6. We shall also neglect
the ¢/(r) terms in (17) because they are small compared
with the second- and third-derivative terms.

C. Evaluation of Cubic-Coupling Coefficient
V®(0j; kij1; kaje)

The general expression for V®(07;k;71;kz72) as given
by Eq. (10) involves lattice summations of the form
> ik 2k’ and a triple summation over the Cartesian
components Y qs,. Because of the translational invari-
ance of the lattice the sum over L is IV times the con-
tribution to V® from one unit cell. For a fixed value of
K, > g’ was assumed to include only the contribu-
tions from the six nearest neighbors of K. The wave
vector of the incident radiation was assumed to be
parallel to a symmetry direction in the crystal and to
have its transverse polarization in the -+« direction.
Therefore, the eigenvector of the k=0 TO phonon mode
has only % components m.(07]| K), while the y and z
components are zero. Using the above-mentioned as-
sumptions the summations appearing in Eq. (10) have

16 See Ref. 15, p. 24.
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been carried out in a straightforward, but tedious, manner to yield

V®(07; kij1; G—kije)

1 /mx(0j|0) _mx(Oj[ 1)

h3

3N1/2(M0M1)1/2\ MOIIZ M11/2

)<8w(0j)w(k1]'1)w(G—k1J'2)

>112

Xl:(¢”’(ro)[mx(k1j1 ] O)Mx(G—kljzl 1) COS(ZWT()G‘ ez) "“m;,;(k1j1 | 1)mz(G-k1j2 l 0)]

¢ (r0)
+
7o
¢ (ro)
+

7o

=Y,z

>z

é=y,z

> [ma(kifr|0)ma(G—Kyij2]|1) cos(2mroG- €;) —ma(kyji| l)ma(G—kleIO)]) sin(27rok; - e)

<EM5(k1j1 IO)mI(G~k1]2| 1) COS(27T1’0G' e,;) —m;(lﬁjl I 1)m,(G——k1j2 |0)

+ma;(k1j1 ! 0)m;(G—k1]21 1) COS(ZT?’OG’ 85) —mx(k1j11 I)M5(G—k]]2 [ O)] sin(21rrok2- e;))] . (18)

In Eq. (18), G is a vector of the reciprocal lattice and
€; is a unit vector pointing in the §th Cartesian direction
in k space. Maradudin ef al.'” have shown that the two
components of the k=0 eigenvector are so related that

(mx(oj 10) mx(oﬂl)) <M0+M1>1/2
MM, "

M01/2 M11/2
' =0.18X10+12 g1/2,
where M, and M; are the masses of the two ions in the
unit cell and are given in Table I.

D. Renormalization

There is one important point that must be considered
with regards to the frequencies and eigenvectors that
are to be used in evaluating the susceptibility. The ex-
pressions for A(07; ©), I'(05; ), and the cubic-coupling
coefficient V'@ involve the phonon frequencies w(kj)
and their associated eigenvectors m.(kj|K) of the
harmonic lattice. However, as previously mentioned, our
calculations were made by using the frequencies and
eigenvectors which were obtained from the Karo-
Hardy deformation-dipole model.*® The frequencies ob-
tained from this model are presumably the actual lattice
frequencies (not the harmonic frequencies) which would
be obtained, say, by performing an inelastic neutron
scattering experiment. Therefore, the room-tempera-
ture frequencies given by the Karo-Hardy model al-
ready have the effects of the lattice anharmonicity and
thermal expansion included in them and they are not
per se acceptable as the harmonic frequencies required
for the calculation of A(07; ©), T'(04; @), and X(Q).

17 A. A. Maradudin, E. W. Montroll, and G. H. Weiss, T4eory of
Lattice Dynamics in the Harmonic Approximation (Academic
Press Inc., New York, 1963), p. 14.

18 The eigendata are tabulated in a report that was kindly sent
to us by Dr. A. M.. Karo, University of California, Lawrence Radia-
tion Laboratory, Report No. UCRL-14822, 1966 (unpublished).

Cowley® has proposed a renormalization scheme such
that the expressions for A(07; ©), I'(07; 2), and X(Q)
will involve the actual lattice frequencies and eigen-
vectors rather than the harmonic eigendata. He has
shown that if T'(07; ), is small it is a reasonable ap-
proximation to renormalize the harmonic frequencies
by replacing them with the so-called quasiharmonic
frequencies wgq(ky7), which are given approximately by

we(kg) ~w(kj)+Alks; we(ks)],

where A[kj; wo(ks)] is the Hermitian part of the self-
energy matrix evaluated at the quasiharmonic fre-
quency wo(k7). The quasiharmonic frequencies given
by Eq. (20) define the centers of the one-phonon neutron
scattering groups!® and, therefore, represent the actual
lattice frequencies. However, the actual lattice fre-
quencies are those given by the Karo-Hardy deforma-
tion-dipole model, and they are the quasiharmonic
frequencies defined by Eq. (20). According to Cowley’s
renormalization program the real and imaginary parts
of the self-energy matrix can be calculated by simply
replacing the harmonic frequencies and eigenvectors by
the Karo-Hardy eigendata. From Egs. (2), (3), and
(20) it can be seen that the susceptibility X,(©2) has a
denominator of the form

(20)

Denominator
=we?(07) —Q*+2{we(05) —AL05; wo(05) I}
X {A5(07; Q) —As[05; we(07)]—iT'(05; @)}
—A2[05; we(07)]. (21)

Equation (21) can be somewhat simplified by noting
that wg(07)>>A[07; we(07)]. This approximation ob-
viates calculating the frequency-independent terms A;
and A; [see Eq. (3)].

1 E, R. Cowley and R. A. Cowley, Proc. Roy. Soc. (London)
A287, 259 (1965).
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Using the above-mentioned approximations, the dielectric susceptibility can be written as
2M (07)we(05)
(22)

Xo(Q) =XoF4

where A;, T, and M ,(07) are evaluated by using the
Karo-Hardy frequencies and eigenvectors. The summa-
tion over the branch indices Y_; has now been dropped
in writing Eq. (22), because there is only one infrared-
active optical mode. Equation (22) represents the form
that the dielectric susceptibility takes in the quasi-
harmonic approximation.

E. Numerical Evaluation of A3(0j; Q), I'(05; Q), and
the Complex Index of Refraction

The lattice frequencies and eigenvectors used in cal-
culating A; and I" were obtained for 1000 wave vectors
that were evenly spaced throughout the first Brillouin
zone. Since the KCl unit cell has six degrees of freedom,
the eigendata represented a total of 6000 modes. Be-
cause of the symmetry possessed by the Brillouin zone,
Karo and Hardy restricted the calculation of the eigen-
data to those wave vectors that laid within a 1/48 sec-
tion of the zone (called the irreducible zone') which
contained exactly 48 wave vectors. The frequencies and
eigenvectors belonging to wave vectors lying outside of
the irreducible zone were obtained by applying the ap-
propriate symmetry operations of the cubic lattice to
the frequencies and eigenvectors belonging to the irre-
ducible zone.??

The numerical computations involved in calculating
As and T were performed on an IBM 7094 computer.
The representations for the principal part (1/X)p and
the & function 8(X) appearing in Egs. (5) and (9) were
chosen to be!?

1
<——> =lim (23)
X/p 0t X2fe
and
1 €
85(X)=1lim — . (24)
e>0t T X2+€2
T T 1 T T
10~ ~
5o
<
S |
&
[o] EIO léO IéO 2“10 3(‘)0

FREQUENCY (cm™')

Fic. 6. Hermitian part of the k=0 self-energy matrix for KCI.

20 J, Neuberger and R. D. Hatcher, J. Chem. Phys. 34, 1733
(1961), especially p. 1739. .

Vot 0g2(07)— 2+ 200(07){45(05; ©)—As[05; wo(07)1~il(05; )}

Theoretically, the value of ¢ must be made infinitesi-
maly small; however, in practice it should be made as
small as possible to be consistent with the amount of
eigendata available. For our calculations, a value of
e=1.5 cm™! was found to be satisfactory.

The procedure used in calculating A3(07; @) and
T'(07; @) was as follows: The computer selected an in-
dependent wave vector k; and the branch index ji.
The dependent wave vector ks with branch index j,
was then determined from Eq. (12) by ky=G—ky,
where G is a unique vector of the reciprocal lattice that
ensures that k; lies in the first Brillouin zone. Having
selected (ki7:) and (koss) the computer then evaluated
V®(07; kij1; kega) according to Eq. (18) with the fac-
tor N='/2 where N is the number of unit cells in the
crystal, being left undetermined, since it is cancelled
out when V® is substituted into the expressions for
Az and T'. The computer then calculated the contribu-
tions to A3(04; ©) and I'(07; 2) from the modes (kij1)
and (koj.) as indicated in Egs. (4), (5), (8), and (9).
Both A; and I' were evaluated at discrete frequencies
Q; which ranged from 0 to 380 cm™, in steps of 0.3 cm™.
A new combination of the branch indices 7; and j» was
then selected (keeping ki and k, fixed) and the above
procedure was repeated until all possible combinations
were exhausted. Since 71, 7o=1, ..., 6, there are a total
of 36 contributions to A3;(07; ) and I'(07; ©) for a given
value of the independent wave vector ki. A new inde-
pendent wave vector was then chosen and the above-
mentioned calculation was repeated until the contribu-
tions from all of the 1000 independent wave vectors in
the first Brillouin zone had been summed. The results
of these calculations for A3(07; @) and I'(07; Q) are
shown in Figs. 6 and 7, respectively, where smooth
curves have been drawn through the discrete calculated
data.

Having calculated A;3(04; Q) and I'(0y; Q), it is
straightforward to calculate the dielectric susceptibility.

T T T T T

20 -

-1

I (0j;0)(em

1 1
o -60 120 180 240 300
FREQUENCY (cm=-'")

Fic. 7. Anti-Hermitian part of the k=0 self-energy matrix for KCl.
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F1c. 8. Experimental and calculated extinction

coefficient for KCl at 7'=300°K.

The M (07) coefficient as it occurs in the numerator of
Eq. (22) was evaluated by the expression?!

20(07)\ /2 L M a5(K) .
(55) #0n=2 % =~ om0il5). @9

The symbols and summations appearing in this equa-
tion, except for M ,,4(K), have been defined earlier in
this paper. Wallis ef al.?? have shown that for an ionic
crystal of the NaCl structure, the tensor M, g(K) is
given by

M o5(K)= exdas,

S5
e=e — ,
K K 3 v

ex™ is the Szigeti effective charge of the Kth ion in the
unit cell, @ and a_ are the ionic polarizibilities of the
positive and negative ions, and v is the volume of the
unit cell. ex™ has the same magnitude for both ions in
the unit cell. Using the values of |ex*|, ay, o, and v as
given by Karo and Hardy,* the value of ¢ was found
and it is tabulated in Table I. Equation (25) can be ex-
panded to yield

<2w(0 j)>”2Mx(0j) _ <mz(0j | d) _ ma(04]1)

ATh M01/2 M11/2

(26)

where

27

Yo, 9

and thus the value of M ,(05) was evaluated as given in
Table I. Ipatova ef al.® have also shown that the high-
frequency susceptibility X,* is given by

1/ 3¢
X F =—< —3> =0.094 for KCI. (29)
4r\|e*|

The complex susceptibility was calculated from I" and
A; and the coefficients M ,(07) and X*. The real and
imaginary parts of the complex index of refraction

21 Reference 5, p. 453, and Ref. 15, p. 305.

22 R. F. Wallis and A. A. Maradudin, in Proceedings of the Inter-
national Conference on Physics of Semiconductors, Exeler, 1962
(The Institute of Physics and the Physical Society, London, 1962),
p. 490.
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Fi1c. 9. Experimental and calculated index of
refraction for KCl at 7'=300°K.

N(Q)=N(Q)+iK(Q) were evaluated from the suscepti-
bility and the results are given in Figs. 8 and 9.

IV. DISCUSSION

The qualitative agreement between the experimental
and calculated values of the extinction coefficient ap-
pears to be very reasonable, especially on the high-
frequency side of the fundamental absorption peak.
From Fig. 8 it can be seen that there are three secondary
maxima in the experimental data occuring at approxi-
mately 215, 240, and 275 cm~. The spectral positions
of these secondary maxima are somewhat higher than
the calculated values which occur at 195, 225, and 250
cm™L, respectively. These discrepancies, we believe, can
be traced to the values of the phonon frequencies used
in the calculations because the calculated positions of
the three sidebands correspond very closely to sum
bands between the maxima in the KCl density-of-states
curve. The density of states for the deformation-dipole
model used by Karo and Hardy?? shows three maxima
occurring at approximately 85, 110, and 140 cm™. The
sum bands between any two of these frequencies are
located at 195, 225, and 250 cm™, which are where
the three secondary maxima occur in the calculated ex-
tincition coefficient.

The largest discrepancies between the experimental
and calculated values of the extinction coefficient occur
at frequencies below the fundamental absorption peak,
although the two curves appear to share some qualita-
tive features. The shoulder and secondary maximum oc-
curring in the experimental data at approximately 100
and 80 cm™!, respectively, seem to be reflected in the
calculated curve which has a shoulder and maximum at
approximately 130 and 100 cm™1. A second maximum
in the calculated curve, occurring at 60 cm™, does not
appear in the experimental data. Below 130 cm™, it is
apparent from Fig. 8 that the quantitative agreement
between the two curves is less satisfactory in both the
spectral positions and magnitudes of the low-frequency
sideband structure. As mentioned in Sec. IT part of the
discrepancies occurring in this region can be attributed
to the inaccuracies in the experimental determination of

2 Reference 4, p, 2029,
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Fi1c. 10. Experimentally measured extinction coefficient of KBr
at T=2300°K compared to the calculation made by Cowley. (See
Ref. 5.)

K(AK/K~0.3). However, as evident from Fig. 8, this
explanation is not sufficient in itself to account for the
quantative discrepancies below 130 cm™, and we con-
clude that the calculated curve is too low. One possible
explanation for this is that, because of computational
difficulties, our calculation did not include three phonon
processes which arise from the frequency-dependent
quartic anharmonic contributions to I'(07; Q). At
elevated temperatures and at frequencies below the
fundamental absorption peak these processes can be
important.?

It is also possible that the asymmetry displayed in
Fig. 8 between the calculated and experimental values
of K, e.g., the calculated values are too small for w <wro
and too large for w>wro, can be explained by the omis-
sion of the mixed one and two phonon processes which
give rise to terms of this shape.?’

The curves of the experimental and calculated values
for the index of refraction are shown in Fig. 9. Again the
two curves show some qualitative features in the spec-
tral region between 140 and 240 cm™! where the index
is less than unity.

Figures 10 and 11 show the comparisons between the
experimental values of IV and K for KBr obtained in
this work and the numerical calculations of Cowley.?
The calculations performed by Cowley on KBr are, in

241, P. Ipatova, A. A. Maradudin, and R. F. Wallis, Fiz. Tverd.
Tela 8, 1064 (1966) [English transl.: Soviet Phys.—Solid State 8,
850 (1966)]; Phys. Rev. 155, 882 (1967).

26 Terms of this type have been written by Cowley (see Ref. 5).

In particular, the diagrams (c) and (d) in Fig. 10 in Cowley’s
paper give rise to the expression given by Eq. (6.10).
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Fic. 11. Experimentally measured index of refraction of KBr
at T§)300°K, compared to the calculation made by Cowley. (See
Ref. 3.

principle, more accurate than those presented in this
paper for KCI because he included the contributions to
the complex index of refraction arising from the second-
order dipole moment (which were neglected in the
present work), and his eigendata were derived from the
dispersion curves of KBr as measured by neutron
diffraction techniques.

V. CONCLUSION

Asymmetric Fourier-transform spectroscopy is a very
powerful technique for measuring the far-infrared prop-
erties of solids because both the real and imaginary
parts of the complex amplitude reflectance (or trans-
mittance) can be measured simultaneously. Two alkali
halides, KCI and KBr, were measured in reflection to
demonstrate the usefulness of this technique for study-
ing the sideband structure caused by phonon interac-
tions. The detailed numerical calculations of V and K
performed on KCl in this paper and the results on KBr
by Cowley5 were shown to be in reasonable agreement
with the experimental ones.
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