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We have calculated the cross section for Raman scattering of light from a hydrogenic atom, for a wide
range of photon energies. The calculation assumes the photon encounters the atom in its ground state
and excites it to the 2s state. Since various contributions to the matrix element may be isolated in the
computation, the calculation allows one to obtain a notion of the relative importance of various classes
of intermediate states in a given frequency range. We also point out that the Raman efBciency S may be
expressed in terms of the derivative of the electronic polarizability tensor with respect to a parameter
that measures the degree of excitation of the atom. Thus, the formal expression for S assumes an appearance
identical to the expression encountered in the phenomenological theory of the first-order Raman eGect
in solids.

I. INTRODUCTION

HERE is currently a strong experimental and
theoretical interest in the inelastic scattering of

light from matter. Since the change in frequency of the
light occurs because the incident photon has excited the
scattering medium, the study of inelastic scattering of
light provides detailed information about the nature of
the excited states of the material under study. In solid-
state physics, the development of laser sources has been
of great value, since the high intensity of the incident
beam makes processes with small cross sections ex-
perimentally accessible, and polarization studies may
be carried out with precision.

While there has been a large amount of activity in
this Geld, it has proved difhcult both to measure and to
compute the frequency dependence and the absolute
value of the scattering cross sections. It is clear that a
strong eBort will be made to compute and to measure
the frequency dependence and absolute magnitude of
the scattering cross sections from various processes.

In this paper, we would like to present a detailed
study of the cross section for Raman scattering of light
from the simplest possible system, a one-electron hydro-
genlike atom in which a j.s ~ 2s transition is induced
by the incoming photon. We note that Rapoport and
Zon' have examined this problem and have expressed the
cross section in closed form in terms of hypergeometric
functions. While their work is elegant, these authors
have presented no quantitative information concerning
the magnitude of the cross section and its dependence
on incident photon energy. It is precisely these questions
we wish to examine in the present work. Furthermore,
we shall find it of interest to separate out from the total
Raman matrix element particular contributions, such
as that from the bound states, from the continuum
states, its imaginary part, etc. Thus, we choose to eval-
uate the Raman matrix element directly, rather than
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'L. P. Rapoport and B.A. Zon, Phys. Letters 26A, 564 (1968).

187

employ the result derived in Ref. 1. It is hoped that by
examining the various pieces of the Raman matrix ele-
ment for the simple hydrogenic atom, we can illustrate
the features that will be important in more sophisticated
theoretical studies of systems currently under experi-
mental investigation. '

A detailed, quantitative study of Raman scattering
from a hydrogenic atom may be carried out because
analytical forms for the bound state and continuum
wave functions are well known. This allows exact nu-
merical evaluation of the sum over intermediate states
that occurs in the expression for the Raman-scattering
matrix element. By isolating various contributions to
this sum, one may get a good feeling for their relative
importance. For example, when the frequency of the
exciting light is near the energy of an allowed transition
between discrete states, the matrix element is often
approximated by retaining only the term in the sum
over intermediate states which exhibits the enhance-
ment. 3 For the case we consider, one may examine the
range of validity of such an approximation.

Also, the behavior of the matrix element for incident
photon frequencies greater than the ionization energy
is of interest. This frequency region is important, since
many solid-state experiments are carried out under
conditions in which the incident photon frequency lies
in a continuum of allowed interband transitions. In this
frequency region, the matrix element acquires an imag-
inary part, since the photon energy is sufficiently great
for an energy allowed ground-state free-electron transi-
tion to be induced. We Gnd that for incident photon
frequencies ptcor in the region

~
Et,

~
(ttcor& 10(E»~, the

imaginary part of the matrix element is in fact con-

~ Shallow impurity states in semiconductors often have hydro-
genlike energy spectra. Raman scattering from such centers has
recently been reported by A. Mooradian and G. B.Wright, Phys.
Rev. Letters 18, 608 (1967). While the energy spectrum of the
impurity center may be hydrogenlike, the wave functions diGer
greatly from simple atomic states, since the hydrogenlike envelope
function is multiplied by a Bloch function. See W. Kohn, in Solid
State Physics, edited by F. Seitz and D. Turnbull (Academic Press
Inc. , New York, 1957), Vol. 5. The presence of the Bloch function
part will strongly acct the matrix elements of the electronic
momentum operator.

3 D. G. Thomas and J.J.Hopfield, Phys. Rev. 115, 1021 (1968).
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siderably /urger than the real part. At su%ciently high
photon energies, the real part dominates the imaginary
part, and the matrix element falls off to zero like (~z) '.
Another interesting feature of the computation is that
the matrix element exhibits a frequency dependence
quite close to this asymptotic frequency dependence for
frequencies far below the range in which the true asymp-
totic behavior is found. That is to say, the matrix ele-
znent M varies as $f(idz)/~z'5, where the function f(a&z)

varies extremely slowly with ~z As i.dz -+~, f(idz) ap-
proaches a constant asymptotic value, but far below
the region where f assumes its asymptotic value; the
slow variation of f with &uz gives a matrix element that
appears to vary like ~z ', even though one is far from
the true asymptotic region.

II. RAMAN-SCATTERING MATRIX ELEMENT

E do E Ig
$(Q) =——= —L—,

3 dQ V dQ
(2.5)

Since the Raman-scattering eKciency 5 is the quan-
tity usually referred to in describing solid-state Raman-
scattering processes, it is desirable to relate S to the
scattering cross section and Raman matrix element. The
scattering eKciency S into a solid angle dQ is the ratio
of the number of outgoing photons per unit time (having
direction dQ) to the number of incoming photons per
unit time. For incoherent scattering from an array of
impurities, S is the product of the number of scatterers
per unit area (normal to the incoming beam of photons)
with the scattering cross section per scatterer. With A

the relevant area and L, the length of the crystal per-
pendicular to A, we have for 5

X= (1/2zzz) Lp —(e/c) A5' —ep(r) . (2.1)

Our Harniltonian in the presence of an electromag-
netic field is

where (1V/V) is the impurity concentration, and4

d~/dQ = ro'(ios/~z)
I
XL I

' (2.6)

The potential Q(r) is given by

y(r) =e/r. (2.2)

where
Qg =8p3Egp8q (2.3)

&bl p. l'&&'I p. f &
—. (2.4)

E; Ei,+k~z—

In this expression, e and e' are the initial and final

unit polarization vectors, respectively, y is the momen-
tum operator of the electron, m is the electron mass,
E„Eb, and E; are the energies of the initial (1s), final

(2s), and intermediate states, Acuz is the incident photon
energy, and ~ is a positive infinitesimal of importance
for photon energies in the continuum.

The electric dipole approximation employed in Eq.
(2.4) is valid. when kr„, ((1, where k is the photon
wave vector. We may take r,t, as the Bohr radius
a, =k'j~e'. Then kao&&1 implies Putz/(e'/2ao) 5&&2hc/e'

Since Izc/e'=137, this means that the incident photon
energy should be much less than 2'75 times the ioniza-
tion energy of the hydrogenic atom for this approxima-
tion to be valid.

4 J. J. Sakurai, Advanced Quantlm Mechanics {Addison-Wesley
Publishing Co., Inc., Reading, Mass. , 1967), p. 49.

Within the framework of second-order perturbation
theory and assuming the vector potential A to vary
slowly in space (i.e., the Geld is uniform over atomic
dimensions), Sakurai' gives the following expression for
the Raman matrix element between the two states
Ia) and lb):

is the cross section for scattering by a single center. We
define ro ——(e'/nzc'), ~s is the scattered photon frequency,
and col is the incident photon frequency.

Before computing the scattering efficiency S ex-

plicitly, it will be useful to bring out the analogy be-
tween Eq. (2.5) and expressions for the Raman eK-
ciency derived elsewhere.

In the theory of scattering of light by phonons, one
relates the Raman efficiency S to derivatives of the
electronic polarizability of a phonon normal coordinate.
Crudely speaking, the phonon normal mode amplitude
is a parameter that describes the degree of internal ex-
citation present in the system. We show that in the
present case, one may introduce such a parameter and
write S in a form that involves the derivative of the
appropriate dielectric function with respect to this
parameter.

To begin, let us suppose at times near t= —cc, the
atom is in some state I/0(t)&, which we do not specify
in detail at this time. Consider some operator 0 and
suppose l&0(t)& has the property that

8 oI o I 6&=o.

Now, we perturb the system with a perturbation of the
form

V(/) Vi ~sirot~qt+Vi s icutzpqi—
with Vi+&=(V~ ~) . We shall compute the expectation
value (0) at time t tofLrst order in V. If

I y ) denotes a
time-independent eigenfunction of the unperturbed
Hamiltonian Ho, then from first-order perturbation
theory, the change I 8$) in the wave function I&0& may

t' R. Loudon, Proc. Roy. Soc. (London) 4275, 218 (1963).
E. Burstein, in Dynamical I'rocesses in Solid State OPtics,

edited by R. Kubo and H. Kamimura (W. A. Benjamin, inc. ,¹w
York, 1967), p. 34.
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be written, with A= I,

lt4'(b) =f"'t "' "(
i «+ lto(i+ ))

+e ice—t dr e&'e'(~. "&'&—y I V( )IP(r(t+r)&.

To first order in V, one has

(0) =Q(r(t) Iol g (t)&1&+(t)!0!&(r(t)&. (2.7)

Before we write out Eq. (2.7) in detail, let us choose a
specific form for lf(r(t)&. We take lf(&&=!a)e ts", then

add to this function a small amount of the state I b),
which was the final state in the discussion of the Raman
scattering, i.e., we write

IA(t)&= la)e *"'+~.blf»e """, (2 g)

where lr&~bi&&1. This function is normalized, so long as
Ir& bl«1 and terms of order (r&, b2) may be ignored.

The parameter p, & may be regarded as a measure of
the amount of excitation present in the atomic system,
if the state

I
a) is the ground-state wave function. Thus,

there is a formal analogy between p & and the phonon
coordinate in the theory of lattice vibrations. For &0),
insertion of Eq. (2.8) into Eq. (2.7) gives

( &aloltrt&&nt!V& &Ia) (a!V& &litt)&trtlola&)
(o&=.-'-

I p +
Eam+& +am

&f IOI~&&~l V&-&la) &f I V(-&I~&&~lola&q
+r& 4e—icos( &t!

E bed+br s E.„—~s( '

&alol~&&ml v( ) lf) &al v& &Im&&~lolb&q
+r& e

—icos(+it P +P +c.c. (2.9)
+b&s(+) Eb (es(+)

We have defined ~s(+) =~& (Eb —E ), and E„=E
—E„.We shall next employ this result to compute cur-
rents induced by the external electromagnetic field by
taking for the operator 0 the current component j,
= —(e/trt)p„and V= —(e/rite)A p. One sees from the
result above that driving the system with a Geld of
frequency co induces currents at frequencies ~'/co, when
the mixing parameter g ~40. Indeed, the induced cur-
rents appear at the frequencies of the Stokes- and anti-
Stokes-Raman radiation, in addition to the drive fre-
quency co.

Quite generally, if one begins with an initial state at
I,= —~ that is an admixture of eigenstates of Ho, then
perturbs the system with some harmonic perturbation
V, to first order in V the linear response of the system
will contain frequencies other than the driving fre-
quency br. In Eq. (2.9), we have exhibited the response
of the system for the special case in which one "mixing
parameter" q ~ has a small, nonzero value. We intro-
duce a generalized dielectric function that relates the
current at frequency co' to the electric Geld amplitude
at frequency co. In general, this function will depend on
the admixture coefficients {r&}.We write

&j„( ')&='( '/4 ) „,( ', ; {r&})E,( ). (2.10)

This equation defines the function ~„„.For co =~' and all
the g's =0, it reduces to the usual definition of the fre-
quency-dependent dielectric function. When co'&m, ~„„
vanishes for {r&}=0. Thus, for the case in which a single
parameter r), bWO, and Ir&„bl«1, we (nake a, Taylor-
series expansion

e»((d', br, {r&}')=r&,b(8e»/(&r&, b) (co')+ . (2.11)

If we compute the current density from Eq. (2.9) and
employ Eqs. (2.11) and (2.10), we obtain the following
expression for (8»/(&r&, b):

(&et v 4rr /e')
((ds(+ ) = ——

!
—!~ ((es(+ )

Br&~ b (rr S k rrt)
(2.12)

where for given driving frequency coy, cog assumes the
two values (Or& (Eb —E,). Equation (2.12) is the analog
for the present problem of Loudon's relation' between
the Raman tensor and the elasto-optic coefFicient in the
theory of the first-order Raman effect in crystals. It is
convenient to introduce the susceptibility derivative
(~&&"/~V.b):

~xpv ~ ~ epv

Bgg p 4z Bg~g

The expression for the Raman efficiency/unit solid angle
then assumes the familiar form

+q t'(0s &sqt (&g((es)
~ e

V) k(or c ) ~gab
(2.13)

It should be noted that the result of Eq. (2.13) is quite
general, since we have made no specific assumptions
about the nature of the states involved in the calcula-
tion. Thus, it applies to complex impurity centers with
wave functions that diGer greatly from the hydrogenic
states employed in the remainder of the paper. In the
theory of phonon-induced scattering of light by crystals,
it. is useful to describe the scattering by ima'gining that
the excitation of lattice vibrations modulates the dielec-
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tric function of the crystal in time. From Kq. (2.13),
one sees that for impurity scattering, one may describe
the scattering heuristically by supposing that internal
excitation of the impurity center modulates the sus-
ceptibility X„„. The modulated susceptibility then
"beats" with the incident radiation to produce light at
the Stokes- and anti-Stokes-Raman frequencies.

%e next turn to a detailed calculation of the matrix
element 3f„„for an atom of hydrogenic character.

III. EXPLICIT EVALUATION OF RAMAN
MATRIX ELEMENT

Because we consider the initial and 6nal states to be
s states, and because of the degeneracy of states diGering
only in the magnetic quantum number, we may rewrite
Eq. (2.3) as

mt= — e.e'Q (bIyIi) (iIpIa)
35$

+ I. (3.1)
l E; E, hto—y+i»—E;—Ep+kooy)

We note that only p states will contribute to the sum.
In fact, if we write the orthogonal p states so that they
transform as x, y, and s, it is clear that

To obtain the matrix elements to the continuum
states, we erst specify the quantity n'. In the bound-
state region, the energy is given in atomic units
(e=h=e2=1) by

E„=—1/2e'. (3.6)

For the continuum, we introduce the quantity n',
which is related to the energy by'

E =1/2(e')' (3.7)

Since E =Itsks/22e=k2/2, we see that e'=1/k.
The continuum wave functions are usually normalized

by the requirement

R2, t*(r)R222(r)r'dr = b(k 2
—k2) . (3.8)

Ke wish to employ the normalization convention

R„, t*(r)R„2 t(r)rsdr =b(et' —e2') . (3.9)

The two normalizations can be related by using the
identity

&(kt —k2) =
I
de2'/dk2

I
b(et' —e2')

= (e')'b (et' —e2') . (3.10)

~=—' "2 (b I p*l jz&(jsl p*l a)
Thus, the wave functions are related by

R„t(r) =e'R„ t(r) . (3.11)

&&I . +
I

(32)
E, kcoz+i —e E—, Ep+kooy)—

The index j labels the radial quantum number de-
noted by e for bound states, and we add a prime and
write n' for continuum, states. The labels j and s are
sufhcient to identify the contributing intermediate
states I js).

To obtain the quantities (b I p, Ij s) and (jz I p. I a), we
evaluate (bIsI js) and (jsI sI a), and then use the relation

(A I p. I B)= (im/k) (Ez —E&)(A I sI B)—, (3.3)

which is valid when either 3 or 8 is a bound state.
Condon and Shortley~ give expressions for some of the
relevant matrix elements. Forj =e (i.e., the state j is a
bound state),

(ezIsI a) = (2'ap/V3)e"'(e —1)" '""(e+1) " "', (3.4)

(bIsIez)=3ap for e=2,

(b I
s

I es) = (2"tsap/VS) ert2(es —1)"'(e—2)"—'
y (e+2)—"—' for e)2. (3.5)

2 K. U. Condon and G. H. Shortley, The Theory of Atomic Spectra
(Cambridge University Press, Cambridge, England, 1951), 2nd
Cd.~ p. 133o

R.t(r) =
2 ( (e+l)! q't2

(2r) 'e—"t"
e'+'(2l+1) k(e —l —1)!)

&&F(—e+l+1,2l+2, 2r/e), (3.12)

and, after converting from k to e' normalization via
Eq. (3.2), we have for continuum states

2 (e~)1t2 1 t t
s2 ) 2/2

R- ()=, III 1+, I

I 1—ezp( —22re'))'t2 (2l+1)!~=& k (n')')

X(2r)'e '"t"'F(ie'+i+1,2l+2, 2ir/e'). (3.13)

' H. A. Bethe and K. K. Salpeter, Qtcantttm 3Iechanics of One and
Two Electron Atoms (Academic Press Inc. , New York, 1967).

~ L. D. Landau and K. M. Lifshitz, Quantlm Mechanics, Xon-
Eelativistic Theory (Pergamon Publishing Corp. , New York, 1958),
pp. 121—127.

In order to examine the behavior of the matrix ele-
ment when the photon energy is near the ionization
energy, it will be useful to show that the quantities
est'R t(r) and 'esRt2„' (rt) approach the same limit as e
and e' become in6nite. This means, as we shall see,
that the bound-state contribution to the matrix ele-
ment combines with the continuum contribution to pro-
duce a result that varies smoothly with col.

From Landau and Lifshitz, ' we have for bound states
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F(n,y, z) is the confluent hypergeometric function

a z n(n+1) z'
F (a,v, z) =1+——+ ~ 1 ~

v 1! v(v+1) 2!
(3.14)

bound states of large quantum numbers combined with
the integration over the continuum. If both contri-
butions are written as integrals over the energies
F.= ——,

' (n) ' and R =
2 (n') ' in the two regions, the sum

over intermediate states involves
As n ~~, we may expand R„~(r) in inverse powers of

e. The leading term is

(3.15)

As n' —+~, we may similarly expand R„'~(r) in in-
verse powers of e'. The leading term is

dE"
dn R„t*(r)R„,(r')

dE" E"—~r
dn' R„,*(r)R. , (r')+ d+ II

E —AMI

(n')@'R„'~(r) ~ (1/r) Jq~~q(g(8r)) . (3.16)

In both expansions, we have employed the relation'

lim F(—s+.1+1,23+2,2r/s)
j sl~&e

1+(t—+1)/s (2r)
=lim l1+

\, ] I(2l+2)

C
—1+(l+1)/s) C

—1+(i+2)/s) (2r)'
+

(2t+2) (2l+3) 2!

2r (2r)'

(23+2) (23+2) (2l+3)2!

= (21+1)!(2r) ' '"J2(+J(Q(8r)).

J2~+~ is the Bessel function of order 21+1.
Hence, we have

lim n'~'R„~(r) = lim (n')'~'R '~(r).
n—+~ nr~oo

(3.17)

(3.18)

This result implies that for the hydrogenlike systems
the Raman matrix element is a continuous function of
~1, as col passes from the bound state to the continuum
region. This is so because in performing the sum over
intermediate bound states of very high quantum num-
ber, the sum over e may be replaced by an integration
when the level spacing becomes small compared to the
level width. One encounters this contribution from the

2'ao(n')'~' exp[ —2n' tan —'(1/n'))
'SS S 8

v3[1+(n')')" [1—exp( —2~n') J~'
(3.19)

In the Appendix, we calculate (blzln'z) using the
same method that Bethe and Salpeter use to calculate
(n'zlzla). The result is that

The equality of Eq. (3.18) clearly implies that as E
approaches zero from below, the integrand in the 6rst
(bound-state) term becomes equal to the integrand in
the second (continuum) contribution, and so the Raman
matrix element is a smooth function of ~1 in the vicinity
of the continuum edge. In fact, while the above result
is derived within the context of the present specific
calculation, the proof is clearly quite general and may
be applied to other processes such as the frequency de-
pendence of the electronic polarizability, computed in
the framework of perturbation theory.

This general property is seen quite nicely in Mahan's
work" on two-photon absorption by solids. In this work,
the absorption coefFicients are calculated for transitions
into the bound-state region and the continuum region,
caused by the absorption of two photons. Mahan notes
that the absorption coefficients are continuous as one
goes from transition into the bound-state region to
transitions into the continuum region.

3cthe and Salpeter' evaluate one of the needed matrix
elements involving the continuum states; in e' nor-
malization, it is given by

2"~'ao(n')'~'[1+(n')')'~' exp[ 2n' tan '(2/n'))
(blzln'z) =

v3[(n ) +4)3[1—e~(—2~n ))~n
(3.20)

A bit of thought will convince one that Eqs. (3.4)
and (3.19) have the same form as n~m and n'-+~.
Similarly, for Eqs. (3.5) and/(2. 30).
Q, Applying (3.3) to (3.4), (3.5), (3.19), and (3.20) gives
(in atomic units with ao ——1)

(nzl pal a) = j(8/~)n@2(n —1)" 3~2(n+1) " 3n (3.21)

&bl p, lnz) =0, for n=2
j(32~2/~3)n3/2(n2 1)&/2(n 2)n—&

X(n+2) " ', for n)2 (3.22)

8 (n')"' exp[ —2n' tan '(1/n'))
SS z 8 =Z—

v3 [1+(n')')"' [1—exp( —2mn'))' '

3.23

' G. D. Mahan, Phys. Rev. 170, 825 I'1968).

32v2 (n')"'[1+ (n') )'" ( )

(b l p, l
n'z) = —i

v3 C(n')'+4)'

exp[ —2n' tan —'(2/n'))
X (3 24)

[1—exp (—27m') )'~'
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Using the I elationshlp

(n s)/—(sz+s) =expL —2 tanh (s/u)7 (s,&~ real), (3.25)

which is obtained by analytic continuation of the more
familiar relation

(n is)/—(a+is) =exp) —2i tan —'(s/e) 7
(s,m real), (3.26)

Kc introduce the para, meter r =h~r/
~

I'-~,
~ &

and sub-
stitute the relevant matrix elements into (3.2) to obtain

017 =')R'"+OR'~ (3.29)

where 01K('& gives the contribution from the bound
states, and 017(' gives the contribution from the inter-
mediate states in the continuum. We have

we rewrite (3.21) and (3.22) as oz(') =— -e e'

8
(es~ p, ~

a) =i— expL —2e tanh-'(1/e)7 (3.27)
v3 (n' —1)~~'

and

~ I' expL —2n tanh '(1/n) —2e tanh '(2/m)7

=3 (e' —1)(e' —4)'

XexpL —2e tanh '(2/e) 7. (3.28) and

Re{PL&')=—5&2+2
e e'

(e')' expL —2n' tan '(1/e') —2n' tan '(2/e')7
ds

L (n')'+17)(e')'+47L1 —exp (—2m'') 7

1
1m{&K&'&)=0 for r(1, r/1 —,where v=1, 2, 3

S

512V2 ~(n')' expr —2e' tan '(1/e') 2n' ta—n '(2/n')7

K3 P(e')'+17/(m')'+47'$1 —exp (—2m ' ') 7

for r)1, with n'=L2(r —1)7 '~'. (3.32)

0.0

CONTRIBUTION FROM n = 4 LEVEL

. ~CONTRIBUTION FROM n=3 LEVEL-0.2

TOTAL BOUND STATE
hl CONTRIBUTION I-0.3 .

ILIJ

I

CONTINUUM CONTRIBUTION
X I

l-0.5
I

C5 gi
yl(3 -0

I

O —TOTAL M X ELEMENT
LLJ

K
I-0.7 .

: i !
onset of I: I

Raman scatterIng:, j

08 0.9 I.Or~

-O.I

ATRI

-0.9—
0.0 O. I 0.2 0.3 OA 0.5 0.6 0.7

REDUCED PHOTON ENERGY

FIG. 1. Reduced Raman matrix element for photon energies
below the ionization level. The solid line gives the value of the
reduced matrix element 3f, and the remaining lines give various
contributions to M. The following graphical notation is employed:
———,the contribution from the continuum; ~ ~, the contribution
from the bound states; —,the contribution from the m=3 level
Only; ~ ——,the confribut:ion from the g=. 4 teve],

Act ually, for large e with r (1,the quantity 1m{5K~'}
is an envelope of 6 functions, one for each bound state.
Thus, Im{BIt'&} is not really discontinuous, as Eq.
(3.32) implies. In fact, level broadening effects cause each
5 function to be replaced by an envelope function ap-
proximately Lorentzian in form, with a width equal to
the intrinsic width of the level.

For large e, where the level breadth is large compared
to the level splitting, one may average over the enve-

lope functions to find

512&2
1m{St")=

v3

zn'expf —2n tanh '(1/n) 2n tanh '(2/~)7—
X — . (3.33)

(rP —1)(n' —4)

The quantity e is considered a continuous variable re-
lated to r by m=1/L2(1 —r)7"'.

We note that the m=2 bound state does not con-
tribute, because (bI p, ~es) is zero for n=2. We also
remark that for rz and r2 related by r&+r2 ——0.75, the
Raman matrix elements are identical. Thus the Raman
matrix element, as a function of r, is symmetrical about.
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r =0.375 Th. The cross section, however, does not have
this symmetry.

From Eq. (3.32), we see that for large incoming
photon energies (i.e., large r) 1m{ST('&}varies as r ".
From Eqs. (3.30) and (3.31), we see that for large r,
OR'~) and Re{OR"} vary as r '. Thus, RePR} will
dominate l OTL l

' for large r. We can derive the coefficient
o r ' in the expansion of Re{M} in powers of r '. We
can do this by beginning with Eq. (3.1) and taking the
limit as cvI —+~. One has

In Sec. IV, we write Re{OR} in a form suitable for
numerical computation. The result of Eq. (3.38) will
serve as a useful means of checking the computation,
since the numerical result should tend to this limit as
P~QO .

H aving analyzed BR, the Raman matrix element, we
now summarize our results for do/dQ, the Raman-scat-
tering cross section. In terms of the quantity r, the
Raman-scattering cross section is, from Eq. (2.6),

(3.38)

Re{Olt'}=— 2 (bl lili) (ilail~)
3m

(8; E.)+ (E,—Ei,)—
X . (3.34)

(K -&. —h~r)—(K &i,+—h~r)

Then after a short calculation, one Ands

h'e(e e') /e)
lim Re{OR}= b V'l —

l
a

3m(h(or)' kr)

4mk'e'—(e.")4"(0)4-(0)
3m (hier)2

4&2e e' (e2/2ao)' 4v2 e e'

(h~r)' 3 r'

(3.35)

(3.36)

(3.37)

The last result follows upon taking for our problem

P~(0) =A. (o) =(8~«') '"

0.(0) =A. (0) =(~~o') '".

For large r, we see that

lim (do/do) =r,'lOlt'l'. (3.39)

IV. COMPUTATION AND DISCUSSION

In order to obtain numerical results for 5R, we must
approximate the suinmation over the bound states and
the integration over continuum states. For the bound
states, we explicitly compute the sum from e =3 to m =s,
where s is some large number. We then expand the
summand in inverse powers of e and analytically com-

For r near the threshold of 0.75 (photons with r
below 0.75 do not have enough energy to Raman-
scatter the ground state to the first excited state), the
Raman cross section is linear in r —0.75. This follows
because the absence of a contribution of 2P state to OR

assures that 5R varies smoothly near r =0.75, while the
volume of phase space available for the 6nal photon
shrinks to zero. One has for r=0.75,

do/do=3r0'(r 0.75)
l
Nl (0.7—5) l

'.

7.0-

6,0 ~

0=3

50-

I—

LLJ

4.0

3.0

2.0

FIG. 2. Reduced Raman matrix ele-
ment 3II for photon energies near the
n=3 and n =4 bound levels. The con-
vention is the same as that employed
in Fig. i.
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tion is thus computed as

30.0 . x f(w)=r. f(e)+R(si+f
deaf(w),

(4.3)
n=3 n=3

20.0-

where f(e) denotes the first few terms in the expansion
of f(e) in inverse powers of rs.

Similarly, the integration over bound states is per-
formed as

IO.O . de' g(n') — dl' g(is')+ drl, g(e'). (4.4)

0.0
0.80 0.85 0.90 0.95

&EDUCED PHOTON ENERGY

I.OO

jI ro. 3. Square of the reduced Raman matrix element for photon
energies near the e =3 and n =4 bound levels.

pute the erst few sums in the expansion. This is done

by converting from a sum to an integral via the Euler-
Maclaurin formula" and then integrating:

2 f(~)=
n=8

dis f(n)+E(s), (4.1)

where

&()=~X()—:,f'()+(1I»o)f"()+ . (42)

The derivatives are computed numerically. The summa-

I

I.O-
(

~lm (M)

5 05.

O
0.0 ((3 '~ Re(IA)

O +CQI4TI(NUUM PART OF Re (M)

-0.5
l.O Z,O 3;0 4.0 5.0 6.0 7.0 8,0 9.0 I 0.0r~

REDUCED PHOTON EINEP~ GY

"See Handbook of3IIathematica/ Functions, edited by M. Abram-
owitz and I.A. Stegun (National Bureau of Standards, Washing-
ton, D. C., 1964), p. 806.

I zo. 4. Reduced matrix element M for photon energies in the
vicinity of the continuum edge. The full line is the real part of N,
while the dashed line shows the contribution of the continuum
states to the real part and the dotted line the contribution of the
bound states to the real part. The "dot-dash" line is the imaginary
part of M.

This procedure hinges upon our ability to integrate the
terms in the expansions f(n) and g(e'). Fortunately,
this presents us with no problems. Since the details of
the algebra are tedious but straightforward, we refer
the reader elsewhere" for details.

In Figs. 1—8, we present our results in graphical form.
The figures contain plots for a number of frequency
regions of the reduced matrix element M, where
5K=8 O'M.

In Fig. 1, we plot M as a function of frequency for
photon energies below the m=3 bound-state level. The
solid line gives the value of M, and the remaining lines
are particular contributions to M that have been iso-
lated in order to give a feeling for their relative impor-
tance. In the frequency region illustrated in Fig. 1, the
matrix element is very poorly approximated by only the
m=3 contribution. Notice that a large contribution
comes from the continuum states.

In Fig. 2, we present plots of M on a Gne frequency
scale near the e=3 and e =4 resonances, along with the
various contributions considered in Fig. 1. One can see
that the parameter r must be within about 0.02 units
from the bound state before the matrix element is
dominated by a single term in the sum over intermediate
states.

The resonance region around the m =4 bound level is
considerably narrower than the resonance region around
the m=3 level. This is because the matrix element con-
necting the I=4 level to the initial (1s) and final (2s)
state is considerably smaller than the matrix element of
the m=3 level to these states. As e grows larger, the
matrix elements get smaller, so the resonance regions
become progressively narrower. This point is illustrated
more clearly in Fig. 3, where we plot the square of the
total reduced matrix element

~
M ~' for photon energies

in the vicinity of the m=3 and m=4 bound levels.
In Fig. 4, we give a plot of M for photon frequencies

between the ionization threshold and 10 times the
ionization energy. The real part of M is exhibited as
the solid line and the imaginary part as the "dot-dash"
line. The bound state and continuum contributions are
given separately. As the variable r —+ 1 from above,

"W. M. Saslow, thesis, University of California, 1968 (un-
published) .
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2.2 .

l.8

4m

1

l4

F R 6(M)

Fro. 5. Plot of r'M as a function of r
for large exciting frequencies. The
same convention is employed here as
in Fig. 4.
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0.0
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-otz l

10 IO' IO IO'

REDUCED PHOTON ENERGY
IO IO

the imaginary part approaches a finite limit near 2 in
value. The real part is also finite, although the bound
state and continuum contributions each diverge. The
reason for the cancellation of the divergencies in the
real part was discussed above. It is interesting to note
that in the region 1&r(10, the imaginary part of the
matrix element is larger than the real part. This is par-
ticularly true for r near 1, where the imaginary part of r
is in fact much larger than the real part.

In the limit as r —+~, the discussion above shows that
Im(M) -+ 0 faster than Re(M), so eventually the real
part of M must dominate. That this is so is evident from
Fig. 5, where we plot r'Re(M) and r'Im(M) for large
values of r. One sees that for r&&10, Im(M)«Re(M).

Actually, in Sec. II it was remarked that the electric
dipole approximation breaks down in the region x& 275.
Thus, the values of M exhibited in Fig. 6 for r greater
than this value cannot be applied to give an accurate
estiinate of the cross section. However, the curves are

still of interest, because the approach to the asymptotic
region of large r of the mathematical form 3f may then

be studied.

5p

2.0

Finally, in Fig. 6, we plot the quantity r'~M~' for a
wide range of values of r& 1. Recall from the discussion
above that one expects that r'~M ~s will approach the
constant (32/9) =3.55 as r ~eo. From Fig. 6, one sees
that r'~ M~'=A(r) is a slowly varying function of fre-

quency, since for all r, A (r) lies between 2.0 and 3.6.
Thus, the matrix element ~M~' varies roughly as r '
for all r&5 or so. However, the true asymptotic region,
where Im(OR)«Re(M) =4v2/3r', is not attained until
r is in the range 10'—10' (where, in fact, the electric
dipole approximation breaks down).

V. CONCLUSIONS

Ke have carried out a detailed investigation of the
frequency dependence and magnitude of the cross sec-
tion of the Raman scattering of light by one of the
simplest quantum-mechanical systems, the one-electron
hydrogenlike atom. There are two features of the cal-
culation we feel are of general interest. First, when the
energy of the exciting light is near a resonance associated
with a bound-state —bound-state transition, the Raman
matrix element is given accurately by the single inter-
mediate-state approximation when the photon fre-
quency is quite close to the resonance. Second, when the
photon frequency lies in the range of a continuum of
allowed transitions, the matrix element acquires an
imaginary part. Ke find that for an important range
of photon energies, the imaginary part of the matrix
element is in fact large compared to the real part. %bile
this may not be true in general, it is clear from this
work that one must not ignore the imaginary part of
the Raman-scattering matrix element.

00
io' IOa tOs

REDUCEO PHOTON ENERGY

Fzo. 6. Quantity r'IMI' plotted as a function of the reduced
photon energy r for large values of r.

Ke have erjoyed discussions with Professor E.
Surstein about several aspects of this work.
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APPENDIX

Bethe and Salpeter calculate the quantity (&„sI
s

I G),
where 8 ' = 2r(n')'. After the angular integration is done,
(8„'slsIG) takes the form

(-oo, ioo) (O, ioo) (oo,ioo}

00

(E„'sl sI G) =—
I Es„, , (r)7*X2e 'r'dr. (A1)

3

On using the integral representation,

2I 1+(n')'7'/2
&z..., ,= (n')'I —

I

L1 —exp( —2sn') 7'" (2r)

X—.—' t - (~+-')-'"-'(~—!)'"'-'«(A2)
2z

where the integration contour is dered in I'"ig. 7, Eq.
(A1) becomes

(-m, 0)

(-oo;ioo)
1r

branch cuts

(- ', 0) ~(,,0)

pole

(O,-ioo)

(m, o)

(oo,iao)

-plane

(n')'L1+ (n')'7'"
(Z„slsla)= — — — dr r2s

4 v3C1 —e~(—2 n')7r/s,

&
—2irg/n' & —in' —2 & in' —2d g3

X (( r)in' 2g(—dr re—2i"&/"'2e—" (A4)

Interchanging the order of integration, we have

(n ')'L1+ (n')' J/2
1 —ini —2

4s-%3L1 —exp (—2s-n ')7'"

FIG. 8. Integration contonr for Eq. (A4).

enables us to put the result iri a more useful
form.

To obtain (b I
s

I E„s), we need only to modify the
above procedure by replacing the is radial eigenfunction
2s " by the 2s radial eigenfunction (1/v2)(1 ——,'r)e ""
Then

(b I
s In's) =%2(n')"'(b

I
s

I
Z„s)

V2 (n') '/'L1+ (n')'7r/'

4s'~3I 1—exp (—2~n') 7'/'

The r integration can be done explicitly, giving an
expression which exhibits a pole. By deforming the con-
tour of integration to surround this pole (see Fig. 8) and

using the method of residues, (&„'slsla) may be ob-
tained explicitly. The relation

(n'slslu)=%2(n')'"(E 'sls[a)

branch

($+r)—in, '—2(t r)in' —2dp

1(
X dr re 2i"&/"' -I 1——

~e
"/2. (A5)

2%2k 2)

Performing the r integration, we obtain

(n&)?/2L1+ (nl)271/s

g Isln s)=
87rv3I 1—exp( —2s-n')7t/'

- plane

)~~ pole

Fxo. 7. Integration contour for Eq. (A2).

where X=sr+2i)/n'. On applying the method of resi-
dues, the term in 1/it' gives no contribution, but the
term in 1/X' does contribute, in the amount given by
Eq. (3.20).


