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We construct a dielectric two-band model which describes and predicts ionization potentials and elec-
tronic band structures of binary compounds AxBs_y. Only the density and dielectrically defined elec-
tronegativity difference are required as input data. The method is applied to 19 tetrahedrally coordinated
crystals with excellent results. Predictions are also made for 18 other tetrahedrally coordinated crystals.
The extension to octahedral coordination is discussed, and direct band gaps are calculated for 28 such
crystals. It is also proposed that crystal structure and phase transitions can be predicted using this method.

I. INTRODUCTION

N the first paper of this series,! we developed the
concept of electronegativity difference as a scaling
parameter which generalizes the concepts of valence
and size differences. To treat the low-frequency elec-
tronic polarizabilities of diatomic crystals with formula
AxBs_y, we introduced a simple quantum-mechanical
model to describe s-p valence bond susceptibilities.? An
average energy gap E, is deduced from the real, static,
electronic dielectric constant e;(0). In tetrahedrally
coordinated crystals, E, represents the energy difference
between bonding and antibonding (sp?) hybridized
orbitals. It may be decomposed into contributions due
to the symmetric and the antisymmetric parts of the
potential within the unit cell:® We denote these
contributions by E;, and C, respectively. The decomposi-

tion of E, is
(1.1)

Because C=0 by symmetry for a homopolar (di-
amond-type) crystal, E,=E, is fixed for the group-IV
elements by observation of €(0). In I we showed
that E; is a function of nearest-neighbor distance
only. Thus £ is fixed for the diatomic crystal formed
from elements & and 8 by interpolation based on the
nearest-neighbor distance. Cog is determined from the
electronic dielectric constant ;(0). (It has been found
that the nearest-neighbor distance in all diamond, zinc-
blende, and wurtzite crystals formed of elements from
a given pair of rows of the Periodic Table is nearly
constant, so that E; is nearly constant for all such
crystals. This effect was utilized by Cohen and Berg-
stresser® in their band-structure calculations.)

When « and 8 belong to the same row of the Periodic
Table, Cap is found to be proportional to the valence
difference AZ=|Z,—Zg|. Therefore, we regard the
empirically determined values of C,s as a generalization
of the concept of valence difference to include the effects

Ep2=E2+C.

* Fannie and John Hertz Foundation Fellow.
17, A. Van Vechten, Phys. Rev. 182, 891 (1969), hereafter
referred to as I.
2 D. Penn, Phys. Rev. 128, 2093 (1962).
3 J. C. Phillips, Phys. Rev. Letters 20, 550 (1968).
( 4M). L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789
1966).
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of row or ion core differences when o and 8 belong to
different rows. In this sense we take the value of C.g to
be a dielectric definition of the electronegativity
difference between elements o and 8.

In I, relatively simple expressions are used for
€1%#(0) and C op. For €(0) we have

€2%(0) =14 (7w ,)2 DA/ (ER*+C og?) , (1.2)

where
A=1—B+3%B?, (1.3)
B=E,/AEp, (1.4)

and where Er and w, are the free-electron Fermi
energy and plasma frequency calculated for a density
of eight electrons per unit cell (or four per atomic
volume) and D is the square of the ratio of the effective
plasma frequency to this free-electron value. (As is
explained in I, the presence of a filled d-electron band
below the valence band in crystals containing elements
from the third and fourth rows introduces into the fsum
negative terms because of the interaction of the d
band with the valence band. Thus the sum of the
oscillator strengths connecting the valence and conduc-
tion bands is greater than four and the effective plasma
frequency is greater than the free-electron value.?)
The factor D is discussed at length in I, and a prescrip-
tion for its evaluation when an experimental determina-
tion is lacking is given by Eq. (3.11) of I. We do not
repeat that discussion here but include the values
obtained in Table V. For C we have

Z“ le ra+rﬁ
C———b<————~>exp<—}’e..r >,
7o rﬂ 2

where k; is the linearized Thomas-Fermi screening
wave number, and 7., is the covalent radius of element
a,8. We have defined the covalent radius as half the
nearest-neighbor distance in the diamond-type crystal
of the group-IV element in the row to which element
a,8 belongs times the ratio of the observed lattice

(1.5)

5 This is discussed by H. R. Philipp and H. Ehrenreich, Phys.
Rev. 129, 1550 (1962), who show some empirical observation of
this effect. See also F. Seitz, Modern Theory of Solids (McGraw-
Hill Book Co., New York, 1940), p. 644.
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constant of the crystal to the “normal covalent” value,
which is the geometric mean of the lattice constants of
those diamond-type crystals corresponding to « and S.
(As noted above, this ratio is nearly unity for all zinc-
blende and wurtzite crystals.) The prefactor & is found
empirically to have the constant value 1.5 within 79
for tetrahedrally coordinated crystals; its dependence
on density in ionic, octahedrally coordinated crystals
is discussed in I.

In this paper we wish to extend the analysis of I
to treat (1) ionization energies from the top of the
valence band to vacuum, and (2) transition energies
associated with specific edges in the imaginary part
of the dielectric constant e;(w). In principle, e (0) may
be determined from e(w) by the Kramers-Kronig

relation
2 00
a(0)=14+— /
T Jo

Thus the dependence of €(0) on Ej and C is actually a
composite of the energy dependence of all the interband
gaps. (It may also be affected by some redistribution of
oscillator strength between various transitions.) We
have already noted in I that E, is approximately the
energy of the largest peak in e (w), both for homopolar
and heteropolar crystals.

Because the present analysis enables us to predict
interband energies associated with specific energy
levels, E,(k.), at definite points k. in the Brillouin zone,
it is in some respects an empirical energy band calcula-
tion. One might regard each interband edge and the
value of that energy gap in the appropriate homopolar
crystal as together defining an effective value of Coug
the average ionic potential. To the extent that different
edges involve similarly weighted averages, the one set
of values of C that we have determined in I from € (0)
together with the observed band structures in the
diamond-type crystals serve to predict all the other band
structures. Thus, in contrast to the empirical pseudo-
potential ' method, this approach avoids the task of
constructing and Fourier-analyzing a one-electron
crystal potential as well as solving the large secular
equations derived from the Schrédinger equation.

Before proceeding, an historical remark is in order.
The idea of separating the effects of covalency and
ionicity and treating the latter as a perturbation in
order to predict the energy differences in zinc-blende
crystals from those in diamond-type crystals was first
put forward some time ago by Herman.® He observed
that for a horizontal sequence of crystals (e.g., Ge,
GaAs, ZnSe), the fundamental gap increases as the
square of the valence difference AZ. (Herman calls
this parameter A\ and graphs showing this relationship
are widely known as A\? plots.) Herman’s analysis has
been extended to other energy gaps as well. A simple

=@ . (1.6)

¢ F. Herman, J. Electron. 1, 103 (1955).
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perturbation interpretation, analogous to our treatment
of E,, would predict that a given gap E; should increase

as
Ei=E1~,h(1+Ki2AZZ/Ei,;L2)1/2, (17)

where E;,; is the value of E; for the appropriate homo-
polar crystal and «; is some constant. However, empir-
ically some energy gaps increase as found by Herman
for Eo, i.e., as

(1.8)

Thus for some gaps A\? plots turn over into the curve
indicated by (1.7), while for others the plot remains an
approximately straight line.

The present model can be regarded as an extension
of Herman’s work to describe skew crystals, such as
InP and AlSb, that do not fit into his horizontal
sequences, by generalizing from A or AZ to C. We note
that Eq. (1.1) requires only that the average gap E,
follow the form of Eq. (1.7):

Ey=E,,(14+C¥/E, )", 1.7)

Also, in our two-band model (1.7") corresponds to an
exact solution of the 2X2 Hamiltonian and not to a
second-order perturbation. Thus our analysis may be
applied to cases where C>E; as occur in II-VI com-
pounds. An explanation of the approximately linear
dependence of several of the E;’s is given on the basis
of the effect of the filled d band in many of the crystals.
In doing this we will utilize some of the wealth of new
data which has become available on the fundamental
absorption spectra over a wide energy range’ as well
as the interpretation of those data through extensive
pseudopotential calculations.4:8

Although the photoemission and work-function data
are by no means as complete as the optical data, we
will consider first, in Sec. II, the absolute energy, i.e.,
relative to the vacuum state, of the state labeled
Ty or T'i5,, (at the top of the valence band) and the
dependence of this on our electronegativity parameter
C. This will allow us to establish the absolute energy
of the states at the other critical points within the bands
from a knowledge of the direct and indirect gaps. In
Sec. III, we propose an extremely simple method for
calculating the band structures of tetrahedrally coor-
dinated crystals. We then compare the result of our
calculation with the experimental interband energy
gaps of 19 diamond, zinc-blende, and wurtzite crystals
and also with the results of the empirical pseudopoten-
tial method. In Sec. V we consider the relation among
our parameters, £ and C, the band structure, and the
crystal type in which the compound is found. In Sec. VI
we discuss the extension of our results to the rocksalt
structure. A discussion of the pressure dependence of
the energy gaps will be published separately.?

7J. C. Phillips, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1966), Vol, 18,

8 D. Brust, Phys. Rev. 134, A1337 (1964).
9 J. C. Phillips and J. A. Van Vechten (unpublished).

Ei= Ei,h-}—xi2AZ2/2Ei,h .
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TaBLE I. Nomenclature of interband energy gaps commonly used in the literature. Note that the designation of points in the Brillouin
zone is meant to indicate the symmetry of the transitions; the actual energy gap at the points indicated is not always the energy of the
corresponding critical point in the spectrum or the joint density of states. For instance, in diamond it is known that the lowest indirect
gap is from T to a point on the A axis 779, of the way from T to X (see Ref. 20).

Transition

Label Diamond Zinc-blende Wurtzite NaCl Symmetry
I T — Vac Tis,v— Vac T'1,9,T6,0» — Vac T'i5— Vac P—
Eo Ty’ — Ty Ti50 > Iy, I',9,060— I, T'is—Th P—S
Ey le — L L3p— Ly, Is50— T3, L;— L2, P—S
Eaa Xi— X Xs— X K3y — K3, X' — X3

Hy oy — Hj, P—3S
Esp Xi— X, X5 — X; Ky — Ko X — X,
E Ly’ = T'y5 150 — T'15,¢ T'1,9,0%,5 = T'1, 6,6, ¢ T15— Ty’ P—P
El, L3, Il L;; L:{,'p g L3,¢ Fs,fu il I‘e,c L3 hd L3' P—-P
Eina x T2’ — X Ti50— X1 I‘e,»-’%a T15— X3 P—3S

2

Eina 1 Ty’ — Ly Ti5,0— L,c Lo — Us Tis— Ly P—S

We present in Table I a synopsis of the energy-gap
nomenclature in common use in the literature. Table II
summarizes all the parameters deduced or used. Our
results are presented in Tables III, VI, and VII.

II. IONIZATION POTENTIALS

As noted above, we found in I that the average
homopolar energy gap E,,, was a function of nearest-
neighbor distance only. Here we will assume that the
homopolar energy of all wave functions, except those of
s-like symmetry which are affected by the presence of a
filled d band, is a function of nearest-neighbor distance
only.

Consider the p-like state I's;3» which has the maximum
energy of the valence band in all group-IV crystals.
Allen and Gobeli®® measured the energy of this state
relative to the vacuum level in Si and Ge by careful
extrapolation of very low photoemissive yields. Their
values for the position of the J=% I's5 level relative to
vacuum are —5.15 and —4.80 eV, respectively. When
we remove the effect of spin-orbit splitting we obtain
—5.17 and —4.90 €V, respectively, for the center of
gravity of the Tz level. (The effect of spin-orbit
splitting will be removed from all data quoted here-
after.) Thus the logarithmic derivative of the ionization
potential Eyae—Er,,=I, with respect to nearest-
neighbor distance d, is —1.31, and assuming I « d® with
s=—1.31, we may calculate the value of I for a homo-
polar crystal of any given d. We denote this quantity
as Ij.

With these values of I, and the value of C that we
found in 7, we may calculate I for other crystals using

I=I[1+(C/In)* 1. 2.1

These values have been included in Table III, where
they may be compared to the experimental values which
have been determined for 12 III-V and II-VI crys-

10 F, G. Allen and G. W. Gobeli, Phys. Rev. 144, 558 (1966).

tals.!™14 We note that all 12 predictions agree with
experiment to within 109, and eight of the 12 to within
3%. For the higher values of I reliable experimental
values are obtained only from crystals cleaved in high
vacuum.

We believe that this level of discrepancy is not
greater than is to be expected from the combined
effects of experimental error, error in the determination
of C in I, and the inaccuracy in extrapolating [, from
the experimental values for Si and Ge, which differ in
d by only about 49%,. (See Fig. 1.) The experiment is
complicated by the requirements that the sample
surface be atomically clean and that the quantum yield
be pursured to about 1075 electrons/absorbed photon
to obtain the threshold. Shay and Spicer'® showed that
the difference in sample surface between crystals
cleaved and measured in a 107% and in a 10~%-Torr

TasirE II. Parameters used in the calculations presented. Al
factors except Vac-X, [see Eqgs. (2.1), (3.1), (3.3), and (3.7)]
are obtained by extrapolating the value assumed for Si as a
function of observed nearest-neighbor distance using only the
logarithmic derivatives listed. Vac-X; is evaluated using the
normal covalent nearest-neighbor distance instead of the observed
value. (X3—X;)/C=0.071 gives the splitting of the X3 and X,
(éon(;uction states as a function of electronegativity difference
3.6).

Parameter Value for Si Log. deriv.
Iy 5.17 —1.3077
Vac-X, 8.63 —1.43
Ey, 4.10 —2.75
Ey, L 3.60 —2.22
Eay, D B$4.50 —2.3821
B/ 3.40 —1.92
By 5.90 —1.67
AE, 12.80 —5.07
AE, 4.976 —4.97

uT. E. Fischer, Phys. Rev. 139, A1228 (1965).

2T, E. Fischer, Phys. Rev. 142, 519 (1966).

13 M. C. Cohen and J. C. Phillips, Phys. Rev. 139, A912 (1965).

4 R. K. Swank, Phys. Rev. 153, 844 (1967).

15 J, L. Shay and W. E. Spicer, Phys. Rev. 161, 799 (1967);
169, 650 (1968); 175, 741 (1968).
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vacuum may result in a shift in the apparent threshold
of more than 1 eV. Swank’s results' indicate that in
some cases a 107-Torr vacuum is required. While
surface contamination tends to lower the apparent
threshold, not pursuing the quantum yield to a low
enough level tends to overestimate the value. This is
because the quantum yield falls very sharply to about
10~ electrons/quantum,*:*> and then turns towards
lower energy and follows a power law to the actual
threshold.1®

Once the value of I has been established, we may
determine the absolute energy of the other states in the
band structure and investigate their dependence on C
and on d.

III. BAND STRUCTURES OF TETRAHEDRALLY
COORDINATED CRYSTALS

In this paper we calculate band structures for tetra-
hedrally coordinated crystals under the following
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assumptions, which characterize the dielectric two-band
model. The nature of the model is discussed at greater
length in Sec. IV.

(1) In the absence of a filled d shell in one of the
constituent atoms, all direct interband transition
energies E,; are given by the analog of Eq. (2.1),
ie., by

Egi=Ey,(14+C/ Ey, )12

if there is no filled d band.

(2) All the homopolar transition energies Ej,; are a
function of nearest-neighbor distance only and are
determined by extrapolation from the values assumed
in Si (see Table II). Thus

Ey,i(d)=(Ep,qo)si(d/dsi)*. (3.2)

(3) In all cases the absolute value of the I'ys (I'15?)
level, the top of the valence band at the zone center,
is determined by Eq. (2.1).

(3.1)

TasLE I11. Comparison of theory and experiment for 19 tetrahedrally coordinated crystals for which relatively complete experimental
data are available. Shown are the values omitting spin-orbit splitting obtained by empirical pseudopotential method according to
Cohen, Bergstresser, and Saslow (see Refs. 4, 19, and 20), the experimental values, and the values as calculated in this paper (dielectric
method). Whenever possible the experimental value was taken to be the peak of the electroreflectance structure or of the e;(w) spectrum
at low temperature. When such data were not available, room-temperature data and reflectivity spectra were used. In the last column
we show the results of an E;’ calculation assuming that this transition is 209, more sensitive to electronegativity difference than are the

others. (See end of Sec. III.)

Indirect gaps

Direct gaps Ey’ dielect

prediction.

Crystal I TtoX Ttol Eo Ey Eaa Eap Ey EY corr.
Pseudopot. 5.4 7.5 12.5 10.9 12.9 12.9 7.3 12.8

C ~ Expt. 5.48 12.2b 12.2b 7.30
Dielect. 8.96 5.48 5.77 13.04 9.16 12.26 12.26 7.63 11.91 11.91
Pseudopot.

BP Expt. 2.0° 54 6.94 8.0d 8.0d
Dielect. 6.58 1.81 2.88 6.76 5.42 6.89 7.00 4.86 8.00 8.02
Pseudopot.

SiC Expt. 2.3-4.6¢ 7.75¢ 7.1f 8.3t 6.0f 9.7t 9.7t
Dielect. 7.91 4.54 5.17 8.48 7.04 8.28 8.83 6.48 9.38 9.72
Pseudopot. 0.8 1.9 3.8 3.1 4.0 4.0 34 5.2

Si Expt. 5.17s 1.130 4.081 3.6 4.408 4401 3.351 5.4¢ 5.42
Dielect. 5.17 1.04 1.87 4.10 3.60 4.50 4.50 3.40 5.90 5.90
Pseudopot. 2.2 2.7 2.7 3.6 4.6 49 5.3 6.4

GaP  Expt. 2.38k 2,77 3.731 5.271 5.741 4.801 6.6 6.6
Dielect. 6.11 3.05 2.75 2.85 3.89 5.32 5.78 4.72 6.73 7.08
Pseudopot. 5.2 5.3 3.7 5.8 6.7 7.5 8.9 9.2

ZnS Expt. 8.7340.3™ 3.80" 5.70° 7.60 8.75» 6.65" 9.45° 9.45°
Dielect. 8.09 6.96 5.72 4.37 5.87 7.25 8.13 7.08 8.59 9.52
Pseudopot. 1.0 0.9 1.2 2.0 3.8 3.8 3.5 5.4

Ge Expt. 4.90= 0.96h 0.76h 0.891 2.26 4.3p 4.3p 3.191 5.4» 5.4»
Dielect. 4.90 0.84 0.61 0.96 2.23 4.08 4.08 3.14 5.51 5.51
Pseudopot. 2.0 2.0 1.9 2.8 3.9 4.3 41 5.3

AlSb  Expt. 5.47a 1.874 2.5 3.00t 4.251 4.6 3.811 5.08 5.084
Dielect. 5.39 2.15 2.39 2.67 3.49 4.36 4.80 411 5.73 6.08
Pseudopot. 1.8 1.7 1.4 2.6 4.0 4.3 4.5 6.0

GaAs Expt. 5.59r 1.921 2.0t 1.55% 3.041 4,991 5.331 4.2 6.2! 6.21
Dielect. 5.70 2.37 1.89 1.55 3.11 4.81 5.22 4.28 6.23 6.52
Pseudopot. 2.3 2.0 1.6 2.8 4.2 4.5 4.6 6.0

InP Expt. 5.72¢ 1.371 3.241 4.8 5.1p 440 6.6P 6.67
Dielect. 5.74 2.93 2.25 1.45 3.17 4.78 5.25 444 6.17 6.55
Pseudopot. 4.5 4.5 2.9 5.0 6.0 6.9 7.9 8.4

ZnSe Expt. 7.55m 4.950 6.4° 7.20 8.45° 8.45°
Dielect. 7.43 5.82 4.26 3.37 5.09 6.52 7.32 6.42 7.85 8.68
Pseudopot. 2.2 5.0 6.7 7.8 8.4 8.5

CdS  Expt. 7.35m 2.48n 5.3¢ 7.8% 6.4° 8.80 8.8

16 E. O. Kane, Phys. Rev. 127, 131 (1962).
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TaBLE III (continued)

Ey dielect.

Indirect gaps Direct gaps prediction

Crystal I 'toX TroL Eo E; Eaa Esn E¢ Ey corr.
Dielect. 7.54 6.53 5.91 2.73 4.94 6.59 7.42 6.60 7.88 8.79
Pseudopot. 2.1 1.6 0.8 2.3 3.8 4.2 4.4 5.6

GaSb = Expt. 5.03¢ 1.30t 1.07 0.99! 2.26 4.10 4.50 3.371 5.501 5.501
Dielect. 4.90 1.36 1.17 1.00 241 3.84 4.1 3.43 5.27 5.45
Pseudopot. 2.1 1.6 0.5 2.3 3.9 4.3 4.6 5.7

InAs Expt. 5.44r 0.5» 2.641 4.5 5.0p 3.78 6.1» 6.1p
Dielect. 5.27 2.14 1.45 0.56 241 4.25 4.64 3.90 5.65 5.94
Pseudopot. 4.0 3.8 2.5 4.3 5.2 5.8 6.7 6.6

ZnTe Expt. 5.89m 2.561 3.971 5.3p 5.401 7.20° 7.200
Dielect. 6.31 4.26 3.64 2.72 4.17 5.32 5.96 5.24 6.62 7.25
Pseudopot. 2.0 43 6.0 7.2 7.7 7.9

CdSe  Expt. 6.88¢ 1.87i 4.5u 6.9 64 8.35u 8.35u
Dielect. 7.08 5.80 4.33 2.19 4.48 6.10 6.88 6.14 7.36 8.21
Pseudopot. 1.1 0.6 —0.1 14 3.1 3.1 3.0 44

Sn Expt. 0.3» +0.1v 1.6 3.721 3.721 2.401 4.39% 4.391
Dielect. 4.09 0.35 0.18 +0.13 1.48 2.94 2.94 241 4.38 4.38
Pseudopot. 2.0 1.5 0.6 2.1 3.5 3.8 4.1 4.1

InSb  Expt. 5.07r 0.5» 2.131 3.271 4.0r 4.5» 5.254 5.251
Dielect. 4.61 1.40 1.01 0.39 2.05 3.48 3.77 3.21 4.87 5.07
Pseudopot. 4.0 3.5 2.0 3.9 5.1 5.6 6.6 7.0

CdTe Expt. 6.01™ 1.801 3.69 5.00° 5.9 5.07° 6.8° 6.8°
Dielect. 6.02 4.32 3.40 1.89 3.73 5.00 5.61 5.03 6.22 6.87

rms Pseudopot. 0.27 0.24 0.28 0.56 0.61 1.09 0.42 e

dev. Dielect. 0.22 0.18 0.20 0.21 0.25 0.32 0.37 0.53 0.32

a C, D. Clark, P. J. Dean, and P. V. Harris, Proc. Roy. Soc. (London)
A277, 312 (1964).

b R. A. Roberts and W. A. Walker, Phys. Rev. 161, 730 (1967).

¢R. J. Archer, R. Y. Loyama, E. E. Loebner, and R. C. Lucas, Phys.
Rev. Letters 12, 538 (1964).

d C, C. Wang, M. Cardona, and A. G. Fischer, RCA Rev. 25, 159 (1964).
( eW). J. Choyke and L. Patrick, Phys. Rev. 133, A1163 (1964); 172, 769

1968).

t B, E. Wheeler, Solid State. Commun. 4, 173 (1966).

g F. G. Allen and G. W. Gobeli, Phys. Rev. 144, 558 (1966).

b F, Herman, R. L. Kortum, C. D. Kuglin, and R. A. Short, in Quantum
Theory of Atoms, Molecules, and the Solid State, edited by P. O. Lowdin
(Academic Press Inc., New York, 1966), p. 381.

( ll\{][) Cardona, K. L. Shaklee, and F. H. Pollak, Phys. Rev. 154, 696
1967).

iL.R. Saravia and D. Brust, Phys. Rev. 171, 916 (1968).

k P, J. Dean and D. G. Thomas, Phys. Rev. 150, 690 (1966).

1F. Herman, R. L. Kortum, C. D. Kuglin, and J. P. Van Dyke, in
Methods in Computational Physics, edited by B. Alder, S. Fernbach, and
M. Rotenberg (Academic Press Inc., New York, 1968), Vol. 8, p. 193.

(4) In all cases the absolute value of the X4(X5) level,
the top of the valence band at the zone edge in the (100)
direction, is taken to be a property of the rows of the
Periodic Table to which the constituent atoms belong
only, i.e., is independent of the degree of ionicity and
the actual nearest-neighbor distance. It is determined
by extrapolation, in the same manner as the F;
values, as a function of the normal covalent nearest-
neighbor distance.! Thus

(dAdB)l/Z SX4
Ex,= (EXq)Si<—‘—_“> . (3.3)
si

(5) In all cases, the absolute energy of the Ly (Lsy)
level, the top of the valence band in the (111) direction,
is taken to be the arithmetic mean of the absolute
energies of the I'y;r (I'15°) and the X4 (X5) levels.

(6) The splitting of the X; and X3 conduction-band
states, AX, in heterpolar crystals is taken to be a linear
function of C only. The absolute energy of the X; and
X3 levels are

X1= X4+E2—AXEX4+E2,A )
X=X+ E - AX=Xy+E,, B,

(3.4)
(3.5)

m R, K. Swank, Phys. Rev. 153, 844 (1967).

n R, E. Drews, E. A. Davis, and A. G. Leiga, Phys. Rev. Letters 18,
1194 (1967).

oF. H. Pollak, in Proceedings of the International Conference on II-VI
Semiconducting Compounds, Providence, 1967, edited by D. G. Thomas
(W. A. Benjamin Inc., New York, 1968), p. 552.

» M. L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789 (1966).

a T, E. Fischer, Phys. Rev. 139, A1228 (1965).

r M.L.Cohenand J.C. Phillips, Phys. Rev.139, A912 (1965).

s Three values of I'ss» — I'1s (referring to the Eo’ peak) have been revised
from footnote r. These are for GaAs, InAs, and GaSb. In analyzing the
photoelectric yield, Cohen and Phillips correctly interpreted the effect of
spin-orbit splitting in InSb, but not in the other three cases. The values
quoted here place all the crystals on the same footing and are more con-
sistent with the predictions of the present theory, J. C. Phillips (private
communication).

tT. E. Fischer, Phys. Rev. 142, 519 (1966).

u M, Cardona and G. Harbeke, Phys. Rev. 137, A1467 (1965).

v S. Grovesand W. Paul, Phys. Rev. Letters 11, 194 (1963).

I=Eyac = EvaL.B. max vs T BOND

I in eV

Ge

3 |
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F16. 1. As are the other homopolar parameters, the ionization
potential of the group-IV crystals is assumed to follow a simple
power law. Note that unfortunately the two data points, which
determine this log-log plot, are very close together.
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TABLE IV. Parameters of the 68 compounds considered. In the first column the structure(s) in which the compound is found is
indicated using the abbreviation: D for diamond, Zb for zinc-blende, W for wurtzite, and R for the rocksalt or NaCl structure. In the
next three columns are found the electronegativity difference (average antisymmetric energy gap) C, the D parameter relating the
effective and free-electron plasma frequencies, and the fraction of ionic character on the Phillips scale, fi;. For compounds followed by
a t, the values are predicted (see Ref. 1). For purposes of comparison the last two columns contain the f; values predicted by the theories

due to Pauling and Coulson.

c fi fi  Coulson C fi fi  Coulson
Crystal  Type (eV) D Phillips Pauling et al. Crystal  Type (eV) D Phillips Pauling et al.
C D 0 1.0 0 0 0 KCl R 10.4 1.0 0.953  0.70 e
BN Zb 7.711 1.0 0.256 0.22 0.35 SrO R 13.4 1.0 0.926 0.79 cee
BeO W 13.9 1.0 0.602  0.63 0.64 RbF R 13.9 1.03 0960 0.92 e
LiF R 23.0 1.0 0915  0.89 ‘e AgF R 12.2 1.085 0.894  0.67 e
BPt Zb 0.68 1.0 0.006 000 0.33 Ge D 0 1264 O 0 0
SiC Zb, W 385 1.0 0.177  0.11 0.06 AlSb Zb 310 11994 0426 004 0.36
BeSt Zb 399 1.0 0312 0.22 0.60 GaAs Zb 290 1235 0310 0.04 037
AIN w 7.30 1.0 0.449 0.43 0.36 InP Zb 3.34 1.194 0421 0.04 0.37
LiCl R 11.6 1.0 0.903 0.63 e MgTe W 3.58 1.13 0.554 0.18 s
MgO R 14.5 1.0 0841  0.73 ZnSe Zb, W 5.60 1.175  0.676  0.15 0.64
NaF R 20.9 1.0 0946 091 ‘.- CdS Zb, W 590 1.13 0.685  0.18 0.63
Si D 0 1.0 0 0 0 CuBr  Zb,W 6.90 1.13 0.735  0.18 0.85
BAst Zb 038 1.11 0.002  0.00 e AgCl R 7.80 1075 0856 0.26 . .-
AlP Zb 3.14 1.0 0.307  0.01 0.37 Nal R 7.80  1.03 0927 047
MgS R, W 7.1 1.0 0.786 0.34 oo CaSe R 8.10 1.0 0.900 0.39
BeSef  Zb 336 1.08 0299  0.18 0.60 SrS R 850 1.0 0914 043
GaNf W 7.64 111 0.500  0.39 0.36 KBr R 930  1.025 0952  0.63
ZnO W 9.30  1.08 0.616  0.59 0.65 RbCl R 9.70  1.03 0.955  0.70 .-
LiBr R 9.50 1.03 0.899  0.55 cee GaSb  Zb 210 1325 0.261  0.02 0.36
NaCl R 11.8 1.0 0.935 0.67 v InAs Zb 2.74 1.450  0.357 0.02 0.37
CaO R 14.6 1.0 0.913 0.79 oo ZnTe Zb 4.48 1.235 0.546 0.06 0.66
KF R 16.1 1.0 0955  0.92 e Cul Zb 550 1175 0.692  0.09 0.84
CuFt Zb 15.8 1.06 0.766 0.67 oo CdSe W 5.50 1.235 0.699 0.15 0.61
BeTet  Zb 2.05 113 0.169  0.09 0.60 CaTe R 6.70  1.125 0894  0.26 e
AlAs Zb 2,67 111 0274 006  0.37 AgBr R 690 1.175 0850 0.18 e
GaP Zb 330 111 0374  0.06 0.37 KI R 740 1.025 0950 0.50 .
ZnS Zb, W 6.20 1.08 0.623 0.18 0.61 SrSe R 8.00 1.0 0.917 0.39 .-
MgSe R, W 641§ 1.08 0.790  0.29 ‘.- RbBr R 890 1.085 0.957 0.63 .-
Lil R 7.40 1.03 0.890 0.43 s Sn D 0 1.46 0 0 0
CdO R 9.154 1.13 0.785  0.55 e InSb Zb 210 1425 0321 001 0.37
InN* W 6.76  1.19 0.578  0.34 0.36 CdTe Zb 490 1303 0.675 0.04 061
CuCl Zb, W 8.30  1.09 0.746  0.67 0.85 Agl Zb, W 570 1213  0.770 009 0.84
CaS R 9.10 1.0 0.902  0.43 e SrTe R 6.70  1.10 0.903  0.26 .-
NaBr R 9.80 1.03 0934  0.59 RbI R 7.10 1.075 0951 051

where E; is given by (3.1) and
AX=0.071C. (3.6)

(7) The p-to-s transitions Eo (T'2r — I'y) and
E, (Ly — L) are affected by the presence of a filled
d band in the following way:

E;=(E;n— (Dav— DAE)(1+C¥E; )12, (3.7)

where ¢=0 or 1. As mentioned above and derived in I,
D is the square of the ratio of the effective plasma
frequency to the free-electron value calculated assuming
four electrons per atom (see Table IV). We denote by
D,, the valence weighted average of the D value of
the crystals containing the constituent atoms and the
corresponding atom from the same row of the Periodic
Table. Thus, e.g., Day of InAs is § the D value of InSb
and £ the D value of GaAs. Note that when there is no
filled d band, D= D,,=1. Thus (3.7) goes over to (3.1).
AE; and AE, are parameters which are scaled as a
function of nearest-neighbor distance only.

The common feature of (3.1)-(3.8) is that the
dependence on C? always follows (3.1), i.e., the two-

band model. Previous experimental work (e.g., Ref. 17)
has been concerned only with horizontal sequences, and
has sometimes followed (3.1) and sometimes given
E, —E),; proportional to A% ie., to C2. We have
incorporated this behavior into (3.7) with the aid of
the parameters AE; and AE,.

We present in Table III a comparison between our
predicted band structure and experiment for 19
tetrahedrally coordinated crystals for which reasonably
complete experimental data are available.® For
purposes of comparison, we include in Table III the
predictions obtained from the empirical pseudopotential
method as conducted by Cohen, Bergstresser, and
Saslow.419:20 We find that while both methods predict
values that are generally in very good agreement with

17 M. Cardona and D. L. Greenaway, Phys. Rev. 125, 1291
(1962); 131, 98 (1963).

18 M. Cardona, K. L. Shaklee, and F. H. Pollak, Phys. Rev.
154, 696 (1967).
( 19'_;‘). K. Bergstresser and M. L. Cohen, Phys. Rev. 164, 1069
1967).

2 W. Saslow, T. K. Bergstresser, and M. L. Cohen, Phys. Rev.
Letters 16, 354 (1966).
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experiment, in the cases that our predictions are at
variance with the experimental values, they tend to
agree with the pseudopotential values. (This may imply
inadequate interpretation of broad-band optical data.
The values shown were estimated by the experimentalist
who took the data and may be revised in the future.)

Two discrepancies do merit comment. In GaP, AlSb,
and GaAs it is believed that the lowest indirect gap is
from T' to X (or A). This designation is made on the
basis of the observation that this gap in these materials
decreases with hydrostatic pressure.r The I'-to-X
indirect gap in Ge, which is not the lowest indirect gap
in Ge, is also observed to decrease with pressure,?
whereas all other gaps, direct and indirect, increase
with pressure. Thus one concludes that the smallest
indirect gap in GaP, AlSb, and GaAs must also be
from T to X.

However, we see in Table ITI that our simple calcula-
tion has predicted that the smallest indirect gap in
GaP and GaAs is from I' to L, as it is in Ge. We note
that the predicted magnitude of the gap in GaAs
agrees very well with the experimental value. In GaP
the predicted magnitude of the gap is 0.37 eV larger
than experiment, but the predicted E; gap (L3, — Li,c)
is also 0.16 €V too large so that if £y, which by (3.7) is
strongly dependent on the D values which we do not
know with accuracy, were correct, then the discrepancy
would be 0.21 eV. In I we observed that AISb was one
of the most atypical of the zinc-blende crystals. In
Table III we see that we have predicted that the lowest
indirect gap is to X, but the predicted magnitude is
0.29 eV too large. However, one of the worst errors in
the entire survey occurs in our prediction of the E; gap
in AISb. The predicted value is 0.49 eV too large.
Moreover, if E; were correct, then the magnitude of
the indirect gap would be 1.87 eV, which is in exact
agreement with experiment, but the direction would
again be T to L.

The empirical pseudopotential method encounters
the same problem in accounting for a reversal of the X
and L levels in the conduction band on going from Ge
to GaAs, GaP, and AlSb. In their calculation, Cohen
and Bergstresser* elected to fix their antisymmetric
local pseudopotential form factors in order to obtain
reasonable agreement with the I'-to-X indirect gaps at
the expense of errors of 1.0, 0.7, and 0.4 eV, respectively,
in the direct, X;-X1, Es gap. Even so, Cohen and
Bergstresser still predict that the I'-to-L gap in GaAs
would be lower than I' to X and in AISb the two would
have the same value.

We must conclude that if the above argument about
the pressure dependence of the gap is correct, then
neither the local empirical pseudopotential nor our
simple two-band method can account for the level
reversal. Because our method nowhere involves any
consideration of the crystal-structure factors, perhaps

2 R, Zallen and W. Paul, Phys. Rev. 155, 703 (1967).
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we should not be surprised that it does not predict this
change in geometry and instead be content that we have
reasonable agreement in the magnitudes of both the
direct and the indirect gaps. We also note that for
GaSb, where the local pseudopotential again has severe
trouble with the indirect gaps (although our method
gives good results), Zhang and Callaway? have shown
that a nonlocal pseudopotential can give good results
for the band structure and also for its pressure depend-
ence. Unfortunately, their nonlocal calculation for one
crystal requires 14 empirically determined parameters.?

The second discrepancy that we note in Table IIT
is that our method predicts the Ey gap well enough for
the homopolar cases but does not show it increasing
with electronegativity difference C rapidly enough.
Thus we conclude that the p-like Ey transition is more
sensitive to the antisymmetric potential than is the
band structure as a whole. To correct for this, we have
recalculated the Er gaps with C increased by 20%,. We
list these values in the last column in Table III, where
we see that agreement with experiment is substantially
improved.

IV. UNIVERSAL SEMICONDUCTOR MODEL

At this point we insert a qualitative discussion of
the concept and motivation underlying the relations
just presented. All of these relations conform to a
dielectric two-band model. While other relations have
been tried (such as a linear dependence of E, on C2),
it has been found that (1.1) does indeed give best
results.

Where the initial assumptions need modifying, as
occurred in the case of the C dependence of Ey, we do
so, but our primary purpose is to show how much can
be done without elaborate calculation. It might be said
that we are trying to develop a semiconductor analog
to the valence-bond theory.” We call this the universal
semiconductor model. As we have already noted, it is
a two-band model. This corresponds to the chemist’s
notion of bonding and antibonding states and the
reason that our model is so successful may well lie in
the basic validity of this chemical notion.?

Consider first the valence band. We limit our descrip-
tion to the specification the energy of the band at the
three principle symmetry points I', X, and L. (As noted
in Table I, critical points in the real crystal sometimes
lie small distances away from these points, but we do
not attempt to account for this geometric detail.)
These three energies are specified by assumptions (3)-
(5) of Sec. III. Recall that bands are formed in an
elemental crystal because of the interaction of the free
atomic wave functions as the atoms are brought close
together. The closer together the atoms come, the more

2 H. I. Zhang and J. Callaway, Solid State Commun. 6, 515
(1968) ; Phys. Rev. 181, 1163 (1969).

2 C. A. Coulson, L. R. Redei, and D. Stocker, Proc. Roy,
Soc. (London) A270, 357 (1962).
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the spread of the atomic levels, i.e., the wider the bands.
Because this is a band spreading effect, we would expect
some state in the valence band to be degenerate with
the highest level of the ground-state configuration of
the free atom. Now in a heteropolar crystal, i.e., when
C#0, the effect of increasing C, and thus ionicity, is to
decrease the width of the bands until finally the
electronic states become well localized into an ionic
configuration and the bands are flat, as when the
neutral atoms were separated. Again we might expect
that some state in the valence band is going to remain
constant as the width of the band is reduced. These
speculations have been crystalized in assumption (4),
where we take X4 (X;) to be the level that is independ-
ent of C. Although, as with all energy parameters, we
scale the X, energy level with distance, we note that the
values assumed for Si and Ge, which determine the
extrapolation, —8.63 and —8.14 €V, respectively, are
within 59, of the free-atom ionization potentials,
8.15 and 7.88 eV. (The extrapolated values for C and
Sn are 15.74 and 6.69 eV, compared with free-atom
ionization potentials of 11.26 and 7.33 eV.) We used
the normal covalent nearest-neighbor distance in
assumption (4) instead of the observed value, because,
as just stated, we are assuming that the X, (X;) level
will stay constant independent of the effects of the
antisymmetric potential C, which are the cause of the
deviations from the normal covalent valent value. This
distinction makes little difference for the 19 crystals in
Table III (e.g., it would improve the value of the
indirect gap in GaP by 0.1 eV), but it makes a big
difference when we go to the NaCl structure. There the
ionization potential would be 1 €V or more too low if d
were used in (3.3).

Having fixed the valence level at X, we consider the
problem of specifying the width of the band. Perhaps
the first approach to come to mind would be to specify
a homopolar width that would be a function of nearest-
neighbor distance only and then specify how the actual
width is related to this homopolar value and C. We
have instead made assumption (3), i.e., used Eq. (2.1),
because such a project would require at least twice as
many parameters which would have to be determined
from a combined analysis of the I, E; and indirect
gaps of not only the group-IV elements but also several
heteropolar crystals. Because we test the validity of our
model by trying to predict the energy gaps of as many
crystals as possible, we wish to restrict ourselves to the
group-IV crystals when fixing parameters whenever
possible. In the present formulation only the magnitude
of the X, X splitting is determined by the heteropolar
crystals. The alternative prescription for the band
width could have the advantage that in the limit of
large C, we would not have the I' level dropping far
below the X level thus giving a large (negative) band
width. It is well known from band calculations that this
does not happen. The level at I is only slightly below
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that at X (or L) in NaCl-type and some wurtzite-type
crystals. However, we see in Sec. V that in our formula-
tion this catastrophe is avoided by a change in crystal
structure. In effect, we propose that the crystal structure
changes to prevent such an occurrence.

We complete the specification of the valence band
by fixing the L level. It seems clear to us that the
simplest prescription is that the L level is intermediate
between I' and X, i.e., assumption (5).

Having specified the valence band, the conduction
band is determined by the interband energy gaps.
Assumption (1) says that in the absence of d-state
perturbation all gaps vary with C as does the average
gap E, In assumption (2) we take all homopolar
parameters to be simple power-law functions of nearest-
neighbor distance only.

The d-state perturbation is formulated in assumption
(7). It was arrived at as follows. First the homopolar
part of E, and E; gaps was determined by the experi-
mental value in Si, the author’s estimate of the experi-
mental value in C, and the power-law assumption. Then
the amount by which the conduction-band s states were
lowered due to the d states in the ion cores could be
determined for the pure homopolar case by observation
of the levels in Ge and Sn. This homopolar effect was
separated into two factors. One factor, the AE; is
taken to be a function of nearest-neighbor distance only.
The other factor is taken to be proportional to the
oscillator strength connecting the d band and the
valence band,! i.e., the D—1 factor. When we go from
the homopolar to the heteropolar crystals, we assume
that both the unperturbed homopolar gap and the
perturbation are increased by the same square-root
factor.

Now we come to the fact that the valence weighted
average D value D,, is used in (3.7) instead of the D
factor for the band as a whole as found in I. First we
note that there is no distinction between the two values,
i.e., D=D,, for the homopolar crystals and for those
heteropolar crystals for which both elements are from
the same row. The only distinction is in the skew
compounds. Considering a pair of skew compounds such
as GaSb and InAs or AISb and InP, we see that the D
values of the two members are the same! but the D,,
values are quite different. We have used D,, in (3.7)
rather than D because we observe that the Ey and E;
gaps in InAs and InP are substantially smaller than in
GaSb and AlSb. If D were used the reverse would be
predicted. It may be that the reason for this is that the
effect occurs in the core region, where the effect of the
other atom is negligible. Thus the effect of the In core
on an s electron in InAs is better given by the total
band 4 effect found for InSb than that in InAs. How-
ever, we note that when one of the skew elements
belongs to the first row, this ad koc prescription does
not work very well. For the case of InN, it would
predict that the I'; level would lie 0.1 eV below the T'y5
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level and the compound would be a metal. On the other
hand, if we use D instead of D, we get a very reasonable
result. (See Table VII.) It must be admitted that this
point is still unresolved.

Despite the above difficulty, we have been able to
retain the minimum possible number of assumptions to
formulate a model band structure that agrees with
experiment better than other empirical methods which
use several times as many parameters.

V. CRYSTAL STRUCTURES

In Fig. 2 we have plotted the values of our parameters
Ej and C, the homopolar and heteropolar energy gaps
for the 59 crystals for which we were able to establish
an experimental value for C in I. We distinguish these
according to the crystal structure in which the com-
pound is found. The C-versus-L; plot is seen to separate
into three regions. All compounds which form NaCl-
type crystals are found in the most ionic region, 4,
while all compounds which form only zinc-blende-type
crystals are found in the most covalent region, D. In
the narrow intermediate region, B, compounds are
found in the wurtzite structure. In the low Ej region,
which is included in the insert, several compounds near
the boundaries between regions are found in both
structures. As Ej increases, a wide gulf in which no
compounds are found opens between the NaCl and the
wurtzite regions.

We propose that the curves shown in the figure are
the boundaries between regions. They are calculated as
described below.

The boundary between the zinc-blende and wurtzite
regions is the curve for which we would calculate

I=Ex,, (5.1)

where, as described in Sec. III, the absolute energy of
the top of the valence band at X, Ex, is calculated
using (3.2) as a function of the normal covalent nearest-
neighbor distance only, and the top of the valence band
at T', I is calculated as a function of nearest-neighbor
distance and C using (2.1).

The curve shown in Fig. 2 between regions 4 and B
is that for which f;=0.785. Here f; is the fraction of
ionic character,':?® defined as

[i=C (E2+C?). (5.2)

In Table IV we see that MgSe and MgS, which are
metastable in the wurtzite structure, have f; values
which are slightly higher than this value.

However, we note that another boundary may also
be proposed on the assumption that the valence band at
T, as predicted by (2.1), may only be a certain amount
AE(d) below the level at the zone boundary, Ex,, as
predicted by (3.3). If we assume

AE(d)=1.5(ds;/d)? eV,
# H. Mittendorf, Z. Physik 183, 113 (1965).

(5.3)
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SYMBOL CRYSTAL TYPE

o NaCi

©  Wurtzite (W) 430
e Zinc-blende (Zb)

4 NaCl and(W)

A Wand Zb -125

HETEROPOLAR ENERGY GAP C.in eV

A
5f ok shil R b Js
0,0 o °
.
0 1 1 1 1 1 1 | — o
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HOMOPOLAR ENERGY GAP E, in eV

Fi1c. 2. Crystal-type distribution in Z3-C plane. The boundary
shown between regions B and D is where we calculate the top of
the valence bond at I" to be degenerate with that at X. The bound-
ary shown between regions 4 and B is where f;=0.785.

then this boundary would lie close to, but lower than,
the f;=0.785 boundary in the insert region, and much
lower in the large Ej region on the right half of the
figure. This alternative boundary would pass slightly
above BeO and no compound found stable in the
wurtzite structure would lie above it. We suggest that
the reason for the gulf between the wurtzite and
NaCl crystals may be that a wurtzite-type crystal can
not tolerate having its valence band at the zone center
substantially lower than at the zone boundary and that
the NaCl structure is not stable unless the compound is
sufficiently ionic.

As the notion that crystal structure is dependent on
degree of ionicity is not at all new,?® we compare in
Table IV the values of f; on the Phillips scale (5.2) with
the values proposed by Pauling? and by Coulson et al.2
It has been noted?® that if one were to use the Pauling
scale of ionicity and assume that there is some critical
value of f; such that if a compound has a value greater
than this critical ionicity it must form an octahedral
crystal such as rocksalt, and if less a tetrahedral struc-
ture, then one could not make fewer than eight errors
among the 68 crystals in Table IV. (See Fig. 3.) If one
were to take as the critical value either that of MgS or
of MgSe, which clearly must be borderline cases because
they are found with both coordinations, then, using the
Pauling scale, one would make substantially more than
eight errors. However, with the Phillips scale one may
use either criterion and make no errors at all in predict-
ing the coordination of the crystal structure assumed.
It may be fair to point out that one could naively
propose, merely by glancing at the Periodic Table, that
all alkali halides and all alkaline earths are to be found
in the NaCl structure and everything else is to be found

25 J. C. Phillips, Covalent Bonding in Crystals, Molecules and
Polymers (The University of Chicago Press, Chicago, to be
published).

26 1. Pauling, The Nature of the Chemical Bond (Cornell Univer-
ity Press, Ithaca, N. Y., 1960), pp. 91 ff.



1016 J. A. Van

NUMBER WRONG

8 °
L f|(min.)=(0.25 +0.25,—0.15) PAULING

- f; (min)=0785+0008 DIELECTRIC

2r a

r -
1 1 ! Il 1 ¥
0.25 0.35 0.50 0.65 075 0.85

fi(PAULING) £i(PHILLIPS)

F1c. 3. Comparison of the Pauling and Phillips ionicity scales
in ability to predict coordination number of binary compounds.
While the minimum possible number of errors using the Pauling
scale is 8, no errors are made using the Phillips scale if the critical
value of f; is chosen to be 0.785.

in a tetrahedral structure. With such a criterion, one
would make nine errors—only one more than the
minimum possible using Pauling’s scale.

Coulson ef al® do not apply their valence-bond
ionicity scale to any but tetrahedrally coordinated
crystals because their theory is restricted to (sp®)-type
bonding. (We showed in I that the dielectric theory,
and thus the Phillips scale, can be extended at least to

@® In

Os

a b c

Fic. 4. Comparison of the two tetrahedrally coordinated
structures, zinc-blende and wurtzite, for the case of ZnS: (a) is a
perspective view for either structure; (b) the wurtzite structure,
which is analogous to the eclipsed configuration in ethane, as
seen looking down the ¢ axis; (c) the zinc-blende structure,which
is analogous to the staggered configuration in ethane, as seen
ooking down the [1117] body diagonal.
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the NaCl-type crystals without difficulty.) The ionicity
values of Coulson et al. are included in Table IV for
purposes of comparison. One can see that Coulson’s
values range from 0 to 85%, but that the compounds
that they would call most ionic, i.e., CuCl, CuBr, Cul,
and Agl, are found in both zinc-blende and wurtzite
structures, while AIN, GaN, and InN, which occur
only in wurtzite, are less than half as ionic on their
scale. We conclude that the Coulson scale is not
substantially superior to the Pauling scale.

In another respect also the Phillips ionicity scale is
useful in predicting crystal structures. It is well known?
that under pressure the group-IV elements and the more
covalent of the III-V compounds undergo a phase
transformation to the B-tin structure in which they are
metallic at ordinary temperatures and superconducting -
atlow temperatures. More ionic crystals undergo a phase
transformation to the NaCl or to the cinnabar structure
in which they are insulators at all temperatures. We
discuss this in detail elsewhere,® but here we note that
the dividing point between these two possibilities falls
at about 329 ionic character.

We will now try to understand the transition from
zinc-blende to wurtzite structure with increasing
electronegativity difference. In Fig. 4 we note that the
difference between these two tetrahedrally coordinated
structures lies in the relative positions of the third
nearest neighbors. Take the example of ZnS and con-
sider one Zn-S bond. The situation is analogous to that
of ethane (C,H;), where the C-C bond corresponds to
our Zn-S bond. Just as each C is tetrahedrally bonded
to three hydrogens, so in ZnS each of our atoms is
bonded to three other opposite atoms. Ethane may
exist in two states, which are referred to as eclipsed and
staggered. (See Fig. 4.) The staggered state is obtained
from the eclipsed state by rotating one of the H triads
imr about the C-C axis. The wurtzite structure corre-
sponds to the eclipsed conformation if one identifies
the C-C axis of the ethane with the ¢ axis of that
hexagonal structure. The zinc-blende structure corre-
sponds to the staggered state where the C-C axis
corresponds to the (111) body diagonal of the cube.

It appears from Fig. 4 that the Coulomb attraction
of the third-nearest-neighboring Zn and S atoms (which
are partially ionized) favors the wurtzite structure.
However, the Madelung constant for the ideal wurtzite
structure is only 1.639,% as compared to 1.638 for zinc
blende. Thus the difference in Coulomb energy is
negligible.

In ethane the staggered state has the lower energy.
It might be thought that this is due to Coulomb
repulsion of the partially charged H atoms. Actually,

27 See W. Klement, Jr., and A. Jayaraman, in Progress in Solid
State Chemistry, edited by H. Reiss (Pergamon Publications Corp.,
New York, 1966), Vol. 3, p. 289; also A. Jayaraman, W. Klement,
{;.g,;;)ld G. C. Kennedy, Phys. Rev. 130, 540 (1963); 130, 2277

28 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, London, 1966), p. 155,
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_ TaBLE V. Energy levels of ZnS and of a hypothetical compound having the same parameters as ZnS except the antisymmetric poten-
tial, which is taken to be zero, calculated by the pseudopotential method for the zinc-blende, wurtzite, and rocksalt (NaCl) structures.
The zinc-blende and wurtzite calculations were performed by Dr. T. K. Bergstresser (see Ref. 19). The values quoted for the wurtzite
structure are those corresponding to the I" and L points in the zinc-blende Brillouin zone (see Ref. 19).

Va=0 Va0
r L T L

Level Zb W R Zb W R Zb W R Zb w R
1 0 0 0 327 332 347 j 0] 0] 090 089 085
2 1741 1744 1228 732 722 347 1981  19.88  16.31 1459 1457  12.60
3 1741 1818  12.66 1578 1582  13.61 1981  19.88  16.31 1912 1905 1595
4 1741 1818  12.66 1578 1587  13.61 1981 1988  16.31 1912 1905 1595
5 2133 2159 12.66 1946 1946  13.61 2480 2484  19.74 2679 2698  21.91
6 2210 2159  18.77 2295 2505  13.61 31.06  31.07  26.68 3114 32.84 2436
7 2240 21.85 1877 2295 2505  15.85 31.06 3107  26.68 3114  32.84 2438
8 2240 2321 1877 2838 2653  15.65 31.06 3147  26.68 ce 3417 2951

this effect accounts for only a very small fraction of the
energy difference. Molecular-orbital calculations?® have
shown that most of the repulsion arises because the
electron wave functions between the cis H atoms in the
eclipsed configuration are antibonding. Put simply,
the kinetic energy of the valence electrons is greater
when they are confined to a two-dimensional cis
channel in the eclipsed configuration than when they
are delocalized in three dimensions.

In crystals also the kinetic energy favors the stag-
gered zinc-blende structure. Thus the group-IV elements
and the more covalent heteropolar compounds are found
in this structure. In order to make this observation
somewhat more quantitative, we consider the results of
a pseudopotential calculation. In Table V we present
the energy levels at T and at L calculated by Bergstres-
ser and Cohen?® for ZnS and for a hypothetical crystal
having the same parameters as ZnS except that the
antisymmetric potential has been set equal to zero.
To complete the comparison of crystal structures, we
have calculated the energy levels for two more hypo-
thetical crystals having the NaCl structure, the same
density, and the corresponding pseudopotential form
factors.

Consider first the V,=0, i.e., homopolar, situation.
It is immediately apparent from Table V that in the
NaCl structure the substance would be a metal. Because
metallic binding is much weaker than covalent or
ionic binding, homopolar compounds do not form
crystals with the NaCl structure. Comparing zinc
blende and wurtzite, we see that the average of the
top three valence bands at I' in wurtzite is 0.52 eV
higher than the threefold I'ss level in zinc blende.
(Contrary to the normal convention, which is to
measure energy relative to the valence-band maximum,
we have measured it relative to the lowest valence band,
T';, because this level is least sensitive to changes in
third-nearest-neighbor interactions and thus makes
comparisons of the other levels meaningful. Of course,
when we change the nearest-neighbor distance by going
to the NaCl structure, we expect all levels to be affected

2 J, A. Pople and G. A. Segal, J. Chem. Phys. 43, 5136 (1965).

significantly.) Clearly, raising the energy of the valence-
band levels will lower the cohesive energy of the crystal.
This effect falls off as one goes toward the zone bound-
ary, so that the average effect is much less than 0.5 eV
per valence electron.

Now let us consider the situation with the anti-
symmetric potential turned on. We see that in the
NaCl structure, ZnS would be a semiconductor but
with substantially smaller gaps. Because the single-
particle energy decreases monotonically with increasing
average energy gap,’® the NaCl structure is not favored
at normal pressures for which a larger average gap may
be had in a tetrahedral structure. Comparing zinc
blende and wurtzite we see that, as originally noted by
Bergstresser and Cohen,'® in ZnS the corresponding
energy levels are virtually identical in the two struc-
tures. Indeed the reflectivity spectra of the two crystals
have been observed to be virtually identical.®® (See
Fig. 5, which has been borrowed from Cardona and
Harbeke.?!) Thus the differences in the antisymmetric
structure factors between zinc blende and wurtzite
favor the wurtzite and compensate for the effects of
the symmetric potential which favor zinc blende.

ZnS
R-0.05 298°K
0.3 HEXAGONAL Elic

F16. 5. Reflection spectra of room-temperature ZnS in zinc-
blende (cubic) and wurtzite (hexagonal) structures reported by
Cardona and Harbeke (Ref. 31).

% J. A. Van Vechten, Phys. Rev. 170, 773 (1968).
3t M. Cardona and G. Harbeke, Phys. Rev. 137, A1467 (1965) .



1018 J. A. Vax

VI. EXTENSION TO NaCl STRUCTURE

In this section we probe the limits of applicability
of our two-band dielectric model. We try to predict
the direct band gap of compounds in the NaCl structure.
We use the simplest reasonable theory, make no
empirical corrections, and defer the calculation of the
entire band structure to a later paper.

Unlike wurtzite, the NaCl structure differs from the
zinc-blende structure in the arrangement of nearest
neighbors. Although our dielectric definition ensures
that our average £, must correspond fairly well with
the largest peak in the absorption spectrum, the
observation made in Sec. V that a homopolar crystal
in the NaCl structure would be a metal indicates that
we can not take account of the change in the nearest-
neighbor interaction merely by taking account of the
increased nearest-neighbor distance via Eq. (3.2). The
difference in the structure factors between the diamond
and NaCl structures causes a reordering of some of the
valence- and conduction-band levels for a homopolar
compound.

Equations (3.1) and (3.2) cannot yield such level
reversals. They allow only for a change in valence to
conduction-band gap with changing d and C.

We believe that the logical way to treat this effect of
the change in the structure factors is to calculate the
band structure of a hypothetical homopolar compound
in the NaCl structure using the pseudopotential method.
This has been done for the case of Si (see Fig. 6). From
the form factors found by Cohen and Bergstresser* for
diamond-type Si, we deduce the corresponding form
factors for an NaCl-type crystal of the same density.
The values we have used are V*(200)—0.15, V2(220)
=0.04, and V+#(222)=0.08 Ry. The calculated band
structure is shown in Fig. 6. The largest calculated
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F16. 6. Calculated band structure of a hypothetical crystal having
the density and pseudopotential of Si but the NaCl structure.
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negative direct gap, i.e., the largest energy difference
between states that in the actual crystal would form
the valence and conduction bands and for which the
state corresponding to the conduction band lies below
the state corresponding to the valence band, is 7.7 eV.
(This occurs at the point K.) As with the zinc-blende
crystals, the phase difference between the symmetric
and antisymmetric potentials in the unit cell implies
that we must combine the squares of E; and of C to
obtain the square of E,. However, we must also take
account of the level reversals where they occur. Thus
for those cases in which the homopolar potential acts
to reverse the order of the levels from what it is in the
predominately ionic actual crystal, we assume, instead
of (3.1),

L, =C—FE, 8. 6.1)

Because we lack any sort of empirical determination
of the dependence of the negative homopolar gaps, we
will assume that they vary approximately as the average
homopolar gap was found to vary in I. Thus we assume

Ey4="1.7(agi/a)?5 eV, (6.2)

where ¢ is the crystal lattice constant and Ey 5 is the
homopolar value of the (lowest) direct band gap.

The calculation outlined above has been performed,
and the results are presented in Table VI. The band
structures of NaCl-type crystals are not nearly as well
investigated as are those of the semiconductors treated
in Sec. ITI. Therefore, we have shown as many estimates
of the direct band edge as we are aware of in the
experimental data.

While the agreement of this crude theory with
experiment is not nearly as good as was found with the
semiconductors, it is fair for the alkali halides which do
not contain a first row element. For the least ionic of the
NaCl-type crystals, MgS, MgSe, and CdO, the above
calculation yields a negative gap. The value shown in
Table VI with the dagger is that calculated for the same
compound in the wurtzite structure. Because MgS and
MgSe are metastable and CdO should be almost
stable in the wurtzite structure, these values seem to
be approximately correct for the stable crystal.

It is to be hoped that when more experimental data
become available, it will be possible to refine this crude
theory considerably.

VII. CONCLUSIONS

We have presented a method of predicting interband
energies which is based on a generalization of the usual
two-band model (bonding and antibonding sp® orbitals)
to treat arbitrary diatomic combinations containing
eight valence electrons per unit cell. In our two-band
model, a direct connection is established between the
average energy gap E, and the electronegativity differ-
ence between the constituent elements, C. The inter-
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TaBLE VI. Lowest direct band gap of 28 NaCl-type crystals
using no adjustable parameters (see text). For compounds followed
by a dagger, the values were calculated for the wurtzite structure
and it is postulated the same value should obtain in the NaCl
structure.
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2D, M. Roessler and W. C. Walker, J. Phys. Chem. Solids 28, 1507

(1967).

b Assignment made by the author on the basis of spectra reported by
Teegarden and Baldini (footnote f).

¢ J. C. Phillips, Phys. Rev. 136, A1705 (1964).

d D, M. Roessler and W. C. Walker Phys. Rev. 166, 599 (1968).

e H. Mittendorf, Z. Physik 183, 113 (1968)

K. Teegarden and G. Baldini, Phys. Rev 155 896 (1967); assignment
made by Teegarden and Baldini.

¢ R. C. Whited, thesis, University of California, Santa Barbara, 1969 (un-
published) ; R. C Whited and W. C. Walker, Phys. Rev. Letters 22, 1428

(1969) Assignment made by author.
b M. Altwein, H. Finkenrath, C. Konak, J. Stuke, and G. Zimmer,
Phys. Status Solidi 29, 203 (1968).

band energies are then predicted from C and observation
of the previously determined interband energies in Si.
The effect of core d states in third- and fourth-row
elements is added as a perturbation.

Previously, attempts have been made® to establish
direct relations between individual interband energies
and the valence difference A, which is approximately
proportional to C. In particular, linear relations between
the lowest direct gap, usually Ey, and A\ have been
proposed.® We believe that our method—of concentrat-
ing first on the average gap and the dielectric constant
and then treating individual interband energies after
C has been determined independently—provides a
considerably more coherent and meaningful analysis.
Our method uses many fewer parameters, explains the
slopes and curvatures of the A? plots, explains the
trends from one sequence to the next, and provides a

3 Cf. M. Cardona and D. L. Greenaway, Phys. Rev. 131, 98
(1963).
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useful generalization of the valence difference param-
eter A. Although most previous workers concentrated
on E), we believe that this was a particularly bad
choice because of the sensitivity of the I'y level to the
effects of core d states as shown by (3.7) and the
magnitude of the AE, parameter in Table II. Rather
than postulating a linear N dependence for Eo, as
opposed to the parabolic dependence predicted by
Herman’s® original model, we have predicted the
observed E, values for heteropolar crystals from
observation of the dielectric constants and the E,
values in the purely homopolar crystals, Ge and Sn.

An attractive feature of our model is the small
number of parameters required to describe a large
number of interband transitions. Altogether we have
19 adjustable parameters and have obtained good
results for 19 tetrahedrally coordinated crystals. Thus
we have one adjustable parameter per crystal as
compared to an average of three per crystal for either
the (local) empirical pseudopotential method*1%2 or
the empirically refined orthogonalized-plane-wave
method developed by Herman and co-workers.®:3
Other methods (such as the nonlocal pseudopotential,
the tight-binding method,*® and the extended k-p
method?®:%7) require an order of magnitude more param-
eters. Moreover, all our parameters except the X—X;
splitting are determined by the four homopolar crystals,
so that we might claim that we have fitted the band
structures of 15 crystals without any free parameters.

The last feature allows us to predict the band
structures of heteropolar crystals from a knowledge
of the dielectric constant and the lattice constant alone.
When an experimental value for the dielectric constant
is not available, we may use the value predicted in I,
but the result should be considered somewhat more
tentative. We also expect to have more difficulty with
compounds containing one first-row and one non-first-
row element, because of the nonlocal antisymmetric
contribution to the pseudopotential arising from the
lack of core p states in first-row elements. With these
qualifications, we present in Table VII our predictions
for the 18 tetrahedrally coordinated crystals for which
little experimental evidence is available, and which
were not included in Table III. However, our method
is limited to high symmetry points and thus cannot
replace pseudopotential and other methods for the
purpose of calculating es(w) spectra, etc.

We have also presented what is to our knowledge the
first general discussion of the ionization potentials of
tetrahedrally coordinated crystals.

# [, Herman, R. L. Kartum, C. D. Kuglin, J. P. Van Dyke,
and S. Skillman, in Methods in Computational Physics, edited by
B. Alder, S. Fernbach, and M. Rotenberg (Academic Press Inc.,
New York, 1968), Vol. 8, p. 193.

#D. J. Stukel, R. N. Eunema, T. C. Collins, I'. Herman, and
R. L. Kortum, Phys. Rev. 179, 740 (1969).

35 J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

3 E. O. Kane, J. Phys. Chem. Sohdsl 82 (1957), 1, 249 (1957).

7 M. Cardona and F. H. Pollak, Phys Rev. 142, 530 (1966).
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TasLE VII. Predicted values of ionization potential and interband energy gaps in eV for the tetrahedrally coordinated compounds
not included in Table ITI. Experimental data are not conclusive for these crystals and predictions are tentative, particularly for the
oxides. Spin-orbit splitting is neglected. For those compounds followed by a dagger, the value of ¢(0) and thus C used are those predicted
in Ref. 1. The calculation is the same as that in Table III except, as noted in Sec. IV, D is used instead of Dyy in Eq. (3.7).

Indirect gaps

Direct gaps

Crystal I TtoX I'toL oy E: Eza E:p Eo E/
BN 11.70 9.57 9.75 14.74 11.77 13.60 14.70 10.71 14.87
BeO 15.74 16.42 cee 17.65 15.99 16.42 18.34 15.43 19.79
Alpt 6.03 2.63 3.45 5.13 4.75 5.23 5.68 4.61 6.97
CuBr 8.14 7.45 6.43 4.99 6.43 7.45 8.43 7.54 9.87
Agl 6.69 6.02 5.07 3.47 5.20 6.02 6.83 6.20 8.13
BeSt 7.20 2.38 3.89 6.88 6.11 6.84 7.40 5.81 8.59
AIN 10.02 8.35 oo 10.43 9.34 9.99 11.02 8.94 12.19
GaNt 10.12 6.39 4.80 7.00 9.87 10.96 9.08 12.24
ZnO 11.32 8.94 cee 7.25 8.94 11.01 12.36 10.62 13.86
CuFt 11.32 16.62 14.68 12.85 14.68 16.62 18.86 16.72 20.94
BAst 6.13 0.91 1.17 3.14 3.76 6.10 6.15 4.37 7.33
BeSef 6.58 1.30 2.29 4.23 4.66 6.04 6.52 5.13 7.75
InNt 8.91 4.70 ce 3.22 5.36 8.27 9.23 7.87 10.61
BeTet 5.44 —0.18 0.93 2.69 3.33 4.61 4.90 3.86 6.21
AlAs 5.63 2.00 2.32 3.14 3.69 4.75 5.14 4.17 6.44
CuCl 8.38 8.88 8.43 7.82 8.43 8.88 10.05 8.98 10.21
MgTet 5.51 2.38 2.83 3.21 3.88 4.46 4.97 4.38 5.76
Cul 7.11 5.85 4.94 3.61 5.07 6.12 6.91 6.16 8.24

We have suggested how crystalline structures may be
predicted on the basis of predicted band structures.
In our opinion this approach is considerably more
promising that the traditional attempt to calculate
total cohesive energies in the various possible structures
to determine in which one the compound will be found.
The energy differences between various structures is so
small as to be beyond the limits of accuracy of any
cohesive energy calculation in the foreseeable future.

We have predicted the band gap of 28 compounds in
the NaCl structure using no empirically adjusted
parameters at all. While the results are not as satisfac-
tory as those for the tetrahedrally coordinated crystals,

they allow one to hope that the method could be satis-
factorily extended to octahedrally coordinated systems
if sufficient empirical information were available.
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