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The convergence of the Van Kampen cluster expansion for evaluating the binding energies of light nuclei
using a hard-core potential has been studied for different forms of the correlation function f. A Jastrow-
type trial function was used with a Slater determinant of harmonic-oscillator wave functions. The variational
calculations were performed on H8 and He4. For H8, where all terms in the expansion were included, good
convergence was obtained and the binding energy was in good agreement with the results of the Monte
Carlo calculation of Tang et al. , indicating a good trial function. In the case of He, the variation with all
terms up to and including three-particle correlation gave a binding energy in agreement with the Monte
Carlo results and the same convergence as in H. In all the calculations, no subsidiary conditions on the
correlation function f(r) were necessary, provided the contribution to the energy from three-particle corre-
lation was included in the variation. Also, the contribution from four-particle correlation was found in all
cases to be very small.

I. INTRODUCTION

ECENT Hartree-Fock calculations' using the Ta-
bakin potential have given too small a binding

energy for the ground state of nuclei, indicating that
one may have to go beyond a simple determinantal
wave function and introduce correlations into the wave
function if one expects to obtain the right binding
energy of nuclei starting from a realistic nucleon-
nucleon interaction. This is also clear from the fact
when the contributions to the energy from second-
order perturbation theory' were included the results
improved appreciably. In the case when the nucleon-
nucleon potential is local with short-range repulsion,
one has to include two-particle correlation by solving
the Bethe-Goldstone equations to obtain an effective
interaction which can be used in a Hartree-Fock cal-
culation. This introduces a double self-consistency
problem which in general is difficult to solve. In fact,
even for nonlocal separable potentials such as that of
Tabakin, the diGerence between the matrix elements
of the interaction V and the G matrix is appreciable
in nuclear matter, 4 indicating the necessity for ob-
taining an eGective interaction first, and then per-
forming the Hartree-Fock calculation.

An alternative approach, which can both handle
the short-range repulsion and at the same time in-
clude the correlation in the wave function, is to use
a Jastrow-type' trial wave function in a, variational
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calculation. This introduces multidimensional integrals
which are usually handled by performing a cluster
expansion in the energy and retaining the first few
terms of the series in the variation. Such a cluster
expansion was developed by Iwamoto and Yamada, '
and used by ramada and Ohshima~ in nuclear matter
and by Dabrowski in 06. More recently, Clark and
Westhaus' have generalized the Iwamoto-Yamada ex-
pansion and applied the method to h.-particle binding
in nuclear matter&0 and to other systems ~z In mos
of the above calculations it was found necessary to
put subsidiary conditions on the trial function to
guarantee the convergence of the variational calcu-
lation. Other cluster expansion have been proposed by
Aviles, ~ and by Hartogh and Tolhoek. "All the above
cluster expansions as well as the one used in this
investigation have been recently discussed and com-
pared by Clark and Westhaus. "

In the present investigation we study the use of
the Van Kampen cluster expansion" in calculating
the binding energy of light nuclei. " In this case, the
mth term of the expansion gives the contribution to
the binding energy from n-particle correlation. Thus,
for a system of 2 particles, there are 2 terms in the
series for the energy. In using the Van Kampen ex-

' F. Iwamoto and M. Yamada, Progr. Theoret. Phys. (Kyoto)
17, 543 (1957).' M. Yamada and K. Ohshima, J. Phys. Soc. Japan Suppl. 24,
623 (1968).' J. Dabrowslci, Proc. Phys. Soc. (London) 71, 658 (1958);
72, 499 (1958).
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pansion we 6nd that in most cases considered no
subsidiary conditions on the trial function are neces-
sary to guarantee convergence in the variation, pro-
vided the contributions due to three-particle correlation
are included in the variation. Furthermore, by con-
sidering systems such as H' and He4, where all the
terms in the series can be calculated, we can study
the convergence of the series for different forms of
the trial function. Such a study can be helpful as a
guide in choosing the form of the trial function in
going to heavier nuclei.

In Sec. II, we present the formulation of the Van
Kampen cluster expansion for finite nuclei, ' and dis-
cuss some of the general properties the wave function
has to satisfy. In Sec. III we discuss the results for
H' and He4 and study the convergence of, the ex-
pansion for diGerent forms of the trial wave function.
A comparison of the results obtained here with those
obtained by Tang et al. using a Monte Carlo method"
will be a test of the convergence of the expansion.
Finally, in Sec. IV we present some concluding re-
marks regarding the choice of the trial function and
the convergence of the series. We also discuss the
possible extension of the present method to heavier
nuclei.

II. FORMULATION

Ke consider a system of A interacting nucleons of
mass m with the Hamiltonian

$2 A A

Q V;s+ Q V(x;, x),
SZ j~] sg j=]

where x, stands for the space coordinate r; and the
spin isotopic-spin coordinates r; and r; of the ith
nucleon. The potential V(x;, x;) is the nucleon-nucleon
potential obtained from the two-body data. In the
present investigation we restrict ourselves to local
potentials which have a hard repulsive core.

An upper bound on the ground-state energy of the
system is obtained by minimizing the expectation
value of the Hamiltonian with respect to a trial func-
tion %(xq, ~ ~, x~). Because of the presence of the

hard-core potential in the Hamiltonian, the choice of
%(xt ~ ~ ~ x~) must be such that when the d.istance
between two nucleons r;,=

~
r;—r; j is less than the

core radius r, the function @(xr ~ ~ ~ x~) is zero. One
such a trial function proposed by Jastrows is of the
form

A

e(x, " x~)=C(x, " x~) g f(r;;)
i&j=l

= C (xr ~ xg) F(rr ~ rg),

where the correlation function f(r;;) has the property
of being an even function under the exchange of
particles i and j and is always positive. Since the
correlation function f(r;;) was introduced to take care
of the hard core in the potential it has to satisfy
the following conditions:

r;~.&r,

r;;))r,.

The wave function C'(xq ~ ~ xg) is a model function
that possesses all the symmetry properties of the
system such as rotational symmetry for finite systems
and total antisymmetry in the case of Fermi systems.
In the present investigation, we take C(x~ ~ ~ ~ x~)
to be a determinant of single particle wave functions
y„(x;),rs i.e.,

C'(xr, xs, ~ ~, x~) = (1/Q&!) det L@„(x,) ~ ~ ~ y,~ (x~)],
(4)

where the single-particle wave function pr; gives a
reasonable description of the long-range behavior of
the wave function. " As we will see, if P„does not
have the right asymptotic behavior, then the cor-
relation function f(r) will tend to correct for the
discrepancy in p~, leading to large contribution from
the higher cluster terms. One possible choice for the
model function C (xr ~ ~ ~ x~) is the Hartree-Fock wave
function for the ground-state of the system.

Using the above trial function, the expectation value
of the Hamiltonian is given by

C*(xr ~ ~ ~ xg) F(r, ~ ~ rg)
$2 A A A

g V;s+ Q V(x;, x;) F(rr ~ ~ ~ rg)C(xr ~ ~ ~ xg) gdx;
2~ s=1 i(j=1 i=1

f
A

C*(x," x,)F'(r, " r )C(x, " x~) gCx,
i=1

where the integral stands for integration over the coordinates and sum over the spin and isospin. Making use

' The formalism presented in Sec. II is similar to that, presented by J.%.Clark and P. %esthaus (Ref. 14) .
'8 Y. C. Tang, E.%. Schmid, and R. C. Herndon, Nucl. Phys. 65, 203 (1965).
's The above choice of C(xq ~ .x~) is valid for closed-shell nuclei; for other nuclei it is necessary to take linear combination

of determinantal wave functions so that C {x~ ~ -xA) is an eigenstate of the total angular momentum.~ %e take + to be normalized single-particle wave functions.
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of the identity

4'*FVs'(FC')+F4)Vss(FC*) —2V), (C*F) ~ Vs(C)F)

= $4*FsVssC'+24'*F(VysF) 4+ (VssC'@) FsC —2FsVsC* V)C. 24—*(VsF V)F) @] (6)

the kinetic energy in the numerator of Eq. (5) can be written as

A.

4' (x ~ xg)F(r ~ rg)V F(r ~ ~ rg)C (x ~ ~ ~ xg) g dx;
25$ I(; i=l

A

4*(xi ~ ~ ~ xp) F'(ri ~ ~ ~ rg) T),4 (xi ~ ~ ~ xg) g dx;
k i~l

A

4*(x ~ ~ ~ x~)F'(ri ~ ~ ~ rg)t Vs'lnF(ri ~ ~ ~ r~)]4(xi ~ ~ x~) gd*;, (7)4' I, i=1

where

TsC'(hi ' ' ' ») = —(&'/2r~s) L44'*(» ' ' ' »)] 'P's'
I
4'(» " ») I'—4V,C*(x, ~ ~ ~ xQ) 'VJ'gC (hi ' xg)] (8)

and

jP A

P V),'lnF(ri ~ ~ ~ r~) = — g V inf(r;;).
4m J, 28$ i&j=l

(9)

In the above, the operator g&T& gives the contribution to the kinetic energy from the model function 4, while
the expression in Eq. (9) gives the contribution to the kinetic energy from the correlation function f(r;;) . Since

(—fis/2m)VP lnf(r;;) has the form of a two-body interaction, we can add it to the nucleon-nucleon potential
V(x;, x;) to get an effective interaction V(x;, x;) defined as

V(x;, xg) = V(x;, x;) —(Ss/2m)V'Inf(r;;).

The expectation value of the Hamiltonian can now be written as

(10)

4'(x ~ ~ ~ *) P f'(;;) QT;+ g V(x;, x;) 4(x "~ x)Qd;

C*(*.~ ~ ~ *.) rr f'(;)~(*.~ ~ ~ *.) n d*;

If we introduce a normalization integral I(A, P) as

I(A, P) = 4*(* ~ ~ ~ x ) g g(s,j,P)

X g k(s, P) 4 (h, ~ ~ ~ x,) g dx, , (12)

where

and

g(i,j,P) =expt2 1nf(r;;)+PV(x;, x;)]

k(s, p) =expLpT;],

(13)

(14)

then the energy can be written in terms of the nor-

"The above method for obtaining the e6'ective interaction was
first employed by H. W. Jackson and Z. Feenberg, Ann. Phys.
(N. Y.) 15, 266 (1961).See also W. J. Mullin, Phys. Rev. 134,
A1249 (1964).

malization integral as

8= lim(8/c)P) lnI(A, P) . (15)
P-+Q

Thus the problem of calculating the energy has
been reduced to evaluating the normalization integral
I(A, p). This in general is very diKcult, since it in-
volves a 3A dimensional integral. Here we perform a
cluster expansion in which the terms are ordered ac-
cording to the number of particles correlated and
perform the variation with the first few terms in the
series.

Let us write the expectation value of any function
of I)I particles G(xi, xs, ~, x))(), where J)I&A, with
respect to the model wave function C as

(G(i, 2, ~ ~, ))') )= fc~(x ~ ~ x~) G(x x~)

y 4 (xi ~ ~ ~ xg) dhi ~ ~ ~ de, (16)
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then the normalization integral can be written as

I(~, P) =
& II g(ij,P) II k(» P) & (17)

As a first approximation to the normalization integral
we take all one-particle eGects into consideration.
This gives

contribution to the energy from the correction factor
is due to two-particle dynamic correlations. The nor-
malization integral can now be approximated by

I(A, P) I&')(A P)

Z &g(i, »p) ('p) (»p)&
'(;=~ &k(i, P) & &k(j P) )

I(~, P)=I'"(&,P) = II &k(, P) & (18) The corresponding energy is then,

The contribution to the energy due to one-particle
eGects is then

E")=lim(B/BP) 1nIu)(A, P) = Q &T;). (19)

where

E&')=lim(B/BP) lnI&')(A P) =E)+Eg
P~O

E =E(n= P &T&

(22)

(23)

To include the contribution due to two-particle cor-
relation we multiply I~') (A, p) by the correction factor &&f'(' j)LV(',j)+T'+T;3

&k(, P)) (k(j P» (24)

The denominator in Eq. (20) guarantees that when
the dynamic correlation is switched oG, i.e., g

—+1, the
correction factor (now including only exchange cor-
relation) does not contribute to the energy. Thus, the

is the contribution to the energy from two-particle
correlation. To include the contribution to the energy
due to three-particle correlation, we multiply I~2) (&,p),
by the correction factor

where

j( j(k=1

&g(i, j, p) g(i, k, p) g(j, k, p) k(» p) k(j p) k(» p) )
I;.;,.o) (~, p)

&g( j P)k( P)k(j P)& &g(j»P)k(j P)k(»P)) &g(' »P)k(' P)k(»P)&
&k(', P) & &k(j, P) & &k(k, P»

(26)

Again in this case the denominator in Eq. (25) is such that when g~1 the contribution to the energy from
the correction term is zero. The normalization integral can now be approximated to include one-, two-, and
three-body e8ects, and is written as

I(g ) Iy)(g ) I(,) g ) II &g(i j P)g(»» P)g(j» P)k(» P)k(j P)k(» P))
;(;()=). I;,;,g") (A, P)

The corresponding energy is given by

Eo& = lim(B/Bp) lnI&" (A, p) =Eg+E2+E3, (28)

where E) and E& are given by Eqs. (23) and (24), respectively, and E3 is the contribution to the energy from
three-body correlation and is given by

i(j+A,=l

&f'(i, j)f'(i, k)f'(j, k) $V(i j)+V(i, k)+V(j, k)+T+T+T) j& &f'(ij ) $V(i j)+T+T))
&f'(i,j)P(i, k)f (j, k)) &f'(i, j))

&f'(', k) LV(i, k)+T'+T.j& &f'(j, k) LV(j, k)+T;+T.j&
&f'( k)&
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TABLE I. Results of the cluster expansion for the energy of H3 using di8erent tnal wave functions
compared with the results of Monte Carlo calculation.

Cly p e
(1»' ~) (P ~) (F ) (MeV) (F) (MeV) (MeV)

jV,

(Mev)
E=E&+E2+EI E(Monte Carlo)

(MeV) (MeV)

0.55
0.3

5.0
1.5

0 ~ 16
0.24

—9.5 1.3—18.0 1.2
9.95

14.93
—12.92—19.53

—4. 72—2.93
—7.69—7.53

—7.78—7.78

In a similar manner we can correct I&3l(A, p) to in-
clude the contribution due to four-body correlation
and higher many-body correlation. Thus, the series
expansion for the energy of a nucleus of A nucleons is

&=6+6+. +4, (30)

where E„(0(A) is the contribution to the energy
from e-particle correlation. If we perform the sum
over all the A terms on the right-hand side of equa-
tion (30) we obtain the expression for the energy
given in Eq. (11). The merit of this expansion and
its success, as we will show in the Sec. III, is that
the variation can be performed with the first few
terms which can be calculated.

III. CALCULATION

In Sec. II we presented the Van Kampen cluster
expansion" for the binding energy of a system of
A interacting fermions, where the mth term in the
series was the contribution to the energy due to
m-particle correlation. To study the convergence of
the expansion for different choices of the correlation
function f(r), we consider the calculation of the
binding energy of H' and He4. The reason for choosing
these nuclei is that the upper bound on their energy
has been obtained, for the same two-body interaction
used here, by Tang et al. '8 using a Monte Carlo
method. This enables us to study the convergence of
the cluster expansion by comparing our results with
those of Tang et al. In the case of H' all the terms
in the cluster expansion can be calculated. This will

not only give the contribution of each term in the
cluster expansion to the energy, but also show how
good a trial function 0' we have chosen. On the other
hand, for He', on the basis of a variation with the
first three terms in the series, we can study the effect
of neglecting the contribution to the energy from four-
particle correlation on the variation. Also, by per-
forming the variation for diferent forms of the cor-
relation function f(r), we can see how the convergence
depends on the choice of f(r).

The two-body interaction is that used by Tang
et al." in H' and He', and by Kikuta et al." in H',

"T.Kikuta, T. Ohmura, M. Morita, and M. Yamada, Progr.
Theoret, Phys. (Kyoto) 15, 222 (1956); T. Ohmura, ibid. 22,
34 (1959).

and is the form

V(x;, x;) = —',(1+P; ) V, (r;;)

= —Ve, exp t
—K, (r—r,)'j,

r&r,

r&r,

r&r, (32)

= —Ve, expt K, (r r,)—j, —r)r,
where r, =0.4 F, V«=475.044 MeV, Ep 2 5214 F
Vp = 235.414 MeV and E = 2.0344 F . The last term
in Eq. (31) is the Coulomb interaction, where e,; is
taken to be one if i and j label protons, and zero
otherwise. For V, (r,;) we use the potential given by
Tang et al. ,

'8 i.e.,

V, (r) = (e'/r) L1—(1+—,
'

—,'Xr+eh'r'+x'xX'r') e "'j (33)

which is the potential between two protons of ex-
ponential charge distribution. The constant ) is related
to the rms radius of the proton; for an rms radius
of 0.8 F, ) =4.32 F '.

Having defined the two-body interaction used here,
we proceed to de6ne our trial function N. For the
model wave function C we take a Slater determinant
of harmonic-oscillator wave functions. Since we will
be dealing with H' and He4 only, we can write the
model function C as

(34)

where A is three for the triton and. four for the n
particle. The spin-isospin wave function y(o, r) is
taken to be totally antisymrnetric, since we will as-
surne all four particles to be in the 1s shell of the
harmonic-oscillator states, i.e.,

P(r) = (P/~) 3'4 exp( —Pr'/2), (35)

where p is the size parameter of the harmonic oscil-
lator and is taken as a variational parameter. The
correlation function f(r) has to be chosen to satisfy
the condition stated in Eq. (3). Furthermore, for
small r, f(r) should depend primarily on the inter-

where I';; is the usual spin-exchange operator and
V, (r,;) and V, (r;;) are the triplet and singlet poten-
tials and have the exponential forms
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action between the two nucleons and comparatively
little on the presence of other nucleons in the system.
A correlation function that satisfies all the above
conditions has in fact been proposed 3 and is of
the form

f(r) =u(r)/r,
=2+8 exp f—ni(r" —re"j where

E=Ei+Es+Es, (39)

to see how the convergence of the cluster expansion
and upper bound on the energy depends on e, i.e.,
on the tail of the correlation function.

Results for IIs. In the case of H', the Van Kampen
cluster expansion gives rise to three terms in the
series for the energy, i.e.,

+C exp L
—ees(r" —re")],

where u(r) is a solution to the equation

with

It can be shown~4 that V, is the interaction obtained
from Kq. (31) in the absence of the Coulomb inter-
action after the spin and isospin sums are performed.
In Kq. (36) the constants A, 8, and C are chosen
such that f(r) and its 6rst and second derivative are
continuous at re and. f(r) +1 for r~—~. The quantities
0.1, n2, rq, and e are variational parameters. The cal-
culation will be performed for diferent values of e

E, is the energy due to c.m. motion and should not
be included in the energy of the system. Because of
our choice of Gaussians for the spacial part of the
model wave function C, the contribution from the
operator T in Kqs. (24) and (29) can be shown to
cancel identically. In Kqs. (41) and (42) the quan-
tities J and Z are given by

r) re (36) Ei= 3(Ti)—E, =—', (ti'/m) g, (40)

Es ——3L(f'(12)V(12))/(f'(12))$=3J, (41)

—(&'/m) (d'u/dr')+PV. (r) —e3u(r) =0 (37) '=
&fs(]2)fs(13)fQ(23))

V.(r) = sLVi(r)+ V.(r) 3 (f'(12)V(12) &

(f'(12) )

drrse ~' 'f'i(r) V(r) J dr r'e ~"'tsf' (r)
0

(43)

drsrir2rsf'(r&) f'(rs)f'(rs) V(ri) exp f—sp(ris+rss+rss) )

drsrir&rsf (ri)f'(r&)f'(rs) exp P sp(ri'+r, +re'—)]
(44)

where the sum over the spin and isospin has been
performed, and V(r) is given by

f'(r) V( ) =f'(r) V.(r)

df i' d'f 2 df+ —
~

—f(r) ——-f(r) — (45)
2m drj drs r dr

where V, is the effective potential defined in Kq. (38).
In Table I we have the results for the upper bound
on the energy, with the contribution from each term
in the series for both ri=1 and 2 Pe determines the
asymptotic behavior of the correlation function; see
Kq. (36)j, and the results of Tang et at.is using the
Monte Carlo method. On comparing our results with
those of the Monte Carlo method, we find that our
correlation function with n=1. gives a better upper

~3
¹ Au~tern and P. Iana, Nucl. Phys. 18, 672 (1960).

s~ I.R. Afnan snd Y. C. Tang, Phys. Rev. 175, 1337 (1968l.

bound than for m=2, although both are very good.
However, in the case of n=i the convergence of the
series is much poorer. In fact; Es is 36.5% of E, for
v= 1, while for v= 2 it is only 15.0%. In Fig. 1(a)
we have the relative wave function w(r) for v=1
and 2 and the Monte Carlo result, where w(r) is
defined by the relation

A

e(1, 2, , A) = Q w(r;;)x(, ), (46)
i(j=1

in which A is 3 for H' and 4 for He4 and the peak
of w(r) is normalized to unity in the figure. A com-
parison of w(r) for the three cases indicates that the
wave functions are nearly the same except in the tail
(r)4 OF), wher. e w(r) for x=2 deviates from the
other two because of the Gaussian tail of the cor-
relation function. On -the other hand„a comparison
of the correla, tion function f(r) for ri=1 and 2 in
Fig. 2(a) shows that for ri=1, f(r) has a long tail
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TABLE II. Results of the cluster expansion for the energy of He using different trial wave functions.
The quantities in parentheses are upper bound on these quantities.

CXI A2 p
(p-a) (p-n) (p—2) (MeV) (P) (MeV)

E2
(MeV)

E3
(MeV)

E=EI+E~+E3
(MeV) (MeV)

~rms
(F)

1
2 0.32 1.6
3 0.134 2. 5
6 0087 15

0.365
0.398
0.575

(16.8)—19.0 i.22 34.06—19.2 1.2 37.14—23.5 i.2 53.65

(—17.02)—53.89—58.55—81.60

(—31.3)—9.53—7.83
0.41

(E&—33.0)—29.36—29.24—27.54

0.34~0.14 1.37
0.34~0.14 1.38
0.29&0.15 1.39

where
E Et+E2+E8, (47)

E,=4&T,&
—E, =xa(5'/m) P, (48)

E2= 6L(f'(12) V(12) &/(f'(12) H = 6~ (49)

&fr(12)f"(13)f (23) V(12) ) &
f"(12)V(12) )

(f'(12)f'(13)f'(23) & &f'(12) &

while for m=2, f(r) +1 mu—ch faster. The reason for
the long tail in the case of m=1 is that the Slater
determinant of harmonic-oscillator wave function does
not have the proper asymptotic behavior and the
exponential tail of f(r) tries to adjust this asymptotic
behavior. In the case of @=2 the correlation function
itself has a Gaussian tail and this can not improve
very much on the asymptotic behavior of the Slater
determinant. This long-range behavior of f(r) for I= 1
leads to a poor convergence of the cluster expansion.
This is clear from Kq. (42), since the region of space
where both f(13) and f(23) are difFerent from one is
larger than in the case of m=2; thus, the contribution
from E3 becomes large in magnitude.

From the above results we can conclude, first, that
our choice of trial functions even with m=2 is good.
Second, to guarantee convergence of the cluster ex-
pansion we should take e& 2, i.e., the correlation
function should go to one reasonably fast.

Resltts for He4. In the case of He4, the cluster ex-
pansion gives rise to a four-term series for the energy.
We are going to neglect the contribution to the energy
from the four-particle correlation by taking

In the case of m=1, the variation with the hrst
three terms did not yield a minimum; furthermore,
the convergence of the series is very poor. This was
expected, for we found that in the case of H' that
for v=1, f(r) is long ranged and multiparticle cor-
relation gets to be important. Thus, to attain a mini-
mum in the energy we should perform the variation
with all the terms in the expansion and that defeats
the purpose of the expansion.

For m=2 and 3 the variation with the erst three
terms yields a minimum in the energy that is in good
agreement with the results of the Monte Carlo cal-
culation. This is seen by comparing the results in
Table II with those of Kq. (51). Part of the difFer-
ence between the results in Table II and Kq. (51)
is due to the use of a better trial function in the case
of Monte Carlo calculations. This is clear from the
results for H' (Table I) where all terms in the ex-
pansion were taken into consideration and the Monte
Carlo method gave a slightly better upper bound on
the energy than we obtained with our trial function.
The difference between the trial function used here
and that used in Monte Carlo calculation in H' and
He is seen in Fig. 1, where the relative wave function
w(r) is presented. A comparison of the results for
m=2 and m=3 shows that for m=3 the convergence
is slightly better since the correlation function f(r)
goes to one much faster as shown in Fig. 2(b). On
the other hand, the energy is slightly poorer due to
the tail of the wave function. If we compare the

= 12(Z—J'), (50) 1.0—
H3

E=29.75~0.18 MeV, (51)

where the quantities J and Z are the same as in the
case of H' and are given in Kq. (43) and (44), with
the exception that V(ij) now includes the Coulomb
potential when i and j label protons.

In Table II we have the results for the upper bound
obtained with the first three terms in the cluster
expansion. We have also included the contribution to
the energy from four-particle correlation and the rms
radius of the system for the optimum value of the
parameters obtained from the variation with Et+
E2+E~. These results should. be compared with those
obtained from a Monte Carlo calculation, '8 which are

w(r)

0.8
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I I
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pro. l. Comparison of the relative wave function w(r) for
different values of e with the corresponding wave function ob-
tained by Monte Carlo method in H3 and He'.
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convergence of the expansion in H' and He4 for m=2
we see that the ratio Es/Es is about the same in these
nuclei. This indicates that neglecting the contribution
to the energy from four-particle correlation does not
eAect the variation or the convergence of the series
appreciably for e&2.

We have also calculated E4 and the rms radius
using a Monte Carlo method for the optimum values
of the parameters from a variation with the first
three terms. We 6nd that E4 is small and almost
independent of e, provided a minimum in the energy
is obtained. Also, the rms radius obtained here is in
good agreement with the results of the Monte Carlo
calculation of Tang et al. and independent of e. All
this seems to indicate that if m&2 the Van Kampen
cluster expansion converges with the 6rst three terms
in the series and the results for the upper bound on
the energy and rms radius are in good agreement
with those obtained using the Monte Carlo method
of Ref. 18. Furthermore, since E4 is small and Es/Es
is about the same in H' and He4, we expect the cluster
expansion to give good results in heavier nuclei for
e& 2.

Upon going from e=i to m=2 we were able to
perform the variation with only the 6rst three terms,
neglecting the contribution from four-particle correla-
tion. The question is, can e be taken large enough so
as to neglect the contribution from three-particle cor-
relation and yet obtain a good result for the energy'
To test this possibility we have performed the varia-
tion for m=6 taking the Grst three terms in the ex-
pansion. From the results in Table II we observe
that the convergence of the series is very good, and
in fact the contribution to the energy from E3 and E4
is small. Also, from Fig. 2(b) we see that the cor-
relation function f(r) for v=6 is of much shorter
range than in the case of m=2 or 3, which is the
reason for the faster convergence in this case. How-

ever, as expected, the energy obtained is off by ~2
MeV because of the Gaussian tail of the wave func-
tion. When the variation for m=6 was performed
with the 6rst two terms only, i.e., no three-particle
correlation included, no minimum for the energy was
obtained, and in this case the correlation function
f(r) was still of short range. From the above results
for x=6 we can conclude that E3 is necessary for
obtaining a minimum in the energy, even though the
asymptotic for of f was explicitly chosen with the
idea of suppressing ( Es ~. Therefore, to perform a
variational calculation using the cluster expansion
and with no subsidiary conditions on the given family
of correlation function f(r) other than e&2, one has
to include the contribution from three-particle cor-
relation in the variation.

IV. CONCLUSION

From the results of the above investigation we can
draw the following conclusions: First, a comparison
of the upper bound on the energy and wave function
of H3 obtained here with those of Monte Carlo cal-
culations indicates that our choice of trial function
is good, i.e., we obtain the upper bound to within
0.5 MeV of the Monte Carlo result. Second, in He4,
with e&2, the variation with the Grst three terms
converges and the upper bound is in good agreement
with the result of Monte Carlo calculation. At the
same time in all cases where a minimum in the energy
was obtained with the 6rst three terms, E4 was less
than 0.5 MeV. Third, in both H' and He4 the ratio
Es/Es is about the same for n=2, which indicates
that this convergence will hold for heavier nuclei
like 0". Also, since the average separation between
nucleons in He4 is about the same as in heavier nuclei,
we expect the cluster expansion to have the same
convergence in heavier nuclei. Fourth, the results for
m=6 indicate that the contribution E3 from three-
particle correlation should be included in the variation
to obtain a minimum, if we require that no subsidiary
conditions be placed on the class of correlation func-
tion f(r) other than e)2. Finally, we have seen in
H' and He4 that for as=1 the correlation functions
becomes long ranged because of the poor asymptotic
behavior of the model function 4 used here. Thus,
if one uses a Hartree-Fock wave function which has
the proper asymptotic behavior or Woods-Saxon single-
particle wave function, one might be able to remove
the restriction on e. However, in that case the cal-
culational procedure becomes more difFicult.

I

5.0
r (F)

I I

2.5 2.5 5.0
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Pro. 2. Comparison oi the correlation function f(r) for di6erent
values of n in H3 and He4.
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