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Electronic Component of Dislocation Drag in Metals
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The rate of energy dissipation resulting from the uniform motion of a dislocation through a free-electron
gas is reevaluated. The analysis, which is based upon electron-transport theory, leads to a damping force
upon the dislocation in agreement with that derived by Holstein using standard perturbation theory.
The source of the discrepancy between the present result and that obtained from a previous treatment
of the Boltzmann equation is elucidated.

T the present time there are several convicting
results in the literature for the electronic com-

ponent of the dislocation drag in metals. In an early
theory, Mason' used an electron-gas viscosity model
and found a drag force proportional to the electrical
conductivity. This approach was criticized by Tittmann
and Bommel2 on the grounds that the model is inappro-
priate for the rapidly varying strain-field components
associated with a dislocation. '4 They analyzed their
own experimental data in terms of a temperature-
independent drag force obtained by Holstein' from
standard perturbation theory and, independently, by
Kravchenko' from a solution of the Boltzmann equa-
tion. Recently, however, Human and I.ouat' ' have
reinvestigated the electron-transport-theory approach
to the problem. They also obtain a drag force propor-
tional to the conductivity, ' even though the viscosity
concept is not used. This is in open conQict" with the
theory of Holstein, since the two methods are known
to predict the same result for the electronic contribu-
tion to ordinary acoustic attenuation. " In view of this
discrepancy we have reexamined the transport-theory
approach to the problem, placing particular emphasis
upon the relation to the treatment of attenuation in a
standard text." Our result is in agreement with Hol-
stein's form of the drag force. The present paper
contains an outline of this calculation and details the
source of the error in the method used by Human
and Louat (HL).
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We begin by making connection with the standard
theory of acoustic attenuation. If the displacement
field of a stationary dislocation is w(r), then the corre-
sponding form for a dislocation moving with uniform
velocity vD is w(r —vni), providing vn is small com-

pared with the sound velocity. "Hence, the local lattice
velocity u(r, t) is

u(r, t) =P u, expLiq (r vrit) j, —

where

uq=+ —qq'vaeq)~q& .

Here X is an index specifying the normal mode with
polarization vector e,)„and w~) is the Fourier amplitude
of the displacement associated with that mode. Since
the power dissipated by each component of Eq. (1)—
say, E'~—will, as a result of the motion, be of the form

where II and J refer to longitudinal and transverse
components, the effective drag force per unit length
of dislocation BvD is given by

8= (I.fans)
—' p p„

where 1. is the length of dislocation. Equation (4) is
to be evaluated in the limit I.~ ~.

The main burden of the calculation is the determina-
tion of the proportionality factors Al, and 3&. Fortu-
nately, their electronic components have already been
calculated, "" and we need only reiterate the pertinent
results. They are obtained from the self-consistent
solution of Maxwell's equations and the Boltzmann
equation. In the latter, electron collisions are presumed
to relax the electron distribution to a Fermi distribution
centered on the local lattice velocity with a Fermi
energy determined by the local electron density. "Thus,
the electron distribution in phase space is f(r,v, i)
= fq(v)+ fr(r, v, i), where fs(v) is the free-electron

' For example, see A. D. Srailsford, Phys. Rev. 142, 388 (1966).
'3 M. H. Cohen, M. J. Harrison, and W. A. Harrison, Phys. Rev.

117, 937 (1960).
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Fermi distribution and fr is the solution of
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Here e~ is the deviation of the electron density from
its equilibrium value ~p, e= —,me', op is the Fermi
energy, and E(r,/) is the self-consistent electric field in
the metal produced by the moving dislocation. Solving
(5) and Maxwell's equations by Fourier analysis as in
Ref. 11, one finds that"

VN pal g(o p) ( o'p

Re
-lg( ')I'& '* (6)

whei. e g(x)=1 irp/4—7rx, o.p is the dc conductivity, V
the volume, ep and m the free-electron density and
mass, respectively, and r the relaxation time. Further,
we have set v~ @=co and

Combining this with (10) and integrating over a, Debye
sphere of radius q~, we find that

/1 —2v tiptitny/i qn qn

k1 —r 96 qTFJ
(12)

where

y(x) = —;L(1+x')-'+x-' tan- *'. (13)

Apart. from numerical factors, " the form (12) agrees
with the result of Holstein, as indeed it must since (10)
can be obtained directly from perturbation theory if
one uses the static Thomas-Fermi dielectric function
to determine the screened electron-lattice interaction. "
Thus, transport theory leads to a temperature-inde-
pendent e1ectronic contribution to the drag force. '

It will be noted that (12) is based upon the large q/
limit of AJJ for a11 modes of the Debye spectrum. For
ql(&1, on the other hand, one finds

o' = 0'~g(1+zq'vpaO gg/30 pM) (4/15) Vn pmvp'rq'. (14)

Op 3
o„= —(a—tan 'a).

1—ZC0g 8

These results hold for general values of the parameters.
However, for realistic dislocation velocities it is to be
expected that ~a~))1 (for q/&)1) and o.p&)rp. Then (6)
reduces to

a „=(V~~,m/r) [1+(q/qT, , )'] ','~q/, (9)

which is independent of the relaxation time (qTv is the
reciprocal of the Thomas-Fermi screening length; GATI;

=v3rp„/np, where oi~=47rnpe'/nz is the plasma fre-
quency). Hence, when we combin. e (2)—(4) and (9),
the longitudinal-wave contribution 8~ to 8 is

trpmnpx V (q vn)'~ A, ~'

6Lnns P qL1+ (q/qTp)']'
(10)

where 6,= iyv~, ~ is the Fourier component of the
dilatation (we have taken X=1 as the longitudinal
mode).

For a straight. -screw dislocation we get 8~——0, since
the dilatation vanishes. For a straight-edge dislocation
lying along the x axis, say, with s=0 being the slip

"The "phonon drag" contributed to A JJ can be shown to be
small. It has been omitted in the interest of brevity.

where nz is the Fermi velocity and a=q//(1 —irpr).
Here l= vpv is the electron mean free path and, finally,

YVere this valid for all modes, one would then obtain a
form for 8E of the type given by the electron viscosity
model. However, as Tittmann and BommeP point out,
the number of modes for which (14) is applicable is
negligibly small. Consequently (12) is the appropriate
form of the damping force.

A similar calculation can be carried through to
determine the shear-wave contribution to B.However,
since we have found that A, (q/) 'A,

~ for q/)1, such
a contribution is negligible and the details will not be
given. This conclusion is in agreement with that stated
in Ref. 9.

As we have stated earlier, the result for the longi-
tudinal contribution to 8 disagrees with that given by
HL. The source of the discrepancy lies in their treat-
ment of the path-integral solution for the distribution
function fi(r, v, t). Although not given explicitly, the
Boltzmann equation satisfied by their fr is

Bfr
+v V,fi+(eE' —VUn) v

Bfp
(mv a —Vn) +f,) (U)
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' A. H. Cottrell, Distocations and I'/astic Ii/oze in Crystals
(Clarendon Press, Oxford, 1961),p. 40.

"The deformation-potential approach of Ref. 5 corresponds
to the formal limit qTF —+ ~ in (11), when p —+ 1. In this
limit, (11) is Holstein s result for 8& multiplied by the factor
L(1—2yl/(1 —r)f'/2~ if one takes his parameters C= ,'Ex and-
(his) E = 4. The factor of 2'. difference can be traced to an error
in writing the equation where IC was introduced. The remaining
discrepancy arises because of Holstein's incomplete expression
fol Dq.
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where V~, the deformation potential of the moving
dislocation, is assumed to have a Fourier transform
Vnp, ~= —4F'&pesgup»/Lppqse(q)j, e(q) being the static
dielectric function of the electron gas. Now a com-
parison of the inhomogeneous term on the left-hand
sides of (15) and (5) indicates the origin of the unusual
result of HL, for they interpret E' in (15) as the total
electric field in the metal in their subsequent treatment
of Maxwell's equations. This is not correct. The defor-
mation potential in metals is an electrostatic potential.
Thus the total electric field is really E'—VVn/e in
their formulation; the whole terin (and not just E')
must be inserted in the As vaclo form of Maxwell's
equations to determine the relation between the
current and the electric 6eld. In fact, one finds from
the solution of (5) and from Maxwell's equations that
in the limits cur&(1 and gl))1 the result for the longi-
tudinal electric field is I=—e 'VVD, so that the
screening charge effectively moves bodily with the
dislocation. The quantity E in (15), which is really
the excess electric field, is zero. Fundamentally it is
for this reason that the transport-theory result and
time-dependent perturbation theory yield the same B.
In addition, in the above limits one can show also
that Vn= (2isieF/3rip). Hence with E'=0 Eqs. (5)
and (15) become identical. Questions of perfect or
imperfect screening raised by HL are automatically
resolved by the self-consistency of the calculation and
do not depend upon invoking different forms for e(q).
The latter is derived implicitly by this method, at least
within the accuracy of Boltzmann transport theory. "

"In this regard it should be noted that the proof that R'=0
follows from (15) and Maxwell's equations only if one uses
e(q) =1+(qrF/q)'. This form of ~(q) is derived from (5) and
Poisson s equation if R is here treated as the seH-consistent held

In further contrast with HL we mention briefly the
effect of a 6nite dislocation width 3 upon the form of
B. Inclusion of this factor in the displacement fjLeld

tends to give greater relative weight to the low-q con-

tributions to the attenuation. This can only enhance
the relative importance of those modes for which (14)
is applicable in our treatment. But since we have
realistically )«&l, the effect of such a factor is negligible.
In any event the tendency would be just the opposite
of HL, namely, to introduce a slight temperature
dependence where there otherwise is none instead of
suppressing a temperature dependence already present.

At first sight it is disquieting that we find essentially
no (electronic) damping on screw dislocations. How-

ever, it should be borne in mind first that our estimates
are based upon free-electron theory as opposed to that
appropriate for real Bloch electrons and secondly that
the calculation implies that dislocations move like

rigid rods. It is now more customary to discuss dis-

location dynamics in terms of the motion of kinks. "
In real crystals these entities always have dilatational
strains associated with them. Ke anticipate, therefore,
that the effective electronic damping force for all dis-

location motion in real crystals will be given approxi-
mately by (12).

due to some external static potential plus the screening charge,
u is set equal to zero, and the condition of zero current is imposed.
We realize that this dielectric function is less accurate than the
I.indhard form, but in a phenomenon such as acoustic attenua-
tion, which depends upon the competition between diffusion and
convective currents, it is important to maintain consistency by
calculating the real and imaginary parts of the complex dielectric
function within the same formalism. Since the Boltzmann equation
is used to calculate the imaginary part (i.e., the conductivity),
the form for e(g) given above should be used for the real part.

~8 J. Lothe and J. P. Birth, Phys. Rev. 115, 543 (1959).


