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The phonon dispersion curves of Si are calculated from the dielectric screening theory using approxima-
tions based on Phillips's bond-charge model for covalent crystals. The off-diagonal (E&E') elements of the
inverse dielectric function ~ '(q+I, q+K ) are essential in the calculation for a nonmetal; here their effect
is approximated by the interactions involving the bond charges. The diagonal part is calculated within
the pseudopotential framework. One adjustable parameter, which affects only the LA modes, is used. The
results are generally in good agreement with experiment (of order 10'Pz except for the low acoustic modes
for which the maximum error is 36 jo). The calculation suggests a two-parameter model for the forces,
which can readily be applied to all crystals with the diamond structure. In agreement with the assump-
tions of the bond-charge model, it is found that the major deviations from homology of the dispersion curves
of the diferent elements are explained by the decreasing importance of the bond-charge forces as the dielec-
tric constant increases.

I. INTRODUCTION

HEORETICAL analysis of atomic vibrations in
crystals has usually been undertaken on two

distinct levels: fitting empirical vibration frequencies or
direct derivation from models of the electronic structure
of the undistorted crystal. In the former category are
the strictly phenomenological Born—von Karman force
constant models" and other parametrized models for
the forces. This approach satisfactorily explains the
forces only if all parameters have clear physical mean-
ings in terms of the electronic properties and are well
determined by the data. In practice, the derivation of
lattice vibration frequencies, i.e., phonon dispersion
curves, from the electronic structure has been limited
almost exclusively to simple metals. Calculations have
been carried out successfully for many nearly free-
electron (NFE) metals (see, for example, the review by
Joshi and RajagopaP). In insulators, however, the
response of the electrons to the ion displacements is
much less well understood, and only a few attempts~'
to derive dispersion curves have been made.

The purpose of this paper is to present and to apply a
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method for calculation of the dispersion curves which
can be used for insulators. The present method is based
on the general microscopic theory of lattice dynamics
given by Pick, Cohen, and Martin' (henceforth referred
to as I) which is applicable to any material and thus, in
principle, bridges the gap between metals and insulators.
In I, several important features of the microscopic
theory as applied to insulators have been derived. The
most important results are summarized here in Sec. II.

The detailed approximations needed to carry out the
calculations are given in Secs. IV—VI for covalent
crystals of the diamond structure, and are based on
Phillips's bond-charge model" of the charge density in
covalent materials. The results of the calculations are
presented for the case of silicon. Many of the results of
the present paper. have been previously reported in a
short communication. "

Silicon is chosen for this erst app1ication of the general
theory to insulators for several reasons. iVlost important
is that over a wide range of energy of order EI; 12 eV,
the electronic structure of Si is very NFE-like, " '4 so
that we expect minimum deviations from the calcu-
lational methods which are well established for NFE
metals. Second, Phillips has given a particularly simple
model" of the charge density. Finally, the phonon
dispersion curves for Si have been measured accurately
for the principal symmetry directions by inelastic neu-
tron scattering. ""All methods used here should apply
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equally well to Ge and grey Sn (with the exception of
any effects of the vanishing band gap'r in grey Sn);
however, the dispersion curves for Ge "have not been
measured so completely as those for Si, and similar
experiments on grey Sn "had not been carried out at the
start of this work. In the case of diamond the dispersion
curves' are known in detail, but the application of the
theory would be more difficult because of the larger gaps
in the energy bands (see Sec. V).

There have been many parametrized fittings" '~" of
the dispersion curves of the diamond-structure crystals.
Most notable for this paper are the shell-model meth-
ods' """""and the valence force field approach. ""
The shell model has been shown by Tolpygo' to be
formally equivalent to the forces derived from the dis-
tortions of the electronic bonding orbitals, so the param-
eters in the shell model have definite interpretations in
a quantum-mechanical model. However, there remains
the necessity of employing many parameters to fit the
dispersion curves, so that in practice it is difficult to
interpret the forces, e.g. , to understand the deviations
from homology among the dispersion curves of the
group-IV elements. The valence force field model is of
note because it affords a particularly lucid picture of the
forces in a covalently bonded material, and because in
some cases, the necessary force constants can be trans-
ferred from crystal to molecule (e.g. , diamond to some
hydrocarbons'4 ").

In Sec. VII, the calculated real space force constants
for Si are reported and the contributions of the various
forces to the frequencies are determined. The results
suggest a two-parameter simple bored charge mo-del

which is applied to all the diamond-structure crystals
in Sec. VIII. The major differences in the shapes of the
dispersion curves of these elements are understood
quantitatively in this model simply in terms of the
relative importance of the Coulombic forces as opposed
to the short-range non-Coulombic forces.
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(1966) LEnglish transl. : Soviet Phys. —Solid State 8, 261 (1966)],
and other references therein.

M. J. P. Musgrave and J. A. Pople, Proc. Roy. Soc. (London)
A268, 474 (1962).

H. L. McMurray, A. W. Solbrig, Jr. , J. K. Boyter, and C.
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C,i, i "~=C„&(l .1'), — (2 &)

where n, P are Cartesian components, and (2.1) follows
from the translational symmetry of the crystal. The
Born—von Karman periodic boundary conditions' 2

allow the immediate diagonalization of the force con-
stant matrix (2.1) in the f, l indices. The resulting
normal-mode displacements N, i (q,X) of the nuclei from
the equilibrium positions are infinite waves

u, i (q,))=u, (q,X)e'& ""+c.c., (2.2)

where q is the wave vector and X=1, , 3m is the
normal-mode index. For each wave vector q, the squares
of the normal-mode vibration frequencies cuq'(q) are the
eigenvalues of the 3eX3e dynamical matrix

D aP(q) (iaaf' ilrl, )
—1/2 P C,aP(t) iq (Rs ORsl) '(2 3)

l

where 3f, is the mass of a nucleus of type s.
Within the Born-Oppenheimer approximation, "~ in

which the nuclear and electronic motions are assumed
to be decoupled, the dynamical matrix has been derived
from the electronic states of the crystal. This ap-
proach is here termed the microscopic theory of lattice
vibrations. The derivation has been given by several
authors, ' ' "" the most recent and most conci..:.e
derivation being that of Pick, Cohen, and Martin. The
Born-Oppenheimer approximation is valid in any
insulator, ''~ and its breakdown is quantitatively un-
important in the lattice dynamics of ordinary metals. '4

Thus, it is appropriate for any application discussed in
this paper.

In I, the dynamical matrix has been derived in the
most general form, treating all the electrons on the same

"M. Born and R. Oppenheimer, Ann. Physik 84, 457 (1927)."T. Toya, J. Res. Inst. Catalysis, Hokkaido Univ. 6, 183
(1958).

29 G. Baym, Ann. Phys. (X.Y.) 14, 1 (1961).» L. J. Sham, Proc. Roy. Soc. (London) A283, 33 (1965);
thesis, Cambridge University, 1963 (unpublished)."S.H. Vosko, R. Taylor, and G. H. Keech, Can. J. Phys. 43,
1187 (1965).

"W. A. Harrison, I'seudoPotentials in the Theory of Metals
(W. A. Benjamin, Inc. , New York, 1966)."P.N. Keating, Phys. Rev. 175, 1171 (1968) [who, along with
Joshi and Rajagopal (Ref. 3), did not restrict himself to Born-
Oppenheimer approximationg."G. V. Chester, Advan. Phys. 10, 357 (1961).

II. GENERAL MICROSCOPIC THEORY AND
ACOUSTIC SUM RULE

In the Born —von Karman theory' of the vibrations
of nuclei in solids, the equations of motion of the dis-
placements of the nuclei from their equilibrium positions
are those of coupled harmonic oscillators. Ke consider
only the case of a perfect crystal in which the nuclei may
be labeled by the unit cell index 1 and the index
s= 1 e of the nuclei in the unit cell. I.et us denote
equilibrium positions of the nuclei by R, &

——R,+R&. The
Born—von Karman force constant coupling nuclei s, 1

and s', /' is
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footing. Here we assume (1) that the closed-shell ion
cores move rigidly with the nuclei, (2) the cores do not
overlap, (3) the bare-ion —core pseudopotentiaP' as seen
by a valence electron is a local potential v, (Ir —R, tI),
and (4) the inverse dielectric screening function of the
electrons is determined primarily by the smooth part
of the wave functions, i.e., the pseudo-wave-functions.
The pseudopotential method is necessary because the
approximations for the valence electrons made in the
present work are appropriate only for the smooth part
of the electronic wave functions.

The results of I for electrons interacting with bare
nuclei can be taken over to the present pseudopotential
interaction. The microscopic formula for the dynamical
matri. x becomes

D- '(q) = (~.~")-'"IC.. -e(q)-~.. Z C..--e(0)l,

where
(2.4)

The matrix C„~(q) will also be referred to as the
dynamical matrix when there is no danger of confusion.
The form of the dynamical matrix in (2.4) follows from
the translation invariance of the system (see I). In Eq.
(2.5), 0 is the volume of the unit cell, K and K' are
reciprocal-lattice vectors, v, (Iq+KI) is the Fourier
transform of the bare-ion —core pseudopotential

1
"(Iq+KI)=- "(Irl)e'"+K"d'r,

0

and e '(q+K, q+K') is the inverse dielectric function
for the valence electrons. If e ' is dined only in terms
of the pseudo-wave-functions, then in addition to (2.5),
there are orthogonalization charge corrections. "These
orthogonalization terms are omitted in the present work
since they are very small for a small ion core, as is the
case in Si. The sum in (2.5) must, of course, be evaluated
by an Kwald transformation. "~

Let us here note the long-wavelength properties of
e '(q, q) and n, (I q I ), which are needed later. Adler" and
Wiser" have shown that

hm e '(q, q) =1/eo,
q~o

(2.6)

35 J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959);
M. H. Cohen and V. Heine, ibid. 122, 1821 (1961).' W. A. Harrison, Phys. Rev. 129, 2503 (1963).

'7 P. P. Ewald, Ann. Physik 64, 235 (1921);E. W. Kellerman,
Phil. Trans. Roy. Soc. 238, 513 (1940)."S. Adler, Phys. Rev. 126, 413 (1962).

'9 N. Wiser, Phys. Rev. 129, 62 (1963).

C-- (q) =(~/4-") Z (q+K)-..(Iq+KI)
K, K'

Xe'"' ~Iq+KI'» —'(q+K q+K')(q+K')~

X" (Iq+K'l)e *""" (2.5)

where so is the low-frequency "optical" dielectric
constant. (Only cubic crystals are considered here. ) The
bare-ion —core potential has the form, as q ~ 0,

m, (q) ~ —(4n e'/0) (Z,/q'), (2 7)

4m-e' Z,*Z, *
q ql'

as q-+ 0. (2.9)
(f2

C„ e(q, 2)
q—A Q 6p

The microscopic formula for the effective charge Z,.*
("dynamic" or "Born" definition'~42) is'

0 e-'(q, q+ K)
Z,*=— lim Q q (q+K)

4ire2 Q 0 x 6
—1(q q)

Xn, (Iq+KI)e '"'R . (2.10)

The result of primary importance for non-ionic
crystals is found by examining the long-wavelength
acoustic modes. The requirement that all acoustic-mode
frequencies vanish as q

—+ 0 may easily be shown to
imply a "charge neutrality" condition on the effective
charges

PZg 0 (2.11)

The condition (2.11)has been recognized in the phenom-
enological theories'"; now it assumes a new impor-
tance because inserting (2.10) into (2.11)yields a condi-
tion on e ' in the long-wavelength limit:

lim P e '(q, q+K)q (q+K)v, (Iq+KI)e '"'a'=0.
q—+0 8, K (2.12)

The condition (2.12) was termed the aeoustie suez rule
ln I.

The acoustic sum rule is a nontrivial requirement on
the inverse dielectric function of any insulator because
in general every term in the sum in (2.12) is finite. In
particular, Eqs. (2.6) and (2.7) show that the K=O
term in the sum in (2.12) is always nonzero for some
direction of q. The sum rule (2.12) can be satisfied only
if there is a cancellation between the diagonal (K= K')
and the off-diagonal (KW K') terms of e '(q+ K,q+ K').

"W. Cochran and R. A. Cowley, J. Phys. Chem. Solids 23, 447
(1962).

4'M. Born and M. Goppert-Meyer, in IIandbuch der Physik,
edited by S. Fliigge (Springer-Verlag, Berlin, 1933),Vol. 24, p. 638.

4~ E. Burstein, Lattice Dyrlamics, edited by R. F. Wallis (Perga-
mon Press, Ltd. , Oxford, 1965), p. 315.

where Z, is the ion-core charge.
In I, it was shown that for any insulator the micro-

scopic theory recaptures completely the phenomeno-
logical theory of ionic crystals. '""That is, the dy-
namical matrix can be written

C- '(q) =C- '(q, 1)+C- '(q, 2), (2 8)

where C„~(q,1) is always an analytic function of q,
and in a cubic crystal it can be shown that C„~(q,2)
has the limiting behavior
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Therefore, it follows that in any insulator, ionic or
non-ionic, the dielectric function e(q+K, q+K') and its
inverse are eever diagonal matrices.

The acoustic sum rule (2.12) is not a necessary condi-
tion for a metal, because the part of the dynamical
matrix C„. &(q, 2) alwavs vanishes as q

—+ 0, owing to
the presence of the factor of 1/eo in (2.9). Thus, the
acoustic sum rule places no restriction on the dielectric
function for a metal; in particular, a diagonal dielectric
function is not excluded for a metal.

The acoustic sum rule points to a crucial factor in the
tremendous computational differences between metals
and nonmetals. For a metal, any dielectric function
having the characteristic form for a metal' ""at small

q can be used. For an insulator, on the other hand, the
entire dielectric function matrix must be determined
accurately merely to ensure the acoustic mode frequen-
cies all approach zero at long wavelength. Moreover,
the acoustic sum rule (2.12) is a relation between the
bare-ion —core potential and the inverse dielectric func-
tion which is derived from the exact electronic states of
the crystal. That (2.12) is satisfied can be guaranteed
only if a completely self-consistent band-structure
calculation is carried out. Thus, from the acoustic sum
rule, we see the difhculty in any calculation of the
dynamical matrix for a,n insulator solely from the
electronic structure.

In the following sections, we approximate the im-
portant contributions of e ' to the dynamical matrix,
rather than attempting to calculate ~ ' from the elec-
tronic states. The acoustic sum rule is utilized to extra, ct
information about the off-diagonal terms, and thus it is
automatically satisfied. As the first step, we examine the
previous calculations which have been carried out with
much success for many NFE metals.

III. FREE-ELECTRON MODEL

For a metal the acoustic sum rule places no restriction
on the dielectric function matrix. Wiser" has explicitly
shown that all the oB-diagonal elements of the e matrix
(calculated from the pseudo-wave-functions) are small
compared to the diagonal elements in any NFE metal.
Therefore, in the pseudopotential calculation of the
dynamical matrix for the XFE metals, it is a good
approximation to neglect all off-diagonal elements of
~ '. Specifically, the diagonal pa, rt of the c ' matrix is
taken to be that given by the free-electron (FE) func-
tion with exchange. " ' The FE approximation has been
applied to the calculation of phonon dispersion curves in

"Exchange is incorporated in e ' as described in Ref. 44:
(k) —1 —+ (1—e (k) )/e' (k), where c' and ~ are the dielectric

function with and without exchange, and ~'(k) —1 = (t. (k) —1)j(k),
where f{k) is the Hubbard-Sham exchange factor {Refs. 30 and
45) given explicitly in Ref. 30.

44 V. Heine and D. Weaire, Phys. Rev. 152, 603 (1966), Ap-
pendix."J.Hubbard, Proc, Roy. Soc. (I,ondon) A243, 336 (1958).

many NFE metals (see, e.g. , Refs. 31, 32, and 46) with
results generally in good agreement with experiment.

Despite the fact that silicon is a semiconductor, it is
informative to calculate its dispersion curves in the FE
approximation. Indeed, Si is NFE-like in many respects.
The dielectric constant ~0 in Si is l2, 47 which is much
greater than 1, suggesting that the approximation of
metallic behavior, t.o= ~, is not bad. Examination of
the band structure" shows that it is quite FE-like with
the band gaps appearing as perturbations. The valence
charge density has been computed by Harrison'3 in the
FE approximation with results close to the charge
density measured by x-ray diffraction. 48 Finally, the
cohesive energy is well accounted for by treating it as a
metal. 4' Therefore, we expect some aspects of the FE
approximation to apply to Si.

The phonon dispersion curves have been calculated
for the principal symmetry directions [100j, [110j,and
[111).The FE dielectric function for the Si valence
electron density, including the Hubbard-Sham exchange
correction, 4' was employed along with a model potential
for the ion core, which is described in Sec. V (where it is
labeled the MHA potential). The results are shown as
the solid curves in Fig. 1, where they are compared with
the experimental frequencies. "'

The most prominent feature of the calculated dis-
persion curves is that all transverse acoustic (TA)
modes have imaginary frequencies, i.e., the crystal is
energetically unstable against shear distortions of any
wave vector. This instability is not unexpected. The
very existence of the loosely pa, eked tetrahedrally
coordinated diamond structure has long been considered
to be a manifestation of the directed sp' covalent bond-
ing in a molecular orbital picture, the anisotropy of
which is completely omitted in the FE approximation.
Horn and co-workers" have shown by many examples
that for central forces only, the more loosely packed a
crystal structure, the greater its tendency toward
instability. The instability is averted by the increased
proportion of noncentral forces. Specifically, Horn"
showed that the diamond lattice is unstable against
shear in the presence of central nearest-neighbor forces
only. However, any diagonal e ' gives rise to purely
central forces, and in the FE approximation, the forces
are almost entirely first-neighbor. Thus, the FE
approximation falls in the category of Horn's simple
model and cannot stabilize the lattice. "

A. O. E. Animalu, I'". Bonsignori, and V. Bortolani, Nuovo
Cimento 44B, 159 (1966).

4' W. C. Dunlap and R. I.. Watters, Phys. Rev. 92, 1396 (1953).
They find e0 ——11.8+0.2 for Si.

48 S. Gottlicher and E. Wolfel, Z. Electrochem. 63, 859 (1959).
H. Brooks, Trans. AIME 227, 546 (1963).

50M. Born, Proc. Cambridge Phil. Soc. 36, 160 (1940), and
later papers in this series.

5~ M. Born, Ann. Physik 44, 605 (1914).
52 It is possible to find a diagonal e(k) which leads to a stable

lattice. Such a modified e, which is larger than ~g with a maximum
deviation of 10'P~ near k =L~, has been found in the course of this
work. The primary eRect is to introduce forces of longer range than
in the I'E approximation.
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FIG. 1. Phonon dispersion
curves for Si calculated
from the free-electron
model. The ion-core poten-
tial used is the MBA model
potential described in Sec.
V. The points are the neu-
tron scattering data of
Dolling (Ref. 1S) except for
the single I 110j TA point
measured by Palevsky et at.
(Ref. 16). The vertical
dashed line at 0.75 in the
L110j direction indicates
the zone boundary. Note
that the calculated fre-
quencies of the transverse
acoustic modes are imag-
inary.
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The calculation in the FE approximation shows that
a statisfactory model for the interatomic forces in Si
must take into account at least some eRects of the
covalent bonding. These effects must be identified in the
microscopic formulas and retained in the model. In
particular, Born's work~ "suggests strongly that non-

central forces must be included. Nevertheless, we note
in Fig. 1 that some features of the dispersion curves of
Si are given quite well by the FK model. For example,
the calculated Raman frequency is only 13%larger than
the experimental value. Therefore, in the application of
the microscopic theory to Si, we expect to retain many
simplifications similar to those of the FE approximation.

Iv. BOND-CHARGE MODEL

Two principal assumptions were employed in the FE
approximation: (1) metallic behavior of the dielectric
function, es 1/g', and (2) neglect of all off-diagonal
elements of e '. Both of these assumptions are incorrect
in insulators. All noncentral forces are omitted because
of (2), and it was found that this led to the instability
against shear in Si. We also require that assumption (1)
be omitted so that the method developed here is applic-
able to crystals with ionic character. (For example, it is
desirable to be able to treat Ge and GaAs, the dispersion
curves of which are very similar, ""within the same
framework. ) The acoustic sum rule discussed in Sec. II
shows that the relaxations of assumptions (1) and (2)
are not independent, because in the long-wavelength
limit, some off-diagonal elements of e ' are related to
the magnitude of the macroscopic dielectric constant
Ep. Both assumptions are dropped in the present section
to derive a more satisfactory model for an insulator.

"G. Dolling and J. L. T. Waugh, in I.uttice Dynamics, edited
by R. F. Wallis (Pergamon Press, Ltd. , Oxford, 1965), p. 19.

Z*=Z+Z" (4.1)

where Z is the bare-ion —core charge and Z " is the part
of the effective charge which arises entirely from the
off-diagonal elements of e '. The part of the dynamical
matrix C„~(I1,2) vanishes, of course, for a non-ionic
crystal because of the neutrality condition (2.11).
However, (2.11) tells us nothing about the spatial
distribution of the charge response denoted by Z'd,
because it refers only to a q ~ 0 limit. The total contri-
bution of the effective charges at arbitrary wave vector
need not vanish because the form factors and structure
factors for the "oR-diagonal" eRective charges may
diRer from those of the bare ion.

The physical arguments for the nature of the off-
diagonal charge response in covalent materials are based
on Phillips' model of the covalent bond. "Phillips sug-
gested that the charge density in a covalent material
should be divided into a part linearly screening the ions
(much as the linear screening'4 in NFE metals except
that the screening is incomplete in an insulator) plus a
part concentrated at the bond centers. The additional
charge pileup is the result of coherent interference of the
3ragg-rejected electron pla, ne-wave states. Phillips
argued that the interference is primarily between elec-
tron states scattered off neighboring ions. Under this
assumption, the maximum in the additional bond-

'4 M. H. Cohen and J. C. Phillips, Phys. Rev. 124, 1818 (1961).

A. Philliys's Bond-Charge Model

I.et us return to the form of the dynamical matrix in
the microscopic theory, Eqs. (2.8) and (2.9). The
effective charge Z* which appears in C„~(q,2), (the
subscript s may be omitted in a non-ionic crystal), can
be rewritten to exhibit a physical interpretation of the
oR-diagonal elements of e ',
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charge density is at the midpoint between neighboring
ions in an elemental crystal even when the ions are
displaced. Thus, Phillips's model leads to the interpre-
tation that part of the electronic screening of the ion
displacements is described by bond charges which are
attached to pairs of ions and respond so as to remain
midway between them.

The ansatz made in the present paper is that all
contributions to the dynamical matrix of the ofI-

diagonal elements of t. ' are replaced by bond-charge
interactions with the ions and with other bond charges.
This is a reasonable interpretation of Phillips's model
because the off-diagonal elements arise from the inter-
ference of the plane-wave electron states which the
model describes. The neutrality condition (2.11) fixes
the magnitude of the effective bond charge Z~,

(4.2)

since there are two bonds per atom. The effective
charges defined in (2.10), (4.1), and (4.2) are bare
charges. The tofal eft'ective charge, including the screen-

ing, is derived by omitting the factor

features of the electronic wave functions and how they
give rise to the bond charge, see the recent paper by
Heine and Jones. " The existence of a portion of the
valence charge density not spherically symmetric about
the ion cores is also established by x-ray scattering
measurements on diamond '6 Si ' ' and Ge. ' The
x-ray data are most precise in diamond; it veri6es
approximately Phillips s model in which there is a well-
localized bond charge with total charge —2/eo. The
experimental determination of the form factors in Si
and Ge is less conclusive (see the discussion by Weiss").
Therefore, lacking detailed knowledge of the form
factor, the bond charge is here assumed to be a point
charge.

Bond-charge models have been used previously for
the vibrational properties of covalent materials. The
point —bond-charge model for diamond was first pro-
posed and used by Warren" (see comment in Sec. IV 3).
Parr and Borkman" utilized bond charges in calcula-
tions for diatomic molecules. Also, Simon" used a similar
model to calculate elastic properties of Ge. In all the
above-mentioned work, the bond-charge magnitude
was used as an adjustable parameter to fit measured
frequencies.

in the definition (2.10). Thus Z/Ep and Z'~/e aore the
total effective charges associated with the diagonal and
off-diagonal elements of e ', respectively, and (4.2) is
consistent with the bond charge magnitude —2/eo
predicted by Phillips.

Equation (4.2) is the only requirement that can be
derived solely from consideration of the dynamical
matrix; however, it is sufficient to demonstrate that the
bond charges of Phillips's model are a possible realization
of the off-diagonal effective charges found in the general
theory. All other assumptions concerning the spatial
distribution of the bond-charge response must be intro-
duced as approximations suggested by Phillips's model.
It is in these approximations that the specifically
covalent character of the off-diagonal screening by the
electrons is introduced into the dynamical matrix. In
particular, noncentral forces are introduced because the
bond charges are not centered on the ion sites. Indeed,
in the present account all noncentral forces arise from
the bond charges, so that the shear stiffness of the
crystal is directly related to Z& and E.p. A quantitative
discussion is given in Secs. VII and VIII, where it is
shown that the experimental frequency data provide
additional evidence for the bond-charge magnitude
predicted by Phillips LEq. (4.2)j.

The model of Phillips for the charge density is in
generally good agreement with the results of direct
numerical calculations. "For a quantitative discussion,
based on the actual calculations, of the most important

"I.Goroft and L. Kleinman, Phys. Rev. 164, 1100 (1967);
L Kleinman and J. C. Phillips, ibid. 125, 819 (1962).

The Coulombic part is derived from the Coulomb
interactions among the charges"

ZiZ2e /t pr (4.4)

"R. Brill, Acta Cryst. 13, 275 (1960)."H. Hattori, H. Kuriyama, and T. Katayawa, J. Phys. Soc.
Japan 20, 988 (1965).

~ J.J.Demarco and R. J.Weiss, Phys. Rev. 137, A1869 (1965);
L. D. Jennings, Bull. Am. Phys. Soc. 13, 491 (1968)."R.J. Weiss, Acta Cryst. (to be published).

J. L. Warren, Brookhaven National Laboratory Report No.
BNL-940 (C-45), 1965, p. 88 (unpublished).

6 R. G. Parr and R. F. Borkman, J. Chem. Phys. 49, 1055
(1968); R. F. Borkman, G. Simons, and R. G. Parr, ibid. 50, 58
(1968).

"G.Simon, J. Phys. Chem. Solids 28, 2349 (1967).
3 Naively, using the total bond-charge magnitude —2/eo, one

might expect the bond-bond interaction, for example, to be
proportional to (—2/eo)'. However, this would not take into
account the medium screening of the bond charges which con-
tributes an addition factor of eo to arrive at the result {4.5).

&. Coulomb Dynamical Matrix

The contribution of the effective charges to the
lattice energy, i.e., the force constants, can now be
determined. If ion (s,l) is displaced a distance dR, i, the
four bond charges about (s,l) are all displaced by —,'dR,

, i
and similarly for ion (s', l'). To obtain the force constant
C„~(l l'), we must —simply add the interactions of the
five charges at (s,l) (the ion and four bond charges)
with the five charges at ion (s', t'). The interactions
among the charges are classified as ion-ion, ion-bond,
and bond-bond.

The force constant C„~(l l') is here —divided into
the Coulombic and non-Coulombic parts:
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where Zl and Z2 take the value Z or Z~ for the ion core
or bond charge, respectively, and r is the relevant
separation. The non-Coulombic part arises from the
short-range ion-ion forces which are determined by the
dispersion of the diagonal part of the inverse dielectric
function e '(q+K, q+K) —1/es, and are described in
Sec. V. No short-range corrections are included in the
ion-bond and bond-bond interactions. This is a reason-
able first approximation because the total bond charge
contains only a small fraction of the electrons, and hence
it need not be treated as accurately as the ion-ion terms.

The Coulombic force constant now may be written as

e2 5

oC., P(l) = ——Q W,W,Z,Z,
Ep i, j=l

Xf.,(R.,—R. ,+R,(.) —R, (")), (45)

FiG. 2, Bond-charge positions in the diamond lattice. The atoms
1 and 2 in the unit cell are shown along with the four bond-charge
positions R;(sl about each atom.

manipulation it becomes

e2 5
where

B2 1.p(r) =
ar harp lrl

8";=-,', Zi=Z&,
8';=1, Zi=Z, z=S

(4.6)

(4.7)

oC„P(q) =—Q W;W, Z,Z.
6p i, j=l

&&(e'&'&"'&'& "~&"&'G p(q, R,+R, (s) —R, —R, (s'))
—(1—&,. ) (1—&;.s) e "'"""G.p(o, R'(~) —R~(~))),

(4.10)

R, (s) = bond positions about ion s for i= 1, 2, 3, 4 and
Rs(s) =0.The vectors R,(s) for i ~& 4 are show»»ig. 2

and are listed for convenience:

where

G p(q, r) = —P' f p(r —Ri)e '&'&' "" (4.11)

Rt(1)= —Rt(2) = s'a(1, 1,1),
R,(1)=—R, (2)=s'a(1, —1, —1),
Rs(1)= —R, (2) =-,'a( —1, 1, —1),
R4(1)= —R4(2) =-', a(—1, —1, 1),

which is evaluated by the Ewald transformation. ' "The
second term in the brackets in (4.10) was omitted by

(4 g) Warren. ss This term involves G p(q=0), but it has a
q-dependent coefficient, because the bond charges are
not located at the ion sites, and must therefore be
included in C.

6p err tr/

+Ze P f p(R p
—R,.i"+R,,(s') —Rq(s'))], (4.9)

the factor of ~ coming from the 8",8'j coefficient in
(4.5). Similarly, the self-force constant cC„p(0) is
modified, but it is not needed in the dynamical matrix.

The dynamical matrix for the Coulomb forces is
derived from (4.5) and (4.9); after a small amount of

"M. Lax, Phys. Rev. Letters 1, 133 (1958).

where a is the conventional cube edge which is 5.430 A
in Si. The asymptotic form of the Coulomb force con-
stants (4.5) are a particular model of the quadrupole-
quadrupole forces first suggested by Lax."

Equation (4.5) must be modified in the case where

(s,l) denotes a nearest neighbor of (s,0) with the
common bond labeled ip. The correct force constant is
(4.5) with the term i= j=is replaced by the second
derivative of the total energy with respect to the posi-
tion of bond charge i p, which may be shown to be

e2

-',—ZelZ P f p(R, s —R,"i +R,,(s'))

V. NON-COULOMBIC DYNAMICAL MATRIX

The non-Coulombic dynamical matrix is given by

0
Q (q+K) (q+K)p

4~e2 K

x
I
q+K I'Le(l q+K I)]'

Ql e
—1(q+K q+K) 1]eiK (Rs—Rs')

+ (4~e'/Q)Z'(1 —1/ep)G p(q, R, —R, ), (5.1)

n GC, aP (q)

where (2.5), (4.3), and (4.4) have been used. In the
second term on the right-hand side of (5.1), the factor
1/es subtracts from cC the long-range part of the
ion-ion interaction which has already been included in
C, as defined in the previous section. We are left with

the problem of calculating C, which involves only the
ion-core potential u(lq+Kl) (the subscript s may be
dropped for elemental crystals), and the diagonal part
c '(q+K, q+K). We must specify only these two
functions —a much simpler problem than the one with
which we started, which involved the entire matrix of
the inverse dielectric function.
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from the HA form factor for Si by a comparison with the
Al case, is shown in Fig. 4. Note that here we have
plotted the bare ion-core potential multiplied by
k'/4sZe'. The bare HA potential is determined by
multiplying the tabulated screened HA potential" "
by the Hubbard-Sham dielectric function. ' "It was
found in the course of the present work that only very
small changes in the dispersion curves result from
making the potential go smoothly to zero near the
second node as is done in the final potential. A similar
form factor has been used for calculating phonon dis-
persion curves in metallic Sn."

It is convenient to define an "effective" dielectric
function e,«(q+K) by

FIG. 3. Screened model potential in aluminum. The solid curve
is the modified Heine-Abarenkov (MHA} model potential derived
from Table I of Animalu et al. (Ref. 46). The dashed curve is the
Heine-Abarenkov (HA) potential tabulated in Ref. 32.

The pseudopotential form factor is arrived at by
comparison with the pseudopotential calculated for Al

by Animalu et al. ,
' via a modified Heine-Abarenkov

(here called MHA) method. The Al ion-core form factor
is of interest because the Si+4 and Al+' ion cores are
identical except for the difference in the nuclear charge;
any approximation which applies to the ion core of Al

should also apply to the Si+4 core. The potential ~M»
for Al can be calculated from Table I of Animalu et al. , '
and is shown in Fig. 3 along with the Heine-Abarenkov
potentiap' "vHg. The primary point is that AH~ and

t&+ differ only at large wave number (k) 2K&), where

eMH& is more strongly damped. (Here k denotes a
variable that extends over all reciprocal space. ) The
MHA pseudopotential for Al was shown" to yield
phonon dispersion curves in good agreement with
experiment ( 10% maximum error). The final poten-
tial form factor for Si+4 (also termed MHA), derived

e
—'(q+K, q+K) = 1je,«(q+K). (5.2)

I 1

j
I

Equation (5.2) shows that, strictly speaking, e,«can be
determined only by calculating the entire e matrix.
However, we have chosen to use the e,«calculated by
Srinivasan" from Penn s idealized isotropic model" of
the electronic wave functions in a semiconductor. The
functional form of ep, „(~q+K~) is derived from the
expressions for the diagonal part of the dielectric func-
tion e(q+K, q+K), but the parameters are chosen so
that it is really appropriate for the effective dielectric
function, as defined in (5.2) Lthat is, ep (0)=ep],
rather than for the dielectric function itself.
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FJG. 4. (0/4vrZe')v(k)k', where v is the bare-ion —core potential
for Si. The solid curve is the modified Heine-Abarenkov (MHA)
potential used in the calculation of phonon dispersion curves
shown in Fig. 6. The dashed curve is for the Heine-Abarenkov
(HA) potential derived from the tables of Ref. 32.

'~ V. Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964).

FxG. 5. Dielectric function in silicon as a function of wave
number k: (1) the free-electron function, (2) ~p,„as calculated by
Srinivasan (Ref. 67), (3) eN„, for the L110) direction (Ref. 69),
and (4) e,ff, which is equal to ep, over the range shown except
that it is adjusted at small k to fit the elastic constant C~~.

"E.G. Brovman and Yu Kagan, Zh. Eksperim. i Teor. Fiz. 52,
557 (1967}t English transl. : Soviet Phys. —JETP 25, 365 (1967}].

6' G. Srinivasan, Phys. Rev. 178, 1244 (1969).' D. R. Penn, Phys. Rev. 128, 2093 (1962).
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FIG. 6. Phonon dispersion
curves for Si calculated
from the bond-charge
model. The ion-core poten-
tial used is the MBA model
potential in Fig. 4 and the
effective dielectric function
is ~ ff(0) given in Fig. 5.
The points are the results
of the neutron scattering
measurements of Doiling
(Ref. 15) except for the
single (110jTA point from
Palevsky et al. (Ref. 16).
The vertical dashed line of
0.75 in the (110] direction
indicates the zone boundary.
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The isotropic function ep, „(k) for Si is given in Fig. 5
along with the dielectric function e(q+K, q+K)
calculated by Nara' from a realistic band structure.
Nara found e(q+K, q+K) to be remarkably isotropic;
his result for the L110) direction is shown. The agree-
ment between the two functions lends support to the
validity of Penn's model. It is in the assumption of the
Penn form for e,it(k) that we have used the NFE
character of Si. Such an approximation for e,ff(k) would
be less appropriate for substances with larger band
gaps, e.g. , diamond. The simple form for e,«plays the
same role in making the present model tractable as does
the FE dielectric function in the calculations for NFE
metals.

We have included the exchange corrections just as
was described in Ref. 43 for the FE case. The correct
dielectric constant eo is still obtained because 'the ex-
change correction vanishes as k —& 0, and the resulting
ion-electron-ion interaction should be valid for large k
because the assumptions for the form of e,ff with ex-
change are valid as e,ff ~ ~f„,. But for k near zero, the
results are invalid; Penn's model is poor, and the many-
body correction employed is qualitatively wrong
because it vanishes for k ~ 0. Therefore, the effective
dielectric function has been regarded as an adjustable
function at small k (within the first Brillouin zone (BZ)
only). This is the only adjustment in the present calcu-
lation. It affects only longitudinal acoustic modes and
here it is used to fit the measured elastic constant C11.
The resulting function is labeled e.ff in Fig. 5. It turns
out that in the adjusted function there is no "hump" at
small k as found by both Nara' and Penn. ' Such a
hump would make Cii negative and cannot be reconciled
with the bond-charge model.

The function e,rt(k) as used in this paper is defined for
large k by smoothly extending the curve shown to the

"H. Nara, J. Phys. Soc. Japan 20, 778 (1965).

FE function e'(k). Calculations have also been carried
out for the slightly different function calculated by
Srinivasan" for large k with only minor changes in
the results. Both the effective dielectric function and the
ion-core potential (multiplied by k') were tabulated.
The needed sums in the dynamical matrix (5.1) were
calculated by a quadratic interpolation procedure.

TABLE I. Elastic constants in Si. The first row gives the experi-
mental constants, the second row the results of the free-electron
model described in Sec. III, and the remaining rows the results of
various bond-charge-model calculations. The values in parentheses
indicate the results if C11 is fitted.

Experiment'
FE
~MHA) &eff

VHA) jeff

YMHA& jeffb

C11

1.66
1.49
1.66
1.20

(1.66}
2.84

(1.66}

C44

0.80—0.42
0.75
0.34

0.57

0.64
2.07
0.96
0.92

(1'.»)
2.44

(1.26)

C11 C12

1.02—0.58
0.70
0.28

0,40

0.98
1.89
1 ~ 19
1.01

(1.47)
2.57

(1.39)

a H. B.Huntington, in Solid State Physics, edited by F.Seitz and D. Turn-
bull {Academic Press Inc. , New York, 1958), Vol. 7, p. 213.

& Omitting Hubbard-Sham exchange factor.

VI. RESULTS

The calculation of the phonon frequencies using the
dynamical matrix given in (4.10) and (5.1) has been
carried out for phonon wave vector q along the sym-
metry directions L100j, L110j, and L111j.The ion-core
potential used is YMHA given in Fig. 4, and the effective
dielectric function is e,ir(k) of Fig. 5. The resulting
phonon dispersion curves are displayed as solid lines in
Fig. 6, and the calculated elastic constants are given in
the third row of Table I. The only adjustment used to
fit the experimental phonon frequencies is the curvature
of e,ir(k) at k=0, which determines the dielectric func-
tion e,&&(k) inside the 6rst BZ. The adjustment sects
only LA modes inside the BZ; no Gtting is involved in
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any of the other modes, or in the LA modes at the zone
boundary.

Comparison of Figs. 1 and 6 shows the modi6cations
in the calculated phonon dispersion curves resulting
from replacing the FE screening by the bond-charge-
model screening for the same ion-core potential mMH~.

In the bond-charge model, all TA modes have real
frequencies, showing that the stability of the crystal
against shear has been achieved. In addition, all optic
mode shapes are now much closer to the experimental
shapes in the FE approach, e.g. , the TO-mode fre-
quencies decrease as

~ q ~

increases in contrast with the
behavior of these modes in the FE model.

The results now are generally in good agreement with
experiment. With the exception of the TA modes, the
worst error is 11%in the TO mode at X, the [100]zone
boundary. The calculated Raman frequency is 16.6
X10" cps, which is 6% higher than the experimental
value 15.66.' All modes have qualitatively correct
shapes except the [110]II optic mode, which does not
show the minimum near the zone boundary found
experimentally. One feature, the crossing of the LO and
TO curves along the [100]direction, is not found in any
of the present calculations and remains unexplained in
the bond-charge model.

The worst deviation from the experimental fre-
quencies is for the TA mode at X, where the calculated
frequency is 36% too large. The [100]TA mode agrees
with experiment very well in the elastic region, but does
not show the characteristic Battening found experi-
mentally. This discrepancy is caused to a large extent
by the point-charge assumption. The results of Sec.VIII
show that the TA-mode shape would be improved by
the introduction of a bond-charge form factor Zn(k).

In general, the fractional deviation of the calculated
frequencies from the experimental values is comparable
to the results4' for Al—roughly 10%errors. Because the
frequencies of the transverse modes in Si are so low,
indicating a large amount of cancellation among the
forces involved, the errors of 30% in the transverse
modes are not surprising. We can conclude that, al-
though there is much more remaining to be understood
in the dispersion curves of Si, the calculation of phonon
frequencies for Si based on the bond-charge model of
screening is roughly as accurate as the calculation" for
Al based on FE screening.

The sensitivity of the results has been tested by
employing several variations in the potential and
effective dielectric function. Comparison of the results
using nMn~ and en', with the same e.gr(k) are shown in
Table I and in Fig. 7(a) for the [100]direction. (Note
that if C» is to be fitted, ee«must be modified slightly,
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FIG. 8. Family of ion-core potential form factors for Si. The
range of the form factor indicated by this family of curves has been
shown to yield qualitatively the same dispersion curves (see
discussion in text).
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Fro. 7. Comparison of dispersion curves along the L100$ direc-
tion. (a) The solid curves are calculated from vMHA and ~ ff (same
as Fig. 6); the dashed curves are calculated from vHA and the same
t ff, (b) The solid curves are calculated from vMHA and e,«just as
in part (a); the dashed curves are calculated from the same
potential and dielectric function, but omitting the Hubbard-Sham
exchange factor.

70F. A. Johnson and R. Loudon, Proc. Roy. Soc. (London)
A281, 274 (1968).

which would yield the elastic constants shown in
parentheses in the fourth row of Table I.) We have also
employed the potentials shown in Fig. 4 scaled along the
k axis, the primary e8ect of which is to shift the optic
modes rigidly. The range of the potentials which leave
the Raman frequency within 15% of the experimental
value is shown in Fig. 8. The important conclusion is
that the family of potentials shown in Fig. 8, along with
other intermediate functions, all lead to qualitatively
the same phonon dispersion curves. Also for this family
of curves, all the conclusions about the inadequacy of
the FE approximation remain intact.

As an example of the variation of the frequencies if
e ff(k) is changed, a calculation was carried out with the
exchange factor set equal to I, i.e., no exchange cor-
rection, which is equivalent to lowering the e,rr(k) curve
with a maximum deviation of 10% at k=E~. The
changes in elastic constants and frequencies are shown
in Table I and Fig. 7(b), in which case esrH@ was used.
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Again the fitted elastic constants are given in paren-
theses.

The various calculations show that the primary
features of the dispersion curves do not depend on the
detailed form of the functions employed. Better agree-
ment with experiment could be achieved by adjusting
t) and e,) k (as well as parametrizing the form factor of the
bond charge and the manner in which it moves as the
ions are displaced), but no such systematic fitting of the
phonon frequencies has been attempted here.
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VII. CALCULATED FORCE CONSTANTS
IN REAL SPACE

We now turn to the form of the forces in real space,
i.e., the force constants C„~(l—))') in the bond-charge
model. The transformation to real space, which is a
cumbersome and unnecessary step in the actual calcu-
lation of the dispersion curves, affords a much clearer
picture of the operative forces in the crystal. The
Coulombic forces have already been described in real
space and given in (4.5) and (4.9).All that must be done

TABLE II. Calculated functions Fk (r) and Fk (r) evaluated at the
first four-neighbor separations. The non-Coulombic force con-
stants are determined from this table and Kq. (7.2).

F1

Neighbor
&MBA

&eff

—0.064—0.004
0.001
0.004
0.788
0.015
0.017—0.025

~HA

&eff

—0.059—0.002
0.001—0.004
0.743
0.032—0.027
0.022

is to transform the non-Coulombic dynamical matrix
(5.1) into the real-space force constants.

Because the non-Coulombic forces are purely central,
they may be derived from some scalar potential kp(r)
and may be written

(7.1)

From (5.1) and using Ref. 43, it may readily be shown
that for (s,l) N (s',l'), the quantities F&(r) and F,(r) are
given by

Ft(r) =r'kF'(r)/Z'e'= (1/es —1)

2r sinkr
+ dk kr(k) ——cock ) (7.2c)

7r kr

-0.8

Fzo. 9. Functions Fk(r) and F&(r) which determine the force
constants for the non-Coulombic forces. These curves are calcu-
lated from vMHA and e,ff with the Hubbard-Sham exchange cor-
rection. The arrows indicate the near-neighbor separations.

Fs(r) =r'(p" (r)/Z'e'= —2Ft(r)

2r
+— dk 8'(k)kr sinkr, (7.2b)

where

k'v(k) ' e.), (k) —1

W(k) =
f4)rZe' Le,tr(k) —1)f(k)+1)

The integrals in (7.2) have been evaluated numeric-
ally using eeffk with vMHA and t)nA. The values of Ft(r)
and Fs(r) at the near-neighbor positions are listed in
Table II, and the entire curves for the case involving
eMH~ are shown in Fig. 9. The forms of F~ and P2 are
very similar in the two cases, but the nodes are dis-
placed and the amplitudes changed somewhat, leading
to large differences in the values for neighbors beyond
the first.

The primary result is that both F&(r) and F&(r) are
small at and beyond the second neighbor separation. It
is evident that the bond-charge-model calculation
presented above is equivalent to adding central non-
Coulombic forces that extend for only a few neighbors
to the Coulombic forces. (The force constant is further
diminished by the factor r ' in (7.1).j Also, it is seen
that the present knowledge of the pseudopotential and
the effective dielectric function is not sufhcient to
predict accurately the non-Coulombic force constants
for the second and more distant neighbors. Therefore,
all results which depend sensitively on these force
constants cannot be expected to be well described in the
present calculations.

The fractional contribution of the various forces to
the frequencies squared is exhibited in Table III in the
case of the calculation involving vMH~ and e,ff. The
forces are divided into (1) Coulombic, (2) first-neighbor
non-Coulombic, and (3) the remaining non-Coulombic
forces. The contributions are shown for the four fre-
quencies at the symmetry points F and X, and for
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Mode or
elastic constant Coulomb

Non-Coulomb
First Beyond first

~02(r)
coTA'(X)

To2(X)
CO1,

2 (X)
Cll

C11 C12
8
C44

0
1.96—0.31
0.03
0.05—0.94
1.53—0.50

10.45

0.98—1.14
1.30
0.92
0.64
1.71—0.94
1.23—9.84

0.02
0.18
0.01
0.05
0.31
0.24
0.41
0.27
0.39

several combinations of elastic constants. The Coulom-
bic forces do not contribute to the Raman frequency
4pp(1') as may be derived from simple arguments. In
general, the Coulombic forces play only a small role in
the longitudinal modes, but are essential in the trans-
verse modes. As exemplified by the shear elastic con-
stants C44 and C34—C~2 and 4d T~(X), the nearest-neighbor
non-Coulombic forces tend to make the lattice unstable,
but the Coulombic forces are sufficient to achieve sta-
bility. Also, as illustrated by 4pTQ(X), it is the Cou-
lombic forces that bring down the TO frequency at the
zone boundary. Thus the bond-charge-model non-
central Coulombic forces are clearly responsible for the
stability of the lattice, and for the improvement of the
dispersion curves, in comparison to the results of the
FE approximation.

The only results listed in Table III which depend
greatly on the non-Coulombic forces past the first
neighbor are the elastic constants and, to a lesser
extent, &pTA(X). Thus, these are the features which are
most sensitive to the detailed form of the ion-core form
factor and effective dielectric function. It should be
emphasized that Table III lists the division of forces in
the particular calculation using vMH~ and e,ii, the
distribution in Table III, especially for the elastic
constants, will change somewhat for other choices of
these functions.

VIII. SIMPLE BOND-CHARGE
(SBC) MODEL

The results of Sec. VII show that the major features
of the Si dispersion curves can be described by a model
with only the Coulombic forces and a nearest-neighbor
non-Coulombic central force. In this section, we examine
such a model, which is here called the simple-bond-
charge (SBC) model. v' The advantage of this simpli6ca-
tion is that it allows a useful characterization of the
forces and is readily extendable to all the diamond-

TABLE III. Fractional contributions to special frequencies from
the various types of forces in the bond-charge model. The non-
Coulombic forces are divided into first-neighbor forces and those
for all the more distant neighbors.

structure crystals. Because there are only purely Cou-
lombic and nearest-neighbor non-Coulombic forces, the
SBC model has many aspects in common with the rigid-
ion models for highly ionic crystals. The only essential
difference is in the spatial locations of the effective
charges.

Let us define the energy function per atom, which
describes the changes in energy in the SBC model
for small deviations of the lattice constant from
equilibrium:

E(r) = 23p(r) —2n(2Ze'e)'/epr. (8.1)

Here 7 is the nearest-neighbor separation, y is an
arbitrary potential function, and n is the Madelung
constant for the system of "bare" charges —2Z&'e at
the ion sites and Z~'e at the bond sites. In the SBC
model, the charge Zg' is regarded as a parameter which
may be compared with the value Z& ———2 used above.
The constant o. has been evaluated numerically and
found to be

n= 4.453. (8 2)

If the crystal is to be in equilibrium at the given lattice
constant, we must have

-,'n(2Z 'e)'
=2v'(r)+ (8.3)

which fixes the first derivative of p.
Following the results of the previous section for Si,

we now assume that y(r) is simply a two-body nearest-
neighbor potential. In general, y(r) must incorporate
such volume effects as the electron gas compressibility;
here we are assuming that the local electron density is a
function only of the local atomic displacements, so that
p(r) has this simple interpretation. To allow direct
comparison with Sec. VII, let us define

and
F,sno= r2q '(r)/(Ze)'

P SBG r3 ppii (r)/(Ze)2

(8.4a)

(8.4b)

TABLE IV. Comparison of the observed bulk modulus with that
calculated from the Raman frequency using Eq. (8.7).

The equilibrium condition fixes Ii~ to be

Ii
4

—(n/ep) (Ze'/Z——)'. (8.~)

Therefore, in the SBC model there are only two free
parameters, the charge Z~' and the constant Ii~
which describes the non-Coulombic forces.

It is instructive to see how the parameters F~ and
Z&' contribute to special frequencies in the BZ. Expres-
sions can be easily derived for representative elastic

"In a previous paper t R. M. Martin, Chem. Phys. Letters 2,
268 {1968)j, the name "simple-bond-charge model" was applied
to a model in which the nearest-neighbor non-Coulombic force had
a specific form. No such assumption on this force is made here.
Several aspects of the present discussion were given in the above-
mentioned reference.

Element

Diamond
Si
Ge

B b,/B„l,
1.004
0.942
0.894
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constants and frequencies. Let us define the parameters
R=(256/K3)Fp s and S=Z'&"/ep .Expressing fre-
quencies squared in units of e'/QM and elastic constants
in units of e'/Qa, we find

(pp' ——8 (R—9.140S),

(pz,'(X)=4(R—8.100S),

(pTa'(X) = 12.580S,

(pro'(X) = 8 (R—11.232S),

8=R—9.140S,

C11——R—6.964S )

C11-C12=3.264S.

(8.6a)

(8.6b)

(8.6c)

(8.6d)

(8.6e)

(8.6f)

(8 6g)

SaB=3for 0'. (8 7)

Equation (8.7) is a special case of the relation derived

by Szigetti" for ionic crystals. In Table IV, the relation
is tested by the experimental values for diamond, Si,
and Ge. The relation is very well satisfied in diamond,
but is progressively worse for Si and Ge. The most
probable reason for the deviations from (8.7) is that the
assumption that y can be regarded as a simple two-body
interaction is less valid as the electron density becomes
more metallike in Si and Ge. However, the deviations
are small (of the same order as the deviations found by
Szigetti" for ionic crystals), and we may expect the
SBC model to describe correctly the gross features of
the dispersion curves.

The second conclusion to be drawn from the formulas
(8.6) is that both Cii—Ctp and (pT~(X) depend only on S
and not on R. However, R appears in all the other
frequencies, and in fact dominates the optic frequencies.
Thus, for example, the relation of (pT~(X) to the Raman
frequency coo is fixed by the ratio of S to R.

Let us choose the parameters Z&' and F2 by fitting
the experimental frequencies (pp(F) and (pT~(X). The
results are shown in Table V for diamond, Si,Ge, and

grey Sn. Also given are the dielectric constant eo and
S=Zs '/ep.

TABLE V. Parameters F2 and ZB' in the SBC model. Also given
is the macroscopic dielectric constant cp and S=ZB"/&p.

Element

Diamond
Si
Ge
Sn

F2SBC

1.47
0.89
0.82
0.78

ZB

3.2—2.5—2.6—2,6

6p

5.8.
12.0b
16.0b
24 Oo

1.79
0.52
0.42
0.28

a H. R. Phillip and E. A. Taft, Phys. Rev. 136, A1445 (1964).
b Reference 47.
e R. E. Lindquist and A. W. Ewald, Phys. Rev. 135, A191 (1964).

72 B. Szigetti, Proc. Phys. Soc. (London) A204, 51 (1950).

Comparison of Eqs. (8.6a) and (8.6e) shows that in
the SBC model there is a relation between the bulk
modulus and Raman frequency:

DIAMOND
I I I I

[Ioo]

SILI CON
I I I I

tIoo]

CJ

(n

cr
(n

u

Reduced Wove Vector

FIG. 10. Comparison of the dispersion curves normalized to the
Raman frequency cop along the L100] direction in diamond and Si.
The solid lines are the results of the SBC model fitted to cop and
AT~(X). The points are the experimental values at the zone
boundary (Refs. 15 and 20); the circles denote transverse and the
triangles, longitudinal, modes.

The most important trend among the SBC param-
eters in Table V is that S decreases more rapidly than
does F2 in going down the table. The major trends
in the dispersion curves as one goes from diamond to
Sn are explained by the changes in the ratio of S to
F288 . As an example, Fig. 10 shows the results of the
SBC calculations for diamond and Si. The frequencies
are normalized to the respective Raman frequencies,
and only the L100] direction is considered. The low TA
mode in Si is now interpreted as a manifestation of the
smallness of the bond charge, i.e., the dielectric constant
is large and the Coulombic forces are diminished relative
to the non-Coulombic forces. In diamond, the screening
is not so good, the bond-charge magnitude is larger, and
the TA modes at X are much higher relative to the
Raman frequency than is the case in Si. Precisely the
same forces explain the fact that the TO modes are
generally above the LO modes in Si, whereas the oppo-
site is the case in diamond. The Coulombic forces are
further diminished in Ge and grey Sn, explaining the
trends in their dispersion curves"" compared to Si.

Let us compare the parameters of the SBC model
with those of the detailed calculation for Si. The charge
parameter Z&' as shown in Table V is always greater
than the value Z~ = —2 predicted above. The difference
can be largely attributed to the contribution of longer-
range non-Coulombic forces which were omitted in the
SBC model, and which would reduce the value of Z~'
needed to 6t (pT&(X). Thus, the major deviations from
homology among the dispersion curves are accounted
for quite simply in the bond-charge model with the
charge parameter S varying roughly, as was predicted
by Phillips. ' Comparing Tables II and V, we see that
the values of F&(r) for Si differ by only 10%, and using
(8.5) we find Ftsno is greater than the calculated Fi(r)
by about 30%.

The primary failure of the SBC model is for the
elastic constants. Using the parameters given in Table
V, the predicted elastic constants C11, C44, and C11—C12
are in every case lower than the experimental values.
The shear elastic constant C11—C1~ is of particular note;
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the formula (8.6g) predicts a value of C&~—C~2 which is
much too low (by a factor of 2.9 in diamond, 5.7 in Si,
and 6.4 in Ge).

The SBC model explains Rosenstock's~3 observation
on the experimental vibration frequencies of Si. Rosen-
stock showed that if all forces between atoms on the
same sublattice, e.g., second neighbors in the diamond

lattice, are "classical electrostatic" forces, then the sum

over all modes of the frequencies squared is independent
of wave vector

3n

g ~q'(q) =const.
X=1

(8.8)

In the case of Si, Rosenstock showed that (8.8) is

obeyed to within the experimental error ( 3%). The
Coulomb forces in the bond-charge model obey classical
electrostatic criteria, and thus the SBC model obeys
(8.8) exactly. The small non-Coulombic forces between
more distant neighbors in the actual calculations for Si
change this conclusion very little; for all calculations
described in Sec. VI, the sum rule (8.8) is obeyed to
within 5%. Note that the second-neighbor non-

Coulombic forces may not be so small in diamond, which
can explain the deviations from (8.8) found in that
case.

IX. CONCLUSIONS

"H. B. Rosenstock, Phys. Rev. 129, 1959 (1963); 145, 546
(1966); in Lattice Dynamics, edited by R. F. Wallis (Pergamon
Press, Ltd. , Oxford, 1965), p. 205. As is given correctly in the
latter papers, but contrary to the first, the experimental deviations
from (8.8) are consistent vyith a central second-neighbor non-
Coulombic force.

The bond-charge model of the electronic response to
the displacement of the ions has been shown to lead to
phonon dispersion curves for Si in reasonable agreement
with experiment. The small transfer of charge into the
bonds (total bond charge 2/so= 6 electron) yields quali-
tative improvements over the free-electron screening
model (compare Figs. 1 and 6). In particular, in con-
trast to the FE model, the noncentral forces in the bond-

charge model lead to the result that Si is stable against
shear in the diamond structure. In the bond-charge
calculation described here, there was one parameter, the
curvature of e,ff(k) at k=0, which was used to fit the
C» elastic constant. The adjustment affected only the
longitudinal acoustic modes within the BZ. All other
dispersion curves (in particular, all shear modes) were
calculated with no adjustable parameters, using a
pseudopotential and an effective dielectric function
derived independently.

The agreement with experiment is generally of the
order of 10% with larger deviations for the lower
frequencies —the worst deviation being 36% for &u T~ (X).
All the major features of the dispersion curves are found
in the bond-charge calculation. However, there are
several detailed features of the dispersion curves which
are not found: the LO-TO crossing the L100] direction,
the form of the maxima and the minima in the $110]
direction, and the characteristic flattening of the TA
modes. We have noted that the last-mentioned feature
may arise from neglect of the wave-number dependence
of the bond-charge form factor.

The conclusions about the phonon dispersion curves
computed in both the FE and bond-charge models were
shown to be relatively insensitive to the detailed choice
of the pseudopotential form factor or effective dielectric
function. Only the elastic constants, and to a lesser
extent ~T~ at the zone boundaries, were very sensitive
to small changes in these functions.

The primary conclusions from the calculations can be
stated within the context of the SBC model introduced
in Sec. VIII. The SBC model encompasses most of the
information derived from the pseudopotential calcu-
lation for Si, and makes possible immediate application
to all diamond-structure crystals. All essential trends in
the dispersion curves among the diamond structure
elements were shown to be described by varying the
ratio of the Coulombic to the non-Coulombic forces,
each of which is described by one parameter in the SBC
model. The contribution of the Coulomb forces to the
frequencies was found to vary approximately as 1/eo in
agreement with the prediction of Phillips" for the
magnitude of the bond charge. Within the SBC model
was found a relation (Eq. (8.7)] between the bulk
modulus and the Raman frequency which was first
derived by Szigetti" for ionic crystals. Testing this
relation for the diamond-structure crystals showed it
to be very accurately satisfied in diamond, but less so
in Si and Ge, as shown in Table IV. In addition, the
observation of Rosenstock" on the experimental fre-
quencies of Si was explained by this model.
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