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A unified treatment is given of impurity-induced phonon scattering resonances in thermal conductivity.
A mean scattering rate may be defined within the relaxation-time approximation which has a nearly common
Lorentzian form for all resonances occurring at a given frequency, except that the width may vary. The
peak mean scattering rate is nearly independent of everything about the impurity except the resonance
frequency and the degeneracy of the resonance mode. Three impurity types are discussed in detail and
compared: (a) a substitutional impurity with no internal degrees of freedom, (b) an impurity with an internal
harmonic-oscillator degree of freedom, and (c} an impurity with an internal degree of freedom having just
two energy levels. The dominant role of resonance widths in determining thermal-conductivity dips is
emphasized, and additional line-shape effects are discussed.

I. INTRODUCTION

HE purpose of this paper is to derive and discuss
expressions for the rate of scattering of phonons

by three different types of resonant systems: (a) a sub-
stitutional harmonic point defect, (b) a substitutional
harmonic oscillator, and (c) a substitutional 2-level
atom (2-level tunneling system or spin system). In
cases (b) and (c), the coupling to the lattice will be as-
sumed to be bilinear in oscillator and lattice coordinates.
The phonon scattering rates are intended to be used in
calculations of the lattice thermal conductivity in a
manner to be described shortly.

We shall show that in the vicinity of a resonance all
three systems have similar behavior. For cases (a) and

(b), the mean scattering rate resonance obeys a "peak
theorem, "Eq. (2.10), which can be generalized slightly
fEq. (2.17)] to include the effects of anharmonic
broadening, etc. For the 2-level atom of case (c), there
is an explicit generalization given by Eq. (4.30). The
peak theorem says roughly that all resonances occurring
at a given frequency have the same peak mean scatter-
ing rate. It then follows that different resonances can
only be distinguished by their widths. As we shall see,
the width and resonance frequency cannot be inde-
pendently varied in case (a), whereas they can be so
varied in cases (b) and (c).

In order to obtain results in analytic form, we shall
be forced to assume that the coupling to the lattice in-
volves only one configurational coordinate X, which we
do not further specify. These results may then be ap-
plied to specific impurity systems, where the dominant
coordinate X has been determined experimentally or
theoretically from a more basic theory.

The model 2-level atom considered here may be
considered as a prototype of more complicated multi-
level tunneling systems such as those of Li+, CN, or
OH in alkali halides. ' ' In the latter case, there are

* Work supported by the U. S. Atomic Energy Commission,
and by the Advanced Research Projects Agency under Contract
No. SD-131.

f Permanent address: Department of Physics, University of
Illinois, Urbana, Ill. 61801.

G. Lombardo and R. O. Pohl, Phys. Rev. Letters 15, 291

186

also higher energy levels (the 30-cm ' or non-Devonshire
levels) of unknown character, perhaps oscillatorlike,
perhaps more like tunneling levels which produce
strong thermal conductivity resonances. These non-
Devonshire levels are also infrared-active. With these
facts as motivation, in this paper we derive an expres-
sion LEq. (4.21)] for models (b) and (c) connecting the
phonon scattering rate with the optical (or microwave)
absorption coefficient.

For completeness, we also discuss a combination of
model (b) with (a) or (c) with (a), i.e., a substitutional
harmonic oscillator or 2-level atom coupled to har-
monically perturbed phonons.

The phonon scattering rate will be used to calculate
the thermal conductivity in the following way, which is
not completely rigorous, but which seems to work fairly
well in practice. For a cubic crystal, the conductivity is
assumed to be given by

cc(T)= C((o)~'(~)—r((o)po(ca) d~. (1.1)
3

Here C(cd) is the phonon specific heat per unit volume
per unit frequency, v'(cu) is the mean of the group ve-
locity squared for phonons of frequency co, r(cv) is the
mean time between collisions that destroy the heat
current for all phonons of frequency co, and po(co) is the
total density of states normalized to unity:

po(co)dcd =1.

To obtain r, we assume that we may add mean scatter-

(1965); A. Lakatos and H. S. Sack, Solid State Commun. 4, 315
(1966); N. Byer and H. S. Sack, J. Phys. Chem. Solids 29, 677
(1968); M. Gomez, S. P. Bowen, and J. A. Krumhansl, Phys.
Rev. 153, 1009 (1967); F. C. Baumann, J. P. Harrison, R. O.
Pohl, and W. D. Seward, ibid. 159, 691 (1967);J. P. Harrison, P.
P. Peressini, and R. O. Pohl, ibid. 171, 1037 (1968).

2V. Naranamurti, Phys. Rev. Letters 13, 693 (1964); W. D.
Seward and V. Naranamurti, Phys. Rev. 148, 463 (1966); J. P.
Harrison, P. P. Peressini, and R. O. Pohl, ibid. 167, 856 (1968).' For extensive references on OH, see F. Luty, J.Phys. (Paris)
28, Suppl. C4, 120 (1967);B.M. Wedding and M. V. Klein, Phys.
Rev. f77, 1274 (1969).
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ing rates:
r '(~)=&r ')o(~)+&r ')'(~) (1 3)

total number of phonon states), and po(to) is the nor-
malized density of states. %e then obtain'

The first term represents the mean scattering rate for
phonons of frequency co in the perfect crystal; the sec-
ond term represents the extra scattering due to impuri-
ties. In what follows, we speak only of the impurity-
induced scattering rate (r '), (oi) and drop the sub-

script i.

II. SUBSTITUTIONAL POINT DEFECT

The impurities are assumed to be identical and ran-
domly distributed with fractional concentration p«1.
The perfect crystal dynamical matrix will be denoted

by A, the perfect crystal mass matrix by M. The
defect matrix for a single impurity will be denoted

by y&. The perfect-crystal Green's-function matrix is
G= (A —aPI) '; in the defect space where yi is nonzero,
G will have a projection denoted by g(oo). The single im-

purity t matrix is then given by

t(oo) = yi(I+ g(a&) 7i)
—'.

where
gas+Spa~ )

pai= fags Imgplfa/faplfa ~ (2 6)

One can then derive the approximate result'

Pai f.f.
Imt= —p, P (l ~. [(1+p.o)'+p-'l f.V~f.

(2.7)

(r ') = 5—2p/3rvrps(sr)$

&(Tr{[Imt(co+is)]/Img(co+is) j}. (2.5)

The part of G outside the defect space does not enter
into the trace in Eq. (2.5).

For low-frequency resonances, Img is much less than
Reg. In this case, the eigenvalues p,,o and eigenvectors

f (not necessarily normalized) of the non-Hermitian
matrix Regs& are of use. First-order perturbation theory
says that the f, are approximate eigenvectors of @,t
with eigenvalues

The perturbed Green's-function matrix is given by

G= (A+ yi —to'I) —'= G —GtG. (2.2)

2p P~z
')( )=-

3r7rpo(oo) ~ (1+@.o) '+p.
(2 8)

The denominator is given by

P 8(cu, oo) =3rNpo(oo), — (2.4)

where r is the number of atoms per unit cell (3rN is the

4 M. V. Klein, Phys. Rev. 141, 716 (1966).
~ M. V. Klein, in Physics of Color Centers, edited by W. B.

I owler (Academic Press Inc. , New York, 1968), Chap. 7.

Here oi may be complex. One can easily see that G,

g, and t are even functions of co. For this reason they are
often written as G(oo'), etc. The applications of these
functions require only positive values of m. Hence,
setting co= „o,r+ii weith e=0+ is equivalent to setting

= real ~~&-2~ '

In this paper, we choose cu as the independent vari-
able rather than ~2, because co occurs as the variable in

the thermodynamic Green's-function treatment to be
given below.

I.et
~ q) represent a normalized phonon eigenvector,

with q standing both for wave vector and polarization
index. co, is the corresponding frequency. Then the scat-
tering rate for phonon q is4 '

ro i= ooo tpN Im(q~t(boo+is)~q). (2.3)

Here E is the total number of unit cells in the crystal.
This equation is valid for all three cases (a), (b), and

(c) mentioned above, if t is defined appropriately. The
mean scattering rate for phonons of frequency ~,=~
is given by

(r ')(oo) =Q r, 'b(oi, oo)/P b(oo, —co)—.

N ow assume that all p„«1 and that of all the p 0 only
one, pbo is near resonance (1+@bo=0), the others having
absolute values much less than 1. Let d be the degen-
eracy of pbo then Eq. (2.8) becomes

2pd
7

3r7rpo(oo) (1+ebs) s+pbP
(2.9)

p, q; and pro are still functions of m.

At resonance, we have co=~„and

1+@ho(M ) =0.
Thus

(r ')(oo,) = 2pd/3rirpo(to„) . (2.10)

Equation (2.10) constitutes a peak theorem for phonon
scattering resonances. For convenience, we repeat the
definitions of the parameters occurring here: (r "(o&)) is
the mean defect-induced scattering rate for all phonons
having oo, = co. In Eq. (2.10), we evaluate it at the reso-
nance peak. p is the fractional impurity concentration,
d is the degeneracy of the resonance (e.g., in a crystal
with 0& symmetry, d is 3 for a T&„resonance, d is 2 for
an E, resonance, and d is 1 for an At, resonance), r is
the number of atoms per unit cell, and po(&o) is the nor-
malized phonon density of states.

The remarkable feature of Eq. (2.10) is that no spe-
ci6c properties of the resonant system appear in it,
apart from the degeneracy and the resonant frequency
co„. Thus all d-fold degenerate resonances at ~= co„ in a
given host lattice should have the same peak mean scat-

' This result was erroneously given in Ref. 3 (Eq. 7.73') with
a missing factor of (3rÃ) r.
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tering rate. Such resonances may have different widths F'. The other factor comes from the Img part of
or shapes, however. The Lorentzian shape is obtained Tr[Img Imtj and is a result of the averaging process
through approximations valid when cp is close to cp„. leading to Eq. (2.8). The peak theorem is then changed

to
p p'(~) =/ p*(~.),

1+ o( )=o+(d o/d ').( ' —.')
pd

(r ')(~.') =
3r~pp(cd, ) F'

(2.15)

Then the widths are given by

cp„Acp 61/scp: F=tc p '(cp„)/(dtc pp/dcp )„. (2.11)

Here Ace is the full width at half-maximum when (r ')
is considered to be a function of co, and 6~~2co2 is the half-
width at half-maximum when (r ') is considered to be
a function of cp'. The Lorentzian approximation to (2.9)
1s

2pd FI"(T)5(T)
(r ')(cp', T) =— — —.(2.16)

3r~p, (~„) (~ —~„)'+[F'(T)]sF22pd

The peak theorem then becomes2.12~r Go

3rs pp(cp ) (cp' —cp„s)'+I"

and this may be temperature-dependent, e.g., for F'
resulting from multi:phonon decays.

A still more general situation may involve a resonance
with a temperature-dependent strength 5(T), de6ned
so that 5(0)= 1. Equation (2.14) would then be written

g=E X.'(~.' —~') ', (2.13a)

t =7,(1+gy, ) (2.13b)
all scalars. Then

pzo=pz Reg, pb'=pz Img.

The resonance condition is simply

1+pc Reg(cp, ) =0,
and for a frequency-independent pz the width becomes

I'= Img(pp„)/[(d/dcps) Regj„. (2.13c)

The only unknown parameter in Eq. (2.12) or (2.13)
is the width. If a good fit of experimental conductivity
data is obtained with these expressions, the resulting
numerical value of F should agree with the width de-
termined by other means, e.g., far infrared absorption
measurements.

The width F is due to radiative decay of the resonance
mode into a propagating phonon mode. If other lifetime
broadening mechanisms are also operative, for example,
anharmonic decays of the resonance mode into two or
more propagating phonons, then the linewidth is F'& F,
and (2.12) becomes

Fr'

3r~pp(cp) (o' —cd ')'+F" (2.14)

Only one factor of F in the numerator is changed to

Often the eigenvector vz, corresponds to a mixture of
several configurations in the defect space that have the
same symmetry. If there is only one such configuration,
denoted symbolically by X, then we may write e p

——
~
X).

The defect space is essentially one-dimensional, and we
have

~ =~clx)(XI g=glx)(XI t=t~x)(XI,
with

2pd F5(T)
( ')( .',T)=-

37rrpp(cd„ ) F'(T)
(2.17)

The role of r in the thermal-conductivity integral
[Eq. (1.1)j is such that the conductivity is determined
by the shape of (r ') in the wings away from resonance.
For substitutional point defects, all low-frequency reso-
nances have F&&co„2, and even for very anharmonic
resonances, we also have F'(&co„2.Then the conductivi. ty
integral is insensitive to the presence of F" in the
denominator, i.e., one might just as easily use the
expression

2pd I' F'(T)5(T)

3~rpo(cp„) (cps —cp )s
(2.18)

Equation (2.18) holds not too far from resonance.
To make it more generally valid, we should replace
pp(pp, ) by pp(cp) and let I' and F' have the frequency
dependency of tcb;(cp).

The strength of the thermal-conductivity dip that
signals the resonance is thus determined by the product
pFF'(T)5(T). When comparing resonance phonon scat-
tering data in diferent samples, one should keep in
mind that not only the concentration p, but also the
width F' may be different, if different broadening mech-
anisms are present in the various samples.

III. HARMONIC-OSCILLATOR IMPURITY

Initially we assume the simplest possible case and
later indicate how some of the assumptions may be
relaxed. We assume that the impurity atom has an
internal degree of freedom which acts as a harmonic
oscillatorr' with reduced coordinate x [reduced
coordinate= (mass)'/'&& (physical displacement)g, mo-
mentum p, and. frequency cpp, when the lattice atoms are

r M. Wagner, Phys. Rev. 133, A750 (1964).' D. L. Huber and J. H. Van Vleck, Rev. Mod. Phys. 38, I87
(r96u).
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at rest. The oscillator Hamiltonian is then

l p2+ l~ 2x2 (3.1)

The reduced lattice coordinates and momenta will be
denoted by n, and p, . They will be assumed real for
simplicity. Then phonon Hamiltonian is then

A. Some Generalizations

If v, and X, are complex, replace X,' by IX, I' in
(3.9b). If x represents one component x' of a degenerate
oscillator with degeneracy d coupled to a superposition

g, X,'p, of phonon states having the same svmmetrv
as x', then B' becomes

Hi=-' 2 (p'+~'&'). (3.2) H' =Q Xx'Xjv 2, (3.11)

The coupling between the phonons and the local oscil- and

lator will be assumed to be bilinear:
t=~g Ix')(x'I, (3.12)

H' =Xx Q Xpp, , (3.3)

Under the assumption of an e'"' time dependence, the
equations of motion for this system with the Hamil-
tonian H= Hp+H+H' yield for the oscillator coordi-
nate the equation

where for simplicity, the X, are assumed real and nor-
malized to unity:

(3.4)

with t still given by Eq. (3.10b). Explicit use of these
different coordinates x', X' will not be made, except at
the end of derivations where a factor of d will sometimes
be added.

B. Polarizability

If the local oscillator has charge e~ and is infrared-
active, then there will be an induced dipole moment
P= e*x/gnz in response to an applied field Ee+'"'. For
an uncoupled oscillator (H' = 0) with infinitesimal
damping, the polarizability is given by

(PiP —~ )x= —~ Q Xp &2,

and for the qth lattice coordinate

(Mp pi )'D2= Xxpx.

When (3.5) is inserted in (3.6), one obtains

(pi 2 p 2)p —g2/(~ 2 pi2) Q X X,p

2 rpp' 2'2' ~

(3.5)

(3.6)

np(a&) = p/Ee'"'= e*2/m[ppp2 —(cu+ip)2]. (3.13a)

With H'AO, we add a term e*Ee'"'/Qm, to the right, —

hand side of Eq. (3.5) a,nd solve it together with Eq.
(3.6), with the result

a(~) = e*2/2iz[pip2 pp2 X—p(g~—+ip)]. (3.13b)

The factors Qm are necessa, ry, because x is a reduced
coordinate.

Note that in passing from y to t or from no to e, we
simply replace pip2 by the expression

This equation has the same form as those involved in
case (a) for a substitutional point defect. One need only
to identify a defect matrix yo with elements

Z(M+'Lp) = ppp —X g(M+2 ).p

C. Phonon Scattering Rate

(3.14)

Then we may write

(ql, I

q') =r„.o. Using the result

Imt(pi+2p) = —X'/[(a)p' —co' —X' Reg)'+ (y' Img)'j

and the result
3.8avp= vp I

X)(x
I

g2( 2 2)—i

(X I q) = (qI X)=X,.

Tr[lmg Imt]=d Img Imt,with
(3.8b)

where d is the degeneracy of the oscillator and of the
(3.8c) coordinate X to which it is coupled, we find that Eq.

2 8 comes

2pd P ' Img)'(3.9)
(3.15)

3n.pp(p~) (~p2
—~2 —&' Reg)'+(X' Irng)'where g is a scalar given by Eq. (2.13a).

The t matrix then takes the form
The resonance is shifted from ~'=coo' to

(. )be
The defect space is one-dimensional and spanned by

the vector
I
X). The reduced Green's-function matrix (r—')(~)

g may be written

t= tI X)(xI, (3.10a) ~'=co„'= ppp' —6 Reg(co„+ip). (3.16)
where the scalar f is given by

t =pp(1+gyp) l = —X /(cop —pp2 —Vg) . (3.10b)
At low frequencies this amounts to a decrease in fre-
quency, since Reg(0) is positive. At resonance we again
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recover the peak theorem [Eq. (2.10)]. If we expand
about co'=co„', we again obtain a Lorentzian resonance
as in Eq. (2.12), but with

exhibit structure at the Van Hove singularities. In fact,
for large co the second term in the denominator may
dominate above resonance, and we obtain

co„Ace=Dg(geo'= F =
X' Img(co„+Lo)

1+X'[(d/dco') Reg]„

= X' Img(co„+qo) . (3.17)

(r—') (co) 2Pd/3rqr po(co) (3 18)

Since po(co) co', this drops off more slowly than the co
'

dependence of Eq. (2.12) far above resonance.

Some numerical estimates have suggested that even
with coupling constants X strong enough to cause a
marked shift of the resonance frequency away from c00,

it is nevertheless true that

X'(d Reg/dco') „I
«1

Thus the last approximate equality in Eq. (3.17) is
likely to be accurate. This means that X has a very
strong inQuence on the resonance width, whereas it
has a relatively weaker inQuence on the resonance fre-
quency, except for cases of very strong coupling. This
state of affairs is different from that in case (a). There
the defect matrix y& plays the role of a coupling con-
stant, especially in the simple case where yc ——yc

~
X)(X~,

and it exerts a dominant inQuence on the resonance fre-
quency via the equation

1+pc Reg(co„) =0.
But once co„ is determined, there is no explicit functional
dependence of the width on y~ since

I' = Img (co„)/[(d/dco') Reg]„.

At low frequencies, this expression gives very small
values for I'.

These considerations suggest that a broad resonance,
especially one at low frequencies, is unlikely to be a type-
(a) resonance. On the other hand, type-(b) resonances
[and type-(c) resonances) can exist at arbitrary fre-
quencies and have arbitrary widths.

One should use Eq. (3.15) rather than the Lorentzian
approximation. This is especially true above resonance,
since Img(co) will have a strong co dependence in many
cases, e.g. , co' for a breathing configuration, and will

~ = IX)(XI&

The total defect matrix is then

V=
I X)(XIbc+so).

This gives

(3.19a)

(3.19b)

+0
+ (3.20)

1+gvc (1+gee)'[1+g(1+gee) 'vo]

The resonance condition is now

co„'=coo' —X' Reg(co,)/[1+pc Reg(co„)], (3.21)

and the peak theorem [Eq. (2.9)] still holds. The width
is now given by

D. Coupling of Harmonic Oscillator
to Perturbed Phonons

The atom that has the internal degree of freedom,
being an impurity, is likely to introduce an additional
perturbation

yc ——aA —M—'~'AM M—'"co'

into the lattice, even if the internal oscillator coordinate
x could be neglected. The total perturbation matrix is

~=~+~., ~.=~.IX)(XI,
qo = —X' [X)(X~/(~o' —~'),

and, the t matrix is still

t=v(I+Cv) '

For simplicity, we further assume that y& couples
only to the same configuration X that the internal degree
of freedom couples to. Thus y~ takes the form

[(coo' —co„')yc—X'] Img(co, +io)
F =Dy/geo

[(cooq —co„')yc —X'](d Reg/dco') „—[1+pc Img(co„+io)]
(3.22)

To see how the presence of p& affects the polarizability,
we return to Eq. (3.6), which gives

Define a Green's-function matrix Gc that obeys the
equation

P [~qq (coq —co )+rcXqXq')vq = —XXqx. (3.23)

The unperturbed Green's-function matrix

G(co) = (A —co'I)—'

6 '=6—'+y

It is readily shown that

Gc= G(1+y,G)
—'= (1.+Grec)

—'G,

(3.24a)

(3.24b)

gives the following result in phonon space:

(&IG '(~) lv')=&- (~.' —~'). gc=(X~«~X)=g(1+gee) ' (3.24c)

and that the projection of Gc onto our simple defect
space is
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le&

(a) (b)

ment a= (gI xI e& is real and let

u'= f(&/2~p)

define the oscillator strength f.
The Hamiltonian is then

(4.1)

le)
rr q

(c)

H= Hz+Hi+H', (4.2)

where Hi and H' are still given by Eqs. (3.2) and (3.3);
H&=-', Q (p, '+ip, 'z, '), H'=) P X,p,x,

Frc. 1. Four scattering events that contribute in lowest order
to phonon scattering by a two-level atom.

Equation (3.23) then becomes

Z (qlG; (~+z.) Iq)p, .= —»,x

and with

2 ~p~p
I g& (g I

+k~ p~p
I p& ('p

I
.

A. Perturbation Treatment

(4.3)

The polarizability then becomes

or
n(cu) = e*'/m/copz cu' X'g—(((u+—i p)], (3.25a)

a= e*'/zzzLp~p' —p)' —X'g(1+pig) ']. (3.25b)

The last equality follows from (3.24c).
The appearance of g& in Eq. (3.25a) is easy to under-

stand —the oscillator is coupled to a perturbed lattice;
hence the quantity

2 —Mp —X g».

contains the perturbed Green's function g».

IV. TWO-LEVEL IMPUMTY ATOM

Suppose the impurity atom has an internal degree of
freedom with dynamical coordinate x and with just two
energy levels having unperturbed eigenstates Ig& and

Ie& with respective energy levels ——,'Ap~p and pA&up.

Select the phases of
I e& and

I g) so that the matrix ele-

Ie&

Ig&

(b)

le&

(c)

FiG. 2. Four lowest-order contributions to the self-energy of
ground and excited states of a two-level atom.

and has the solution

z p. ———Xx P (q'
I
G, (~+ip)

I q) X,
= —) x(q'I G, (~+ip) I

X).

D= Mq
—Mp, E=I g

—Goq~ —M p&I =I g

cop+M p,P =Pg
cop Mq& &I =I q

for 1(a)
for 1(b)
for 1(c)
for 1(d).

Here n, and n, . are the numbers of phons in states q
and q'. If we assume elastic scattering by setting
cLlq Goq we obtain

A p.,= X'XpX, P(zzp +1)n—,]'"
&& I:2~«'/&(~p' —~p')](P.—P ) .

If the atom is in thermal equilibrium, then

P,—P,= tanh(Pa~, /2), P= (kZ')-i.

We also use Eq. (4.1) and find

A, p= —) 'f tanh(Php~p/2)Xp X,
&& (L(&'+1)~.]'Iz/(~p' —~ ')) (IZ/2~, ~, ) .

This is the same amplitude that would be obtained in

Before attempting a more complete treatment, we
shall first discuss some results of second-order pertuba-
tion theory. We calculate the amplitude A, , for the
scattering of a phonon q into q'; i.e., for an event which
changes the phonon occupation numbers from n, and
n; to zz, 1a—nd n, +1. We must consider the four
processes shown in Fig. 1. In process 1(a), the atom
starts in its ground state, absorbs phonon q, is virtually
excited to the upper level, and then returns to the
ground state emitting phonon q'. In process 1(b), the
atom emits q' while going from

I g) to
I

e& and absorbs
q' while returning. Processes 1(c) and (d) describe the
analogous events for the atom initially in state

I
e&.

Let I', and P, denote the probability that ground and
excited states are occupied. Second-order perturbation
theory then gives for each contribution to Aq, an ex-
pression of the form

X'XpXp PI (Np+1)np]'"(8'/AD)Pi/2(MpP~p )"z], (4.4)

where
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first order if the perturbation were

H. =-', Q I'„"'v,t(.. .
with

A(opq —(do)

From Fig. 2(b)

(A/2(o, )X'X,'a'(qs, +1&

A((oq —(oo)

Thus

A X'Xq'a'(/tq&
AoE, =P—

q 2(oq A( —(oq —(op)

Xq'L —~.—~p(2(~q&+1) j
DE.=d.E.+6pE. =X'a' Q—

((o q —(ooq)2(oq

The proper second-order energies are complex and
are obtained by giving ~p a small imaginary part
coo ~ (p+osoer (do ~ (op +qe.

In a similar manner, we obtain

DEo A,Eq+2 dEq——

A9.'a' X 'L —(o +(op(2(qs )+1))
A q ((o,' —(op' —is) 2(o,

I'qq "'= —X'f tanh(PA(op/2) X,X, /((op' —(oq') . (4.5)

Equation (4.5) may be improved by replacing (oo by
the result of a calculation in second-order perturbation
theory of the energy levels of the atom. The processes
to be considered are shown in Fig. 2. From Fig. 2(a) we
obtain

&E(~q-' —~p')~' j ' (47)

B. Thermodynamic Green's-Function Treatment

Our approach will be similar to that of Huber and
Van Vleck' and will use Zubarev's' double-time thermo-
dynamic Green's functions.

The advanced and retarded functions will be denoted
by subscripts u and r, and for Heisenberg operators 2
and 8, they are dined as follows:

((A(t) B(t )).
=+is(t' —t)(A(t)B(t') —B(t')A(t)), (4.8a)

((A(t) B(t))).
= —ig(t —t')(A(t)B(t') —B(t')A(t)), (4.8b)

where the thermal expectation value for an operator I.
is defined by

(L)= Tr(e e~L)/Tre eH. (4.9)

These Green's functions have a spectral representa-
tion

00

((A; B)),„((o)=— ((A(t); B(0)))...e' 'dt (4.10a)
2'

One can show that the function dehned by

00

((A; B))( ) =— ((A(t); B(0))). '",
2~

for Im(o) 0 (4.10b)

by (4.6), we obtain an approximation to the t matrix
for this problem, t«.= tX,X,', with

t= —X'f tanh(8A(do/2)/D,

D=(dp' —(oq' —X'f(oo P Xq"'(2(n;.&+1)

E. E,=A(op+DE—. t(E—
~

~

2a'(op Xq'(2(qqq)+1)=A(op Al(

A q ((o —(o —xe)2(oq

The new transition frequency (op= (E, E,)/A is given-
by

X,'(2(qq, )+1)
(oo=(oo ~ fP

q ((oq (dp 'le)2(dq

oo

((A; B)&( ) =— «A(t); B(o)))""',
2'

for Im(d (0 (4.10c)

is an analytic function of co except on the real axis, where
there is a cut and where it equals

((A; B))„„((o), for (o = (o„,(+is.

For a system with Hamiltonian H, the equations of
motion for ((A; B)) are

or approximately
Xq'(2(nq&+1)(op

oops=pop' —X'f Q
M&

—
COp

—26 GO~

~«A; B)&(~)= (2~) '&P (0)»(0)3&
—A '((A; [B,H])&((o) . (4.11b)Equation (4.6) is an approximation to the more exact

self-energy term Z((d, T) that we shall derive below.
Note that Eq. (4.6) is obtained from Eq. (3.14) by re-
placing g by a more complicated temperature-dependent
function. When we replace (oos in (4.5) by (dos as given

Here Lr, s]=rs—sr denotes the commutator. One can

9 D. N. Zubarev, Usp. Fiz. Nauk. 71, 71 (1960) LEng/ish transl. :
Soviet Phys. —Usp. 3, 320 (1960lj.

~«A; B»(~)= (2~) '&I:A(0) B(0)7)
(4.6) +A- &(PA,K; B))( ), (4.»a)
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readily show that

«~ &))(~)=((» -4))(—~) (4.11c)

These new Green's functions enable us to calculate
the quantities of interest. For instance, under the in-
huence of an applied electric field Ee'"', there results
a complex atomic polarizability given by-

n(cd) = —(2z/fi)(e*'/m)((x; x))(cd+ic)
= —(2m/li)(e*'/nZ)((X; X))„(cd)(cd real).

(4.12)

In the lattice there is a corresponding mechanical
susceptibility

Srz = —(2—~/A)((vz, er, .))(cd+is)
= —(2~/tc) ((vz, er, .))„(cd), (4.13a)

which gives the displacement at site I, when a unit alter-
nating force e'"' is applied at site I'. Equation (4.13a)
defines a matrix 8, which is an analytic function of cd

except on the real axis. In the representation of unper-
turbed phonons we have

(Vl@( ) IC')= —(2 /ti)« .;,))( ) (4.13b)

When the phonons are completely unperturbed (H'= 0),
one can show that

where
H =H2+Hi+H', (4.3)

(ct
I
$(cd)

I
ct') = 8«(cd, ' —cd') ' (see Appendix A) .

Then 6j is the unperturbed Green's-function matrix
G = (A —cd'I) —'.

We must calculate the Green's functions ((x; x))(cd)
and ((n~; v, .))(cd). For convenience, we summarize the
Hamiltonian

The operators it, x, and p are closely related to the
Pauli operators a.„o-, and a.„for the spin-2 system. H2
then represents the Zeeman energy and H' the off-
diagonal spin-phonon coupling. With these analogies
our problem is the same as that considered by Huber
and Van Vleck. , with two differences —their perturba-
tion H' included a term coupling q to the phonon co-
ordinates v„and they did not treat the phonon scatter-
ing side of the problem.

C. Some Results

There is an exact relationship between ((n, ; v, ))(cd)
and ((x; x))(cd) which is derived in Appendix A:

'Vq j 'Vqr C0

27r (cd, ' —cd' )

XqrX,—((x; x))(cd)- . (4.17)
CO

—
GOq M I GO

with
@( ) = G( )-G( )t( )G( )

t(cd) =
I X)(XI t(cd),

t(cd) = 2x-lc'((x; x)) (cd)/t't.

(4.18a)

(4.18b)

(4.18c)

This is a general result that holds for any atomic Hamil-
tonian JI2, it depends only on the forms assumed for
H' and Hc. Since Eq. (4.11c) says that ((x; x))(cd) is an
even function of cd, Eq. (4.17) says that ((v„v, ))(cd) is
also.

When (4.17) is used in Eq. (4.13b), one finds that the
Green's-function matrix @(cd) obeys the equation

H& —— 'Picdo(I g)—(g-I —
I e)(e I

g=———'lccdoit (4 14a) Thus t(cd) may be related to the Polarizability by

defines the operator p, which obeys the identity t (cd) = —P.'m/e*') n(cd) . (4.19)

In addition,

and

Ht =
g Z (Pq +cdq &q )

H'=Ax Q Xqw, .

(4.14b)

E(cd) = (4ircdP/ceo) L(n'+2)'/9rt] Imn(cd+i. ) . (4.20)

If a dilute solution of the 2-level atoms is imbedded
in a medium with a refractive index m(cd), assumed real,
and if the Lorentz local field correction applies, then one

(3 2) readily derives the following expression for the absorp-
tion coefficient (in cm '):

Here c is the velocity of light and vo the volume of a unit
cell. When Eqs. (1.7), (4.19), and (4.10) are combined,
the result is4.1 a

We may write an explicit representation for the opera-
tors x and p:

*=aLIg)(el+ le)&gll,

X'= a'= kf/2cdo

with
I ill g (cd+cE)

E (cd) . (4.21)('"b)
27r'rcde*' (e2+2) '

po(cd)

p = cdo a =
g Acdof.

p=(ik) 'I x,H)=(iA) 'Ix,H, 7 In favorable circumstances, one may be able to use this
= —icdoaLIg)(eI —Ie)(gI), (4.16a) expression with experimental absorption data directly

and with in the conductivity integral. Note that X in Eq. (4.21)
(4.16b) is the coupling constant in H' and not the wavelength.
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27r

Xj X co

f&n&
(4.22a)

co —cop +X (co/cop)gr(co)

Here (p& is given by Eq. (4.14a):

(n&=&Llg&&gl —I~&&el]&=tanh(pAco, /2), (4.22b)

and the oscillator strength f by Eqs. (4.1) and (4.2):

f=2~oI (gl*l ~& I'/A. (4.22c)

The Green's function gr(co) appearing in (4.22a) is

In Appendix 8 an approximate result is derived for
((x; x»(co):

(g& = tanh(PAco„/2) . (4.25a)

An experiment would give co„as the resonance fre-
quency; coo would not be directly measurable. An'„ex-

perimental value f, for the oscillator strength would be
obtained by setting

The resonance condition obtained trom Eq. (4.22a) is

co,' = coo2 —ll'(co„/cop) f Regr(co, ) . (4.24)

For small co„ this will be close to oro, since Regs will be
very small. It is then a good approximation to use the
unperturbed value of (q&:

&g&p= tanh(pAcop/2) .

At higher frequencies, if co, is noticeably different from
~o, it is better to use

coXo' coth(pAcoq/2)
gr(~) =Z

GO@ Mg
—

CO

I
&gl~l~&l'= Af /2~' (425b)

(4 22d) One should then put f= f, (co,/co„) into Eqs. (4.22a) and
(4.24):

Separating imaginary and real parts gives (for co

positive)

Imgr(co+is) = coth(PAco/2)vr Q Xo28(co,2 —co2)

mcc(co) —2~
Xj X M 'l6

e*' A

~of.(~)/~.
(4.26a)

co —cop +X fq(co/coq) gz(co+1r:)'

Regs (co+is) 27rcoP=
Imgz (co )dco

CO
—

GO

= coth(pAco/2) Img(co+i «)' (4.23a)

(4.23b)

co,'=cop' —X'f, Regr(co„) .

The width of the resonance is given by

X'f, Imgr(co„+is)

(4.26b)

Here the symbol I' denotes the principal value. Equa-
tion (4.23b) should be contrasted with the result

~„Ace= Agf.or'= F=
1+X'f,(d/dco' Regr),

=X'f, Img(co„+is) coth(pAco, /2) . (4.27a)

Reg(co+is) = 2vrP
co Img(co )

dco'. (4.23c)

Note that gz(0)=0, whereas

g(0) =2~ co
' Img(co)dcox0.

where
I'(T) = f, coth(PAco„/2) I'„„

I'„,= X' Img(co„+is)

Note that Eq. (4.27a) may be written

I'(T) = r(0) coth(pAco„/2),

I'(0) = X'f, Irng(co, +ic),
01

(4.27b)

(4.27c)

Thus for the 2-level atom,

Z(co, T) —+ coo'

as co —& 0, whereas for the harmonic-oscillator impurity,
Eq. (3.14) gives

Z(0) = cop' —X'g(0) (cop'.

is the width of the equivalent harmonic-oscillator im-

purity level.
The strength 5 of the resonance may be identi6ed

with the ratio of the area A(T) under the resonance
part of the absorption curve to its value at T= 0:

S(T)= A (T) /A (0)= (g& = tan(pAco„/2) . (4.28)

The mean phonon scattering rate is

2pd p.4f 2(copco/co„') (Img) 2 coth(pAco/2) tanh(8Aco, /2)

3r7rpo(co) if'&' cocj'+X'f (co/co„) Reg—z]'+$h'f (co/co, ) coth("",Aco/2) Img]'I

At resonance, we obtain a new peak theorem,

(T ')(co„)= L2pd/3rnp(co„)](coo/co„)Ltanh(pkco„/2)]'.

(4.29)

(4.30)
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Except for the appearance of the ratio (ceo/ce ) which is
likely to be close to unity, this result was foreseen in
Eq. (2.17).

The new peak theorem differs only moderately from
the peak theorem Eq. (2.9) for harmonic oscillator
and/or substitutional impurities. It may be dificult to
distinguish them in practical situations.

The optical-absorption coefficient may be obtained
by combining Eqs. (4.21) and (4.29). Equations (4.29)
and (3.15) share a property that may be very important
when used in (4.21) to determine the absorption. The
functions Img(~+is), Reg(&u), and Regs(&u) will have
discontinuities in slope at the frequencies of those Van
Hove singularities that couple to the configuration X.
If the resonance frequency ~„ is close to one or more of
these singular frequencies, there will be structure in the
absorption curve. Such a structure is, of course, not in-
cluded in the Lorentzian approximation or in the ex-
pression derived from the perturbation theory result
for t [Eq. (4.7)].

D. Coupling of a Two-Level Atom to Perturbed Phonons

With a nonzero perturbation y~ assumed of the form
p~ ~

X)(X
~

in the lattice due to changes in force constants
and/or mass, we have to modify the above results. The
modifications are very similar to those for a harmonic
oscillator coupled to perturbed phonons.

In Appendix C, it is shown that ((x; x)) is changed by
replacing gr(~) by gr(cv)L1+ylg(cv)1 '. Thus

mn((u+i e) —27r

X) X (d

A

~ofe( t)/~ r
(4.31)

~' —a) 0'+X'f, (~/cu„) gr(1+pig)

It is also shown in Appendix C that the scalar part
of the t matrix is now given by

tl =7l(1+g'rl)

and ((x; x)) given by Eq. (4.31).Equation (4.32) is the
exact analog for this problem of Eq. (3.20c). Explicit
expressions for (r ')(co,T) and I' are readily derived, but
they are complicated and will not be given here. The
peak theorem is also complicated, but it tends to Eq.
(2.9) when the first term in (4.32) dominates and to
(4.30) when the second term in (4.32) dominates.

V. APPLICATIONS TO EXPERIMENTS

An application of the results of this paper has been
made to fit thermal-conductivity data on OH in alkali
halides and will be published separately. "

"R. L. Rosenbaum, C. K. Chau, and M. V. Klein, following
paper, Phys. Rev. 186, 852 (1969).

One can look back at previous calculations of phonon
scattering rates to see if they obey the peak theorem.
A good example is NaCl:Ag+. " In Ref. 11, a nearest-
neighbor central force model was applied, with the force
constant adjusted to give an infrared-active resonance
at the observed 53-cm ' frequency. (v. ')(&u) was then
calculated on a computer using Eq. (1.8). The nu-
merical result may be shown to agree quite well with the
peak theorem. A recent detailed far infrared study of
this system has shown that noncentral-force-constant
changes, rather than central-force-constant changes,
have the major role. "The width of the resulting cal-
culated infrared resonance is not changed, but its oscil-
lator strength is. The considerations of the present paper
show that the behavior of (r ')(~) in the vicinity of the
resonance would still be the same if it were machine cal-
culated using the new force-constant models. The only
differences would come away from the peak, where the
Lorentzian approximation might break down. Thus
unless the resonance tails really have a strong effect,
the new calculation would not give better agreement
with the experimental data than the old calculation did.
The old discrepancies between theory and experiment,
seen in Ref. 11, would not be due to inadequacies in
the defect model, but rather to the incorrectness of
Eqs. (1.1) and (1.2) at relatively high frequencies
and/or to an inadequate treatment of 3-phonon
processes.

In Ref. 12, data are presented showing an infrared
resonance in NaCI:F at 59.5 cm ' with a width of less
than 2 cm '. At 80'K the peak. shifts to 64 cm ', and
the width grows to 14 cm '. Thus at temperatures where
a thermal-conductivity dip would appear (20—70'K),
the F and Ag+ resonances would have roughly the
same position and shape. The considerations of the
present paper then predict that thermal-conductivity-
resonances dips should be qualitatively and quanta-
tively similar, and the data in Ref. 11 show that they
al e.

When we apply the ideas of this paper to NaCl:Li+,
we learn something new about this system. There is a
far infrared resonance at 44.5 cm ' having widths of 5
cm ' at 7'K and 17 cm ' at 80'K" Infrared absorp-
tion curves calculated using various theoretical models
could give a peak in the right place, but the infrared
oscillator strength was overestimated by factors of 20
to 300. One explanation was that not all the Li ions in
the crystal were participating in this resonance; another
was that the effective charge associated with the defect
was anomalously low. If the second explanation were
correct, the thermal-conductivity dip for a given con-
centration of Li+ should be greater than that for the
same concentration of Ag+ because of the greater high-
temperature width and lower frequency of the Li+
resonance. Instead, the experimental-conductivity data

"R.F. Caldwell and M. V. Klein, Phys. Rev. 158, 851 (196'7)."H. F. MacDonald, M. V. Klein, and T. P. Martin, Phys.
Rev. 177, 1292(1969).
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show a weaker Li+ depression for a given concentration Apply Eq. (4.11a) to ((vop; x)):
by a factor of about 6. This proves rather convincingly
that not all the Li is active in producing the resonance.

27l GO
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APPENDIX A

It is desired to derive Eq. (4.17). Starting with Eqs.
(4.3), (4.14a), (3.2), (3.3), (4.15a), (4.15b), and (4.16a),
(4.16b) Lsummarized above Eq. (4.17)), the following
commutation relations may be derived:

2iX
+ 2 X'(( "'p *»+-((P.~ && (82)

~cocoo ~'

1
(P.L.,*))+

2' co AG7(d p

2iX

iX—Xp((xg; x))/pp —imp, '«vorl; x))/pp.

When Eq. (4.11a) is applied to ((pop; x)) in. Eq. (82),
we obtain

l x,H) =ikp,

[P,H) = —ik(uoox —ikfh Q Xovog,

Lx,p) =ikfg,

(g,x)=2i p/pop,

l v,p) = —2icopx,

(A2)

(A3)

(A4)

(~'—~.')((v.n *&)=(~/2~)(v. t:n,x)&+(i/2 )(P.l:n, x)&

2X
+- -ZX. &((' .-P.) 'P &)

AGOp

+XX,&(xv; x)) . (83)

Consider the factor &(xv, x)) appearing in the last
term in Eq. (83). By applying Eq. (4.11a) twice, we
find

l v„,po.)=ikbpo. .

Lvo, H) =ikpo,

Lpo, H) = —ik(uo'v, —ikXXox,

Lg,H) =2iX Q Xov,p/coo.

Xfed/(d p

Z, (84)(AS) —
CVp

(A9)
where Z is the sum appearing in Eq. (81):

(A6) P~(xqx xxq)+i (p—qx xpq))—
&(xg; x)) =-

(A7) 27r(a) —(up )

8q) 'Vq& = Z g) Pg&

We apply Eq. (4.11a) again and use Eqs. (A6) and (AS)
to obtain —Pibq, XX,

(A10)
2v (pop

—QJ ) Mo (d

Now apply Eq. (4.11b) twice to ((x; v;)),

((x; v, ))=
l
—XX, /(pp, ' —(u'))((x; x)) . (A11)

Equations (A10) and (A11) together give Eq. (4.17).

APPENDIX B

We begin by applying Eq. (4.11a) to ((vp; v, )). With
the aid of Eq. (A7), we find

Z=P X,((v,~; x)).

Use of Eq. (A4) gives

(xgx —xxg) = 2i(xp)/pop.

Differentiating (4.15b) gives

0= dx'/df= xp+ px.

Hence, by Eq. (A3),

xp=-,'(xp —px)+-', (xp+ px) =-,'ikfq.

Then (86) becomes

(xgx xxg) = A f(q&/(o-o. —

Now consider

(86)

(87)

(BS)

In this Appendix, we derive Eqs. (4.22). We start by
applying Eq. (4.11a) twice to ((x; x)) and using Eqs.
(A1)—(A3):

pgx —xpq = (pgx pxq)+ (pxq xpq)— —
=2' /Mp —zkf7j = 0 (89)

Af( g&pp Xfp'p/cop

Z. (810)
27rcoo(~o popo) ppo —~oo

(&xg; x))=—
At this point we have a choice of operating on e,g or on
x in ((v,g; x)). The result, Eq. (4.22), will be the same. This result is exact.

by Eqs. (4.14b) and (4.16b). Equation (84) then

((x; x))= + P X,&(v,g; x)). (81)
2v'(Q) cop ) M cvp o
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fA(»t)/(2»r)
(811) ((x; x)) =

M2 Mp»—+h»(M/M p) fgr
(i/»rM II) ((Mv»+i p») p)= —F»X—»hei/2»r.

This will be further evaluated below.
The third term in Eq. (83) involves a fourth-order

Green's function. We evaluate it approximately by re-
placing the products v»v» and p»v» by their expectation
values

h'fg, A/(2~)
+ . (818)

M Mp +h (CV/Mp) fgz'

We shall not use the second term in Eq. (818), but
for the record we shall derive an expression for g& by
evaluating the left-hand side of (811).By applying the
equations of motion to the equation

(v,v, )= —,'8„(tc/M, ) coth(PAM, /2) (812)
and

(813)(P»v»') = —pi&&»»'

With the aid of Eq. (A4), the first two terms in Eq. The resulting equation may be solved for ((x; x)):
(83) become

Equation (812) is approximate, but holds exactly for
the unperturbed phonons (H'= 0). Equation (813)
is exact:

(P" ')=l&p" ' —'P.)+l&p. ~ + .P.)
,'iM„-.+-,'(d/dt)(v, v;) = ,'iM—„—+0

This approximation gives

(d!«)(p. )=o,
one obtains the result

&P.x) = -(v.P)
Next consider

0 = (d/dt)(p, p) = M, '(v,—p) Mp'&v, x—)

(819)

ZQ)'Vq —
g VPq~ ) S

[(iM—A/2M, ) coth(PIcM»/2)+-', ih]((P; x))
= -', AM[(M/M») coth(pAM, /2)+1]((x; x)) . (814)

Equation (83) then becomes

(M' M»')«v»~ —x))

PqXg XQ) Go

A+—X, —coth(JAM»/2)+1 ((x; x))
2x' uo

Ahf(»t)MX, h'f(M/Mp)
X»Z. (815)

2»l M p (M —M p ) M —M p

Thus the quantity Z= P» X»((v»»t; x)) obeys the
equation

hIC hM I»f(»t)M
Z =—gi—gr((x; x))+ g

2»l Mp 2»IMp(M Mp )

h'f(M/Mp)
+— —gZ, (816)

2 —o2
with

yfh p X,.(p;, &)+hX,(xp). (820)

The third term is already first order in X. We therefore
evaluate it using the unperturbed expectation value

(P, ,')= (P, , )&.)= —l'&(.)~„.
Use of Equations (87) and (818) in (819) gives

(v,p) =0. (821)

For (p,p), consider the equations

0=d(p, x)/dt=(p, p) M, '(v, x)—hX tcf —(/2 Mp),

0= d(v, p)/dt = (p,p) —M p'(v, x)—fh p» X, (v, v,v) .
We make the approximation

(v, v,»t) = (v,.v, )(It)= -,'(»t)(I»/M, )cl„coth(ptcM, /2)

and solve for (p,p):

(p,p) = [hX,/if(q)/2(M, ' —Mp')]

X [M» coth(tttcM»/2) —Mp(»t) '].
This gives

F,= [f(q)/Mp(M, ' —Mp')][M, coth(/AM, /2) —Mp(lt) ']
(817) and

g& is defined by Eq. (4.22d) and g is given by (2.12a). f&v)

Equation (816) when solved for Z gives, for the second Mp

term in Eq. (81),
X»'[M» coth(8AM»/2) —Mp coth(pAMp/2)]

(822)
CO&

—Q)p Q)q —
CO

—Mp

h'fgiA h'fM Ah'f'(»t)M
(g.+g)((', .))+

2m. coo 2»IMp(M Mp )

M Mp —h (M/Mp) fg.

We neglect the second term in Eq. (818) because it
is second order in X and because it might greatly com-
plicate the analysis of this problem. It may be that a
consistent treatment that includes this term should also
use a more exact expression than (812) in the third
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term of Eq. (83).The decoupling procedure represented This last result follows from an expansion
by Eq. (B14) neglects multiple phonon effects, which
appear to be very difficult to handle, but which might
be important in the strong coupling limit.

APPENDIX C

Here Eqs. (4.31) and (4.32) will be justified. In the
presence of a lattice perturbation matrix pi= pi

~
X)(X~

everywhere in our derivation of ((x; x)), we should re-
place an equation of the form

(~' ~') f—.=j.,

Z (G '+xi)- j'=i'
The solution changes from f,= (oP —cu, ')j, to

For example, consider the second term

—P (y(G)„X, = —yi P X,X,"G,",.X,.
Q/ Ql l

X,'= —yiX, Q-
O' CO i —

CO
Q

= —y)gXQ.

This is the second term of an expansion of 1V,(1+pig) '.
Use of Eq. (C2) transforms Eq. (4.26a) into (4.31). -'.

When the changes indicated by Eq. (C1) are made in

Eqs. (A10) and (A11), we obtain

f;=2 (G '+v). . 'j.. C1) ((,„,, ))

When this is done in Eq. (B11), which is then solved
for ((v, g; x)), we obtain

((~.v; ~))=Z (G '+xi)- '~a
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becomes
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where E; represents the right-hand side of Eq. (B11).
The resulting expression for Z is simply the old expres-
sion with diferent Green s functions. In particular, any
Green's function of the form

XX.L(G-'+~ )-'j, 'X'((; ))

= —(e/2 )(G—Gt,G)„.

l~'X,X, (—A/27r) D(x; x))(2m-/A)$
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Thus the matrix 8 has elements

g„.= —2~((i „v,.))/A =G„—(Gt,G)„.
- ~ iX)(xi—G ((x; x))—G = (G—GtG)„,

(1+gvi)'
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with t —~X)(X
~
t and t given by Eq. (4.32). Of course,

(C2) ((x; x)) will also contain new Green's functions as de-
scribed by Eq. (C2) and will be given by Eq. (4.31).


