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Asymptotic wave functions together with a perturbation-theoretic treatment of the long-range
polarization effects are used to provide an analytic expression for the dipole-length matrix ele-
ment for electron-neutral-atom bremsstrahlung. This result permits the evaluation of brems-
strahlung from elastic scattering phase shifts at the initial and final electron energy and from
the static polarizability of the atom. The expression is approximate and contains a weak de-
pendence on a cutoff parameter, but it provides a complete generalization of the formulas due
to Low, and to Kas' yanov and Starostin, and it contains terms of all orders in the photon en-
ergy. The result is that, by substitution into the formulas, the bremsstrahlung cross section
may be evaluated to within a few percent for nearly all the energy range tested, once the elas-
tic scattering phase shifts have been determined.

Efforts to extrapolate information obtained from
elastic scattering to processes off the energy
shell have met with partial success, both in elec-
tron-neutral-atom and nucleon-nucleon brems-
strahlung. For both systems, it has been possible
to obtain an approximation to the bremsstrahlung
cross section in the soft photon limit from a
knowledge of the elastic scattering phase shifts. '
A previous calculation of electron-atom brems-
strahlung' presented an approximation giving the

sp cross section as a function of the elastic scat-
tering phase shifts at the initial and final electron
energies, without restriction on the photon energy.
It was shown that for oxygen and nitrogen the ap-
proximation is fairly successful in representing
the total bremsstrahlung cross section for photon
energies as high as 80%%uo of the initial electron en-

ergy.
The present work generalizes the approximate

expression of Ref. 5, hereafter referred to as
I, to arbitrary electron angular momentum. More-
over, for other than sp transitions, the long-
range effects of the polarization potential on the
bremsstrahlung cross section are included by
means of perturbation theory. The result is an
expression giving the total bremsstrahlung cross
section as a function of the elastic scattering
phase shifts at the initial and final electron ener-
gies and of the static dipole polarizability of the
atom.

In I, it is assumed that the system wave func-
tion may be adequately represented as the anti-
symmetrized product of a free wave and of the
ground configuration of the atom; it is also as-

sumed that the free orbitals are orthogonal to the
ground state. This permits the calculation of the
bremsstrahlung to be reduced to the evaluation of
single free-particle ra.dial dipole-length matrix
elements of the form

x J d~e xR, (Pr)R ($0r),
0

where the dependences on the total spin and ang-
ular momentum quantum numbers I, and S, have
been suppressed. For sP transitions, this quan-
tity has been adequately evaluated from asymp-
totic wave functions, and the result is given in
Eq. (21) of I. For that case, a finite soft-photon
limit exists, since the apparent quadratic zero of
Eq. (1) at zero photon energy is canceled by a
quadratic resonance of the integrand. However,
when both / and l are & 1, the method of I cannot
be used to evaluate the matrix element, because
the asymptotic wave functions contain the irreg-
ular Bessel functions n&, which cause the inte-
gral to diverge at the origin. In addition, the
polarization potential forces the wave function to
reach asymptotic form very slowly, with the re-
sult that an appreciable nonasymptotic contribution
to the matrix element comes from regions at some
distance from the atom.

On the other hand, since the dipole-length ma-
trix element is relatively insensitive to the wave
function at small x, the effect of the core poten-
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tials, both direct and exchange, is primarily to
influence the building up of the phase shift. Sim-
ilarly, if the polarization is taken into account
through a close-coupling approach, its effect is
mainly to distort the wave function at small r,
and hence, it only indirectly influences the dipole-
length matrix element through the phase shifts.
In calculations that explicitly contain an x-' po-
tential, and also in an exact treatment of the
scattering, the polarization effect is long range
and must be included specifically, as is done here.

The method proposed here for evaluating this
matrix element exploits the fact that the values of
the wave functions for small x need not be calcu-
lated correctly. Thus, the wave function is taken
to be the sum of its asymptotic form yl and a per-
turbation zl, which is assumed to be contributed
by the polarization potential. Specifically,

r-'R (kr) =yi(kr)+z (kr), (2)

where the asymptotic wave function has the stan-
dard form

y (kr) = cos6 (k)j (kr) —sin6 (k)n (kr)l l l l l

and zi is obtained by substituting Eq. (2) in the
differential equation for Bl(kr). To lowest or-
der, this yields the defining equation

+ k' a (kr)=- —,y (kr),
d' 2 d l(l+1), o

dy2 y d~ y2 l y4

(4)

with the boundary condition

»m a, (kr) = O (5)

k,'= o/h'

where z is the static polarizability of the atom,
ko is the initial electron wave number, and, in
the following, k corresponds to the final electron
energy. This definition of b marks a rough bound-
ary for the validity of Eq. (4) for ai. Clearly, a.

In keeping with the perturbation-theoretic defi-
nition of the quantities zl and z i, the matrix ele-
ment is evaluated to first order only in these quan-
tities. The lower limit of the integral in Eq. (l)
is then cut off 3t x = b; i. e. , it runs from b to ~.
The cutoff should be large enough so that the as-
sumed form of the wave function is reasonable,
and small enough so that the major contributions
to the integral have been included. In addition,
the integral should be insensitive to the precise
value adopted for b. These objectives appear to
be met by the choice

xj (k r)j, (kr) —cos5 (k ) sin5, (k)j (k r)n, (kr)

—sin5 (k )cos5 r(k)n (k r)j,(kr)]

+ f drr'[sin5 (k ) sin6, (k)n (k r)nii(kr)
b

+y (k r)a, (kr)+a (k r)yii(kr)]] (7)

where b is given by Eq. (6).
This then is, in outline, the extension of the

formulation obtained in I. This equation can
also be used for sP transitions if the second in-
tegral is set equal to zero, and this, in fact, re-
produces the results of I. The reasons for ex-
cluding the second integral if l or l =0 are two-

fold: First, the nlnl& term converges to zero
when b =0, and hence by the above rule should be
neglected; second, the structure of the terms pro-
portional to zl and zl& depends upon the assump-
tion that the integrand is well approximated by
wave functions consisting, as indicated in Eq. (2),
of an asymptotic part and a part determined by the
polarization potential. This is manifestly incor-
rect for s waves, which have large amplitude in
the core region. Only the existence of an angular
momentum barrier makes such a decomposition
reasonable. The nonasymptotic contributions to
sp transitions thus seem difficult to evaluate;
since their influence on the cross section is small,
it seems best to drop them entirely.

An explicit representation of zl is necessary in
order to evaluate Eq. (7). A solution of Eq. (4),
subject to the boundary condition of Eq. (5), is
provided by the Green's function

G (k, r, r ) =k [j (kr&)n (kr ) —n (kr) j (kr) ], (8)

with the result that

a (k r)=-o.f —, Gl (ko, r, s) y (k s) . (9)
l 0 ~ s2 l 0' ''

l 0

When the b-independent integrals are done ex-
plicitly and the b-dependent integrals are reduced
to quadratures, the dipole-length matrix element
takes the form

small change in Eq. (6) should alter b only slightly.
Finally, the dependence of the matrix element on
the nonphysical parameter b is minimized by
setting b = 0 in all the terms which do not diverge
in that limit. Thus, for l, l &1 the matrix ele-
ment is evaluated from the equation

I

(&l )&= ~(k - k ) (fOdrr [cos6 (k ) cos6, (k)
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(A, )& --A,cosb (k )cos6,(k) The bremsstrahlung cross section is then ob-
tained, as in Eqs. (15) and (16) of I, namely, by

Bil, cos61(kO) si 5,(k)+C l, si 5 (k ) cos5,(k)
o =P,ma, '/kv, (12)

+Dll, sinb (k ) sin5, (k)

where, when l'=l+1,

All, = —2N(k02 —k')'f drr f
x[G (k, r, s)j (kr)q (k s)+G (k, r, s)j

x(k r)j (ks)];

(10)
wkese r, = —

) (—') k
ZZZ kk+)

() l SLL' 2(2s2+ 1)

x [(2I.+1)(2I +1)/(2l, +1)]W'(l L IL ~l, l)

x(i+ I) [I&L„'' I
+

I &L„„ I
] (»)

It is clear that in the soft-photon limit the polariza-
tion correction vanishes, and to lowest order the
bremsstrahlung cross section may be evaluated
from the momentum-transfer cross section o~
by

Zo = 4/3m'(e'/kc)'k, '(x

x [G (k, r, s)n (kr)j (k s)+G (k, r, s)

xj (k r)n (ks)];

l+ 1

0

x[G (k, r, s)j (kr)n (k s)+G (k, r, s)n

x(k r)j (ks)];

end D, =-', (k,' —k*) (f dress (k r)n (kr)

—n f drr f —,G (k, r, s)n 1(kr)nl(kos)

+G (k, r, s)n (k r)n (ks)))

When l =l +1, the coefficients are evaluated from
Eq. (11) by interchanging k and k, and replacing l

by l . If either l or l =0, the integral terms are
dropped from Eq. (11).

It should be noted that in the above expressions
the double integrals multiplying & are all conver-
gent and are readily evaluated numerically. How-
ever, the single integral forming the first term of
Dll& is semiconvergent and is evaluated, as usual,
by introducing the wave-packet normalization fac-
tor e ~+ and evaluating the integral as &- 0. The
result is that this integral may be expressed as a
finite sum of products of Bessel functions evalua-
ted at x =b. In all cases, the various integrals
may be evaluated as definite functions of the elec-
tron energies and angular momenta, without ref-
erence to any particular electron-atom collision.

The usual first-order term is, of course, also
readily derived. Thus, Eqs. (10)-(13)form a
complete generalization of the various approxi-
mate soft photon theorems found previously by so
many authors. ' ' There is no restriction whatso-
ever on the photon energy in these formulas. On
the other hand, as noted earlier, the results are
not exact, and because of the approximations made
in evaluating the free orbitals, there will be non-
zero corrections even of order (k,' — k')' or (kv)'.

It is of interest to compare the above method
for evaluating electron-atom bremsstrahlung with
the quantum def ect method, ' ' as applied to the
evaluation of electron-ion bremsstrahlung. " Both
methods agree in the number of phase shifts and
matrix elements which should be introduced to
describe the bremsstrahlung process, since the
quantum defect method is also capable of allowing
for the angular momentum of the target atom via
I.-S coupling. '~" However, the two methods
differ in the asymptotic wave functions used to
represent the free orbitals, in the procedures used
to evaluate the relevant integrals, and in the values
taken for the phase shifts.

The quantum defect method (QDM) represents
the free orbitals as a linear combination of undis-
torted Coulomb wave functions, with the irregular
Coulomb solution being multiplied by an exponen-
tial cutoff factor containing an angular momentum
dependent cutoff parameter 7 '= [l(l+ I)]'~'. Inl
contrast, the present method introduces polariza-
tion-distorted spherical Bessel functions for the
free orbitals and uses a sharp cutoff for the irreg-
ular solution (the cutoff parameter b being energy-
dependent). Including the polarization distortion
is essential in the electron-atom case, since these
distortions occur at large x' and affect the dipole-
length matrix elements. These distortions should
be less important in electron-ion scattering be-
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cause the polarizabilities are smaller in this case
and because the effect may be dominated by the
Coulomb potential. Apparently no one has veri-
fied directly whether polarization distortion can
be significant in electron-ion scattering.

The difference between an exponential and a
sharp cutoff procedure is one of detail only. How-
ever, the latter procedure is simpler, since a
number of integrals may then be evaluated in fi-
nite form. The principal difference in the two
methods in this respect is in the value chosen for
the cutoff parameter, and this difference is es-
sential. In all cases, the rather small differences
between the correct and the asymptotic wave func-
tions become greatly enhanced, and the evaluation
of (A)& is seriously affected, at small r values,
where the irregular solutions have their region of
polynomial growth. For the electron-ion case,
the strong action of the Coulomb potential suffices
to confine this region of growth to regions of the
order 7l-', with the result that (A)g is compara-
tively insensitive to this effect. In electron-atom
scattering wave-function growth occurs over the
much larger region r &k '[l(l+1)j'~', and major
distortions in the value of (X)& occur. The pres-
ent procedure for choosing b goes far toward ex-
cluding regions of nonphysical. growth of wave
functions, but it is certainly likely that this pro-
cedure leads to inaccurate values for (A)& at very
low electron energies. The results of this effect
for electron-hydrogen scattering are discussed in
detail below.

A further difference in the evaluation of (A)
between the QDM and the present theory lies Fn

the additional approximation, made in the QDM
but not here, of using regular solutions only to
evaluate radial integrals that depend on both the
regular and irregular solutions. Specifically, in
the QDM, approximate relations are used to ex-
press (A)& in terms of an amplitude G and a phase
y that are related by

G cosy' = (k,'- k') f drrF (kOr)Fl, (kr),
0

which contains regular Coulomb functions only.
The phase is then adjusted to vary smoothly, and
the amplitude is obtained from this relation. The
result is to smooth out some of the nonphysical
effects coming from the use of asymptotic wave
functions, and is analogous to what is done in the
present work for pd transitions at high photon
energies. However, no critical analysis of the
approximations made in evaluating the QDM radial
integrals seems to have been made.

Finally, the two methods differ in the values for
the phase shifts used in asymptotic wave functions,
although, as will be pointed out below, this is not
essential. The present method leaves these values
completely open, allowing the phase shifts to be

determined by any procedure whatever (scattering
theory, variational technique, etc. ), permitting
the accurate evaluation of the bremsstrahlung
cross section to become an additional test of the
quality of the phase shifts. In contrast, the QDM
provides a completely rigid procedure for evalu-
ating these phase shifts from spectral data. In
practice, this procedure is usually simplified by
taking each phase shift to be of the form 5 = a+bk2,
and determining a and b empirically. The advan-
tage of this is that only spectral data, and not an
accurate scattering theory„ is required for the
evaluation of bremsstrahlung. The disadvantage
is that the phase shifts are not necessarily good
ones (in fact, for electron-atom scattering the
above representation is quite poor), while the
bremsstrahlung cross section is quite sensitive to
small differences in the relative sizes of phase
shifts. It is emphasized, however, that although
the QDM prescription for phase shifts is usually
taken to be the essence of the method, the pre-
scription could be abandoned and the QDM expres-
sions could be used with completely arbitrary
phase shifts, as in the present method: This pro-
cedure would have a number of advantages of
flexibility and would be quite attractive, once it is
established that the QDM approximations for the
radial integrals are adequate.

Before assessing the accuracy of these results,
it is useful to make some comments on the dipole-
velocity matrix element (X)&, since at present the
comparison of this matrix element with (A)& pro-
vides the most sensitive test of the accuracy of the
bremsstrahlung calculation. Of course, if exact
wave functions were available, these two matrix
elements would be equal. When wave functions
satisfying an approximate scattering theory are
used, the agreement between the two matrix ele-
ments will in general be a useful test of the scat-
tering theory for wave functions of high accuracy.
For Hartree-Fock-like theories, the relation be-
tween the two matrix elements is given in the no-
tation of I by

(A, ) =(A, ) +-,'(k -k ) f drrR, ,(kr)
A,

x R, (k r)[V,,(r) —V, (r)j+Q [R,(k r) ~. -R,,0

" (kr) x. ]R (r)+ f drr2 f dr'r"
n.i. o o

~ R(k.)R, (k )
'l" ')

0 l'

It is seen that in general the two matrix elements
agree in the soft-photon limit only. For larger
photon energies, good agreement will occur only
when the wave functions are fairly accurate; then
the individual large terms of Eq. (15) will tend to
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FIG. j.. Calculated values of Zo for electrons on neu-
tral hydrogen. The total bremsstrahlung cross section
is obtained from Zo by use of Eq. (12).

cancel. Of course, in the case of a pure poten-
tial scattering theory these correction terms are
identically zero.

It is the dipole-velocity matrix element that
follows directly from perturbation theory, and thus
gives most directly the full content of the scatter-
ing theory. W'hen the two matrix elements are in
close agreement, it is the dipole-velocity element
that provides the best estimate of the bremsstrah-
lung cross section. For this reason, in the figures
below, the dipole-velocity calculation is used as
the standard against which other calculations are
compared Ho. wever, (A)& is very sensitive to
the values of the wave function for small x, and
may even have the wrong order of magnitude un-
less the wave functions are quite accurate. When
the two matrix elements markedly disagree, it is
probably best to accept (A)& as providing the best
estimate of the bremsstrahlung; and this is in fact
usually done in the literature. The basic reason
for this is that (A)& is sensitive primarily to the
elastic scattering phase shifts, and these phase
shifts have usually been obtained from a scatter-
ing theory which has been chosen for its ability to
represent experimental elastic scattering data.
Thus, (A)g is usually more directly constrained
by experiment.

The results of applying the theory of I and the
expressions of the present paper to the evaluation
of bremsstrahlung emission from collisions of
electrons and neutral hydrogen atoms is given in
Fig. 1. The solid curves represent the dipole-
velocity calculations and are thus the standard for
comparison. The separate sets of curves are
labeled with the initial electron energy. The
short-dashed curves represent the exact evalua-
tion of the dipole-length matrix elements, while
the long dashes give the result obtained from the
expressions of the present paper.

Since the analytic approximation is designed to
represent the dipole-length result, the fact that it
agrees more nearly with the dipole-velocity cal-
culation must be the fortuitous result of cancella-
tion between the'Z~p and the 'Z~p curves, which

lie, respectively, above and below the dipole-vel-
ocity curve.

It is seen that for electron-hydrogen scattering
the scattering theory of I provides an accurate
evaluation of the bremsstrahlung, according to the
usual criterion of agreement between the dipole-
length and the dipole-velocity cross sections. In
addition, the use of the phase shifts and polariza-
bility from the theory of I in the formulas devel-
oped here, leads to good agreement with the re-
sults of the full numerical evaluation, with the
differences being only a few percent over the en-
tire energy range of interest. Although the pres-
ent theory has been compared with I only, it is
expected that there will be comparable agreement
in general. Thus, the consequences of any scat-
tering theory for the prediction of bremsstrahlung
may be assessed once the elastic scattering phase
shifts are known. For example, variational tech-
niques" "could be used to obtain the phase shifts
despite the fact that these techniques usually yield
rather poor wave functions near the core of the
atom. There is in principle a difficulty in obtain-
ing an ~ which is consistent with the phase shifts
adopted, but with the present range of uncertainties
in ~ values (about 10-15%), such difficulties would
introduce only a 1-2% variation in the bremsstrah-
lung cross section in the cases studied.

Of course, Fig. 1 shows only that the present
theory reproduces the full result of a scattering
theory quite closely, and that the scattering theory
of I meets the usual requirement for an accurate
evaluation of tbe bremsstrahlung cross section.
It does not guarantee that any of the curves dis-
played there provide bounds for the physical val-
ues of thi. s cross section, or that they even have
a close relation to them: Such guarantees are pro-
vided only by knowledge that the phase shifts in-
serted into the present theory are essentially ex-
act, whereas good agreement between (X)& and
(A)&is merely a necessary consequence of accu-
rate wave functions and is not a highly sensitive
test of the quality of the phase shifts. This point
is presently being studied in more detail, using
the present theory to evaluate the consequences of
various 'scattering theories; the results will be
reported later.

In Figs. 2-5, the results are displayed sepa-
rately for the singlet and triplet sp and pd con-
tributions to Z, . It is seen that in general the
present theory gives a reasonably good value for
the individual terms, with the exception of the
'Z~d. However, this last is so small that numer-
ical uncertainties in the calculation begin to be
important. Moreover, due to the small size of
the singlet p-wave phase shift, the b-dependent
correction is significant over a larger energy
range, and hence the cutoff of the integrals in the
perturbation calculation becomes more critical.
The same problems plague 'Qd at the highest pho-
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FIG. 2. Zp for singlet sP transitions.

ton energy. The correct cross section vanishes
through cancellation between the asymptotic part
and the remainder, so once again the result is
sensitive to the cutoff. In plotting Fig. 1, the
pd contribution to g, was set to zero for photon
energies equal to the initial electron energy.

The deviations in the 'Zz~ curves are primarily
due to the inability of the present theory to evaluate
the core contributions to (A)&. In contrast, the
deviations in the 'Z~p curves result primarily from
the inability of the scattering theory of I to calcu-
late accurate singlet s-wave phase shifts, as mea-
sured by the disagreement with the variational

phase shifts obtained by Geltman and Schwartz
Since this partial wave is the only one that has an
orthogonalizing X term, "it is suggested that this
method of forcing orthogonalization may provide
the dominant limitation on the scattering theory
of I. In addition, some of the noticeably larger
disagreement between (A)& and (A) & at the higher
initial electron energies must be due to the limi-
tations of the static polarizability concept at such
energies.

The bremsstrahlung cross section was calcu-
lated for neutral oxygen using the above technique
at a few representative energies. Good agreement
was obtained with the full numerical evaluation of
the cross section given in I.
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FIG. 3. Zp for triplet sp transitions. FIG. 5. Zp for triplet Pd transitions.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

F. E. Low, Phys. Rev. 110, 974 (1958).
V. Kas'yanov and A. Starostin, Zh. Eksperim. i Teor.

Phys, 48, 295 (1965) |English transl. : Soviet Phys. —
JETP 21, 193 (1965)].

T. Holstein, Westinghouse Scientific Paper No. 65-
1E2-Gases-P2 (unpublished) .

L. Heller, Los Alamos Laboratory Report No. LA-
DC-9576 (unpublished) .

R. Mjolsness and H. M. Ruppel, Phys. Rev. 154, 98
(1967).

T, Ohmura and H. Ohmura, Astrophys, J. 131, 8

(1961).

T. L. John, Monthly Notices Roy. Astron. Soc. 128,
93 (1964); 131, 315 (1966).

M. J. Seaton, Monthly Notices Roy. Astron. Soc. 118,
504 (1958).

A. Burgess and M. J. Seaton, Monthly Notices Roy.
Astron. Soc. 120, 121 (1960).

G. Peach, Monthly Notices Roy. Astron. Soc. 130, 361
(1965).

G. Peach, Memoirs Roy. Astron. Soc. 71, 1 (1965).
S ~ Geltman, Astrophys. J. 141, 376 (1965).
C. Schwartz, Phys. Rev. 124, 1468 (1961).
R. L. Armstead, Phys. Rev. 171, 91 (1968).

"R. Mjol.sness and H. M. Ruppel, J. Comp. Phys. 3,
259 (1968) .


