
PLASMON —LO —PHONON I NTERACTION

In the limit ~7))1, which we are considering, the fre-
quencies of the longitudinal modes are the roots of the
real part of e~. The imaginary part of ~p leads to
absorption, and the absorption coefficient y is

y= (to/c)E.

The relaxation time v- is determined by the collision of
the carriers with phonon and screened impurities in
the region of interest here. In treating the impurities,
one should take into account the fact that carriers in
the two valleys screen differently because of the dif-
ference in their masses. ' Recently, this optical reQec-
tion method has been used to measure plasmon-LO-
phonon interaction in GaAs. s

The same effects can be measured by scattering a
laser beam from the plasmon-LO-phonon system and

' C. G. Olson and D. W. Lynch, Phys. Rev. (to be published).

observing the Raman spectrum of the scattered light.
This was done for GaAs ' where the mixed modes were
observed, although this measurement had nothing to
do with intervalley transfer.

It is clear that the effects we predict here can be
used to study quantitatively intervalley transfer, a
subject of much current interest. Furthermore, this is
not restricted to GaSb but can be used in many other
semiconductors as well. 4
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Using the method of the field of directions, the influence of the boundary conditions on stationary and
moving high-6eld domains in Gunn diodes is analyzed and discussed. A criterion for self-induced instabili-
ties, especially the Gunn oscillations, is given. It is shown that stationary domains must occur preceding
the Gunn oscillations, and that such oscillations can only occur for slightly blocking contacts. The analysis
given in this paper is similar to the one discussed for 6eld-quenched CdS.

1. INTRODUCTION

'T is well known that characteristic high-field domains
~ - can occur in homogeneous semiconductors (or photo-
conductors) exhibiting an N-shaped negative differen-
tial conductivity. ' ' Such a negative differential con-
ductivity is observed if either the free-carrier concentra-
tion' or the mobility "decreases more than linearly
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Washington, D. C.
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with increasing electric field. For the first case, the
qualitative and, to some extent, the quantitative be-
havior of the high-field domains (first described ana-
lytically and discussed by Dohler") could be derived
by using the field of directions (introduced in Ref. 3)
and a proper boundary condition. " "It is the purpose
of this paper to apply the method of the field of direc-
tions properly to the case of held-dependent mobility
(a first attempt of such an analysis was made earlier
by neglecting the spatial dependence of the mobility
in the diffusion current). ""Possible stationary high-
field domains in Gunn diodes are discussed as a function
of the boundary conditions. Necessary conditions are
derived for undeformed moving domains. The occur-
rence of self-induced instabilities, particularly of Gunn
domains is analyzed using results similar to those
obtained for field-quenched CdS. ' " '"

"G. Dohler, dissertation, University of Marburg, 1966 (un-
published); Phys. Status Solidi 19, 555 (1967).

"K.W. Boer and P. Voss, Phys. Rev. 171, 899 (1968}.
'4 K. W. Boer and P. Voss, Phys. Status Solidi 28, 355 (1968).
"K.W. Boer and G. A. Dussel, Phys. Rev. 154, 292 (1967).
"K.W. Boer and P. Quinn, Phys. Status Solidi 17, 307 (1966).
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FIG. 1. Neutrality curve a-&(E) and drift-current
curve p.~(E) in the o Eplane. -

2. FIELD OF DIRECTIONS
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For an n-type Gunn diode, the time-independent
Poisson and transport equations can be given by'~

dent conductivity and held. One or three singular points
exist," depending on the applied voltage, i.e., on the
current.

The curves p.i(E) and p.s(E) divide the p.-E plane into
regions of different "quadrants of directions. " Con-
sider, for example, the upper right-hand part of Fig. 1

[with p )(ar(E), p.s(E)}].Here dE/dx and dp/dx both
have positive values [as can be seen from Eqs. (1a)
and (1b)]. At any arbitrary point A in this quadrant,
these derivatives can be represented by the vectors
6R, and 8a„respectively. The vector s=8R,+Ra,
represents the projection in the o--E plane of the
tangent to the solution curve in the p.-E-x space. (This
tangent is oriented because x is considered to increase
from cathode to anode. ) The value of the angle 8
between s and the E axis (tan8=dp/dE) fulfills the
relation 0&0&90' in this quadrant, indicating that
both 0- and E must increase with increasing x. In Fig.
1, this result is symbolized by an arrow pointing toward
the upper right-hand corner. A similar analysis for each
quadrant of the a--E plane yields the other arrows
drawn in Figs. 2 for different current values. When the
projected solution crosses p. i (or o.&), the angle 0 must be
90' or 270' (or 0=0' or 180'), respectively, since here
dE/de=0 (or do./dr=0).

3. STATIONARY HIGH-FIELD l3OMAINS

where the conductivity &T p= pp(L)ep (t2p being the
thermodynamic equilibrium carrier density) possesses
an N-shaped negative differential conductivity range. 8

The reason for using the modified diGusion term in the
transport equation (1b) may be found in Ref. 17.

The solutions of the autonomous system (1) can be
discussed by using the field of directions. ""This field
of directions, as given by da/dE (pointing towards
increasing x from cathode towards anode), changes
sign at the zeros of Eqs. (1a) and (1b). For a simple
analysis of this field of directions, therefore, two aux-
iliary functions p.i(E) and o.&(E) are conveniently
introduced:

In order to solve system (1), one needs two boundary
conditions if the value of the current j is known. Since
the current is determined by the applied voltage V,
the condition

(2)E(x)dx= V

can be used to replace j (L is the length of the crysta, l
between the electrodes). One boundary condition can
be the electron concentration or the conductivity at
the cathode. In the following, we will for simplicity"
assume the conductivity 0., "at the cathode" to be
known, and, for this section, to be field-independent
(a field-dependent p-, is considered in Sec. 4). As a
second boundary condition, the electron density at
the anode could be used. However, it is known that
in e-type materials, the inhuence of the anode for the
most part can be neglected, since, when forward-biased,
it does not markedly inhuence the current. Therefore,
the concentration of electrons there can be rather
freely chosen. For a crystal of a length which is long
compared to the Debye length, the solution must
approach very close to at least one singular point.
Therefore, as the second condition, we can assume
that the solution must follow the path which enters

2' Tangent points are counted twice.
"In fact, only e. at the cathode is k.nown. p,, is rather undefined

since the field changes rapidly close to the cathode. However,
for the main conclusions of the following discussions, that is of
no importance.

(1) The neutrality curve' p.i(E) is given by the
condition dE/dr= 0; from (1a) we ob—tain pi(E) =pp(E). . .

(2) The drift-current curve p.s(E) is given by the
condition do/dx—=0; from (1b) we obtain p.&(E) =j /E.

Both the p. i and os curves are given in Fig. 1 (p-E.
plane) for a certain current (log-log scale). The drift-
current curve shifts parallel to itself toward higher
values with increasing current. The singular points of
the system (1) [intersections of o.i(E) and p-, (E)]
represent homogeneous solutions, i.e., spatial-indepen-

"B.W. Knight and G. A. Peterson, Phys. Rev. 155, 393 (1967).
For more detailed discussion see Ref. 43.' 0.0 is the conductivity which is calculated by assuming the
field distribution to be homogeneous.' For a more detailed discussion of the Geld of directions, see
Refs. 3, 5, 14—16, and 20."K. W. Boer, G. Dohler, G. A. Dussel, and P. Voss, Phys.
Rev. 169, 700 (1968).
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Fro. 2. Field of directions for increasing currents (a)—(c).

(c)

the first (or third) singular point, as was done for the
case of Geld-dependent carrier concentration. """The
solution curve ends at a point which is determined by
the length I. of the sample JEST. (2)7. With these two
boundary conditions, the solution has to start at a
point o(E)=~, and to end (or to start) close to a
singular point.

We have to distinguish among three possibilities,
depending on whether o,&o~, o.q(. o.,&os, or os(E=O)
(0.„"where o-& and cr& are defined by the two possible
tangent points between os(E) and or(E), as shown in
Fig. 2. (For a more detailed discussion of the following,
see, for example, Refs. 12—14.)

A. 0,&e&.' Strongly Blocking Contact

At low currents, the solution, which starts at 0-=0-„
has to reach the only existing singular point I [Fig.

"In fact, the intermediate case o-y, (0., (00 (E=O) should also
be discussed, but it is not, in principle, difterent from the cases
mentioned above.

3(a)7. Here the type of the solution E(x) and o (x) is
given as curves 1 in Fig. 3.

With increasing voltage the current increases until
o-2 becomes almost tangent to 0-~, thereby creating a
"quasisingular point. "Then the solution changes from
a "Schottky-barrier type" (curves 1) to a type with
a high-field domain adjacent to this barrier (curves 2
in Fig. 3). The field strength and the conductivity in
the domain stay nearly constant. " With increasing
applied voltage, the current saturates LFig. 3(c)7 and
the width of the high-field domain increases nearly
proportionally with the applied voltage. Note that in
this domain range the solution has always an additional
Schottky-barrier region close to the cathode. With
further increase in voltage, the domain width increases

4 In a Schottky barrier, the Geld decreases with distance from
the cathode with an essentially field-independent characteristic
length, the Dehye length (screening length for trapped charges).
In contrast to this case is that of a high-Geld domain in which the
Geld-dependent carrier density or mobility forces the Geld to
remain essentially constant over distances long compared to the
Debye length.
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until it essentially fills the entire sample. Then the
current increases and the solution becomes again a
purely Schottky-barrier type (curve 3; here the solu-
tion ends at the singular point III).

In summary, a domain near the cathode occurs while
the current saturates for the case of a strongly blocking
contact. The field strength in the high-field domain
does not lie in a range in which the conductivity
decreases stronger than linearly with the field. A
Schottky barrier always remains close to the cathode.

Fro. 3. Highly block. ing contact condition. (a) Projection of the
solution curves (1—3) into the «r-E plane {for three different
currents). (b) Field distribution corresponding to the di6erent
solution curves 1—3 in (a). (c) Current-voltage characteristic.
Points 1—3 correspond to the solution curves 1—3 in (a) and (b).

In summary, for the case of slightly blocking contacts
and in the current-saturation range, a high-6eld domain
first forms at the cathode. Then, for higher applied volt-
ages, a domain adjacent to the anode is formed while
the current remains saturated. The 6eld in the cathode
domain, even if it homogeneously 6lls the entire sample
(curves 4 in Fig. 4), lies in the range in which the
conductivity decreases more than linearly with the
6eld.

C. Oi(E=O) (o, .' Injecting Contact

Q'ith increasing applied voltage, the current increases
and an injecting contact behavior is observed )curve I
in Figs. 5(a)-5(c)] until a&(E) is nearly tangent to
O.i(E). Then the current saturates, /Fig. 5(c)$ and the
solution is able to squeeze between O.i and 0& ("quasi-
singular point"), thus creating a high-field domain at
the anode (curves 2 of Fig. 5). The width of this anode
domain increases nearly proportionally with the applied
voltage. After the anode domain essentially fills the
entire sample, the current increases again, thereby
returning to an injecting contact behavior (curve 3 of
Fig. 5).

In summary, for injecting contacts, the only high-
6eld domain that occurs is adjacent to the anode while
the current saturates. The field strength in this domain
does cot lie in the range in which the conductivity de-
creases stronger than linearly with increasing field. The
solution remains always an injection type close to the
cathode.

4. BOUNDARY CONDITION

Jn Sec. 3, we introduced a field-independent con-
ductivity 0-, at the cathode as one boundary condi-

B. o«o, &eI, '. Slightly Blocking Contact

At low currents, the solution is represented by curve
I in Fig. 4, as in Fig. 3(a) (see Sec. 3 A). It also is of
a Schottky-barrier type. With increased applied voltage,
the current increases until the second singular point
II appears and moves towards the intersection point
of o., with O.i(E). Then. the current saturates LFig. 4(c)]
and a cathode-adjacent high-field domain (without
Schottky-barrier) appears. " With further increased
applied voltage, the domain width increases nearly
proportionally with the voltage until the entire sample
is filled Lcurves 2 and 3 of Fig. 4(b)). With still further
increase in the applied voltage, an anode-adjacent
domain appears while the current stays saturated
(curve 4). The width of this anode domain increases
again nearly proportionally with the applied voltage,
until it almost covers the entire crystal. With further
increase in voltage, the solution changes to an "inject-
ing" contact behavior. That is, the saturation ends
and the current increases (curve 5).

"The curves o-(x) and E(x) start vvith an almost horizontal
tangent close to the cathode.
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FIG. 4. Slightly blocking contact condition. (a) Projections of
the solution curves 1—5 into the a-L& plane (for Ave different
currents). {b) Field distributions corresponding to the solution
curves 1—5 in (a). (c) Current-voltage characteristic. Points 1—5
correspond to the curves 1—5 in (a) and (b).
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tion." This was done mainly to simplify the dis-
cussion in the o--E plane. Similarly, the introduction
of a field-independent concentration" m, at the cathode
for the case of Geld-dependent carrier concentration
was very fruitful and explained the behavior of sta-
tionary domains occurring in CdS" ' and Ge:Au. '

However, if the conductivity 0, at the cathode
depends on the field and does not decrease stronger
than linearly with increasing field, '8" the general be-
havior of the solutions is the same as discussed in
Sec. 3. This can easily be seen from the Geld of direc-
tions and from the discussion in Sec. 3. Only the
classification of the contact has to be slightly changed:

(1) Strongly blocking contact. The conductivity
a, (E) is always smaller than the conductivity o.s(E)

a i (E) Lor the intersection point a-, (E) with o.s (E)
lies below a i, as given in Fig. 2].

(2) Injecting contact. The conductivity a, (E) is
larger than the volume conductivity ap(E).

(3) Slightly blocking contact. The curve a, (E) inter-
sects the curve o.s(E) in a point a., with o.~(a,(as.

BA e'sp 0 —0'p

t9g E6p 0 p

(3a)

5. UNDEFORMED MOVING DOMAINS

For moving domains, the displacement current has
to be included in the system of Eq. (1).Thus, we obtain
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15.) The neutrality curve a i(E) remains unchanged and
is equal to a.a(E), while the drift-current curve a.s
depends on the parameter c:

F&G. 5. Injecting contact condition. (a) Projections of the
solutions into the g-E plane (curves 1-3, for three different
currents). (b) Field distributions corresponding to the solution
curves 1—3 in (a). (c) Current-voltage characteristic. Points 1—3
correspond to curves 1—3 in (a) and (b).

kT BO.

J =aE— —+eEp'.
e 8x

(3b)

with

j—empc
o.s ——ap(E)

j&—eepc

If we consider only undeformed moving domains
propagating with a constant velocity c through the
sample, ' then the unknown functions 0- and E will

only depend on the coordinate s=x—ct. Under these
conditions, we obtain from (3) the autonomous system

dA esp 0 —op

ds Gap 0'p

kT do- 0 —Op—=0.E—j—eepc
e ds op

(4a)

(4b)

Also, since this system fulfills the Lipschitz conditions,
the solutions can again be discussed in terms of their
projections in a Eplane. (An attempt t-o use the field
of directions in a more simplified model in order to
analyze moving high-field domains was made in Ref.

"The introduction of the conductivity cr, at the cathode does
not disagree with the boundary condition adopted in Ref. 27.

"M. P. Shaw, P. R. Solomon, and H. L. Grubin, United-
Aircraft Research Laboratories, East Hartford, Conn. , Report
No. UAR-H22, 1969 (unpublished).

28 If the contact conductivity o., decreases more than linearly
with increasing field, a contact instability may occur. This is a
relaxation instability and is diferent from types of instabilities
discussed in this paper (see Ref. 29)."G. DOhler and H. Heckl, Phys. Status Solidi 35, K77 (1969).

A sample of infinite length is assumed, thus allowing the
current to remain time-independent.

jp,
——epepE.

Both functions o-i and 0-~ and the Geld of directions are
represented in Fig. 6 for different values of the velocity
c." (A current j is chosen so that three singular points
I—III occur. ) Since a moving domain in this model is
represented by a closed curve, one sees iinniediately
that the field of direction in principle allows for such
curves even at relatively low velocities. )In fact, the
minimum of a-s(E) on the left-hand side of the singular
point I in Fig. 6 has to be smaller than the value of
ai(E) taken at the singular point II.)

The singular points of the system of equations (4)
lie at the same positions as those of the (stationary)
system of equations (1), since the space charge and,
therefore, the displacement current vanish at the singu-
lar points. From the discussion in Sec. 3 it is known
that one or three singular points exist,

'

depending on
the applied voltage, i.e., on the current. Only in the
latter case, and if all three singular points are well
separated from each other, can closed solutions be
expected.

The properties of these singular points can be ob-
tained by linearizing the system (4) around a singular

"Only the positive branches of as (El are relevant.
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point (o.„E,). Using the ansatz

o.= o.,+ho. , E=E.+AJz,

we obtain from (4), with u= (BID, ho),

du/ds= (A)u,

where the eigenvalues X; of the matrix (A) are given by

(6)P' —BP —C=0,
with

(c)(a) t t))

FIG. 6. Field of directions, with the neutrality curve o1(E) and
the drift-current curve o-2(E) for increasing domain velocities c
Lupper figures, from (a) to (c)]. The lower figures show the

l lated for an assumed homogeneous field distribu-
tion, and compare the velocity c with g/enp (g eing e m
current).

From Poincare's theory of singular points, "it follows
that the closed solution can only cycle the singular
point II (and cannot include either one or both singular
points I and III). From the field of directions, it
follows immediately that closed solutions cannot extend
below EI or above Ezii.

Since the points I and III are saddle points, two
solutions enter and two solutions leave these points.
A single moving high- (or low-) field domain in an
infinite sample is represented by a curve which leaves
and enters the singular point Ez (or Ezzz) and cycles
the singular point Eii. If this closed curve does not
"approach" the singular point III, then the width of
the domain is relatively small and the shape of the
domain is nearly triangular. 4' If this closed curve
"approaches" the singular point III, then the domain
becomes "Oat-topped. "4'

On the other hand, periodic solutions can only exist
if the singular point II is a vortex or if there exists a
limit cycle.3' Let us assume that c&cp and that a limit
cycle exists. Then the singular point II is stable in the
physical sense (see Fig. 7). The limit cycle is then
stable in the mathematical sense, since the singular
point II is a source of solutions (in the mathematical
sense). This limit cycle is therefore unstable with
respect to t, and this solution has to be excluded. Thus,
a stable closed solution can only exist if the velocity c
of the domain fulfills the relation

e 1 kT ( 1 dop)
(Zo—, eeoc)—

)tT o4 8 (ac dZ) zr s, c)cp=vp 1—
T 1 d0p

e eep8p d~ &=@II
d ln0'pE

C=yla ', v=
d 1nE

kT Gap

In' = ——(Debye length)'.
e exp

For y) 0, the constant C in Eq. (6) is always positive.
Therefore, the eigenvalues X~,~ are real and have op-
posite signs. Thus, the singular points I and III are
always saddle points. " The property of the singular
point II, for which y is negative, is shown in Fig. 7.
The velocities shown in the figure are

This value is higher than the drift velocity at Eii and
slightly higher than estimated in Refs. 2, 17, 43.

A more detailed analysis of the field of direction is
necessary to decide whether a single moving high-field
domain (at higher applied voltages this solution is
necessarily a Rat-top domain with a solution curve
approaching close to the first artd third singular point)
or several simultaneous domains (limit-cycle solutions)
are actually possible in "long" crystals.

6. SELF-INDUCED INSTABILITIES

k
cp=ep

T 1 80p

&&pVp dA @=@II

kT 1
Bc=!— 0 II )

8 8Ãpeep

Ke have seen that, in principle, stationary high-Qe]d
domains may exist in Gunn diodes provided that
instabilities are not self-induced. Furthermore, we have
seen that the field strength in these domains does not

(7) lie in the range in which the conductivity decreases

zto =tt (+z)+z tt (+zz)+zz

Since with t ~ +~, s tends to —m, the "mathemati-
l" stability and the "physical" stability do notca sa i'

~ ~ 4 ~ ~ ~

tocorrespond. "The stability indicated in Fig. 7 refers o
the physical meaning of the stability.

3' Q. A. Dussel draws our attention to the fact that the sta-
bility criterion to be used is the physical rather than the mathe-
matical one (as erroneously used in Ref. 15).

stable
~

unstable
vortex

node spi ral spiral node
I

Co SC Co Coe' 8 C

FIG 7. Characteristic behavior of the singular point Il as a
function of the domain velocity c. The velocities co and 6c are
de6ned in Eq. (7).

"L. Cesari, Asymptotic Behav)io~ amd Stability Problems ie
Ordinary Differentia/ Equations (Springer-Verlag, Berlin, 1959).
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more than linearly with increasing field except for
domains adjacent to "slightly blocking" cathodes (see
Secs. 3 and 4). Since it is well known' "'4 that fluctua-
tions can only grow if the field strength lies in a range
in which the conductivity decreases stronger than
linearly with increasing field, self-induced instabilities
can only be expected in samples with such slightly
blocking contacts. This behavior, indeed, was observed
in Geld-quenched CdS."This also explains the following:

(1) The classical Gunn effect does not occur in GaAs
if the active region is connected with low-field bound-
aries'r (acting as quasi-injecting contacts).

(2) The frequent observation of instabilities other
than Gunn oscillations is due to "bad" contacts'7
(possibly acting as strongly blocking contacts).

Since the contact has to be slightly blocking, a sta-
tionary high-field domain at the cathode and the
appearance of current saturation should be observed
before instabilities occur. Instabilities can only be self-
induced if the width d of the stationary domain at the
cathode is larger than a critical width d. ,

'4 as experi-
mentally observed in field-quenched CdS." Two dif-
ferent types of self-induced instabilities are described
in Ref. 35:

(1) Instabilities due to deformed moving domains
which move toward the anode but disappear before
reaching this electrode. These instabilities are generally
more pronounced if the current is relatively high ("very
slightly blocking" contacts). It seems that the oscilla-
tions reported in Ref. 27 (Fig. 2, curve A) in GaAs are
due to this type of instability.

(2) Instabilities which are due to undeformed moving
domains. Generally, these domains were observed when
the amplitude of the instabilities of type 1 became
large enough in order to Qip into a type-2 domain.
This was the case when the saturation current was low
but not too low" ("slightly stronger blocking" contacts).

Let us first discuss type-1 domains, which usually
occur first with increasing applied voltage:

The critical width d, of the high-field domain ad-
jacent to the cathode can be roughly evaluated by
studying the growth and decay of small Quctuations. 34

The wavelength of a fluctuation which neither grows
nor decays is a measure of the critical width d, of the
domain. '4 3' Such a fluctuation corresponds to the case
where the singular point II is a vortex (see Sec. 5).
The wavelength of such a traveling wave is given by
the inverse of the eigenvalue P, of the matrix A. With
Eq. (7) one obtains from Eq. (6)

as an estimate for the critical domain width. '" Since
—p is usually of the order of 1, the critical domain

'4 G. Dohler, Phys. Status Solidi 30, 627 (1968).
35 K. W. Boer and P. Voss, Phys. Status Solidi 30, 291 (1968)."S. G. Kalashnikov (private communication).

width d, is only slightly larger than the Debye length
Lz in a trap-free crystal. Consequently, no pronounced
current saturation can be observed before oscillations
begin. This, however, is different in the trap-controlled
case'4" where the critical length given by Eq. (9) can
be orders of magnitude larger than the screening
length. "There, pronounced current saturation is ob-
served, and, for low enough free-carrier concentrations,
stationary domains can extend over macroscopic dirnen-
sions L10 ' cm in CdS with N(Err)~10' cm '"").
Depending on the ratio of trapped to free electrons,
intermediate cases are possible.

It is interesting to note that a detailed analysis of the
growth of small fluctuations in CdS leads to alternating
stable and unstable ranges for the domain width, i.e., for
the applied voltage"; that is, with increasing width d of
the domain, i.e., of the applied voltage, first stability
(d(d, ), then instability (d,i)d)d, ), and again sta-
bility (d) d,i)d.) is predicted (here d, i is another
critical width of a high-field domain. ") This has been
observed in Ref. 35. Similar behavior should be ex-
pected for Gunn diodes.

However, with increasing applied voltage, these
current oscillations (type 1) grow rather strongly for
lower values of o-, . Consequently, the linearization close
to the second singular point becomes invalid. In these
cases, termination of the oscillation does not occur,
but instead a Gipping to type-2 domains is observed
in CdS. These domains move undeformed through the
sample while the current drops to a well-defined value
during the motion of the domain through the sample.

For a discussion of these undeformed moving do-
mains, one can apply a result given by Kroll, "namely,
that both the current and the applied voltage have to
be larger than certain corresponding critical values
(j„and U ) in order to obtain undeformed moving
domains. "The current j„can be derived by the "equal-
area" rule. "If the current Rowing through the sample
is equal to j„,then the domain is Rat-topped and fills
the entire sample. 4' The critical value V can be
derived by using @roll's discussion. '

Consider, for example, an undeformed moving do-
main far away from both electrodes LFig. 8(a)$. The
domain potential d, V (also often referred to as "over-
voltage" or Gunn potential) depends on the currentj as shown in Fig. 8(b) (curve 1). DV increases from
zero to infinity while the current decreases from j to
j„.' ' 4' The total applied voltage is then given by

V= hV+EzI.+V, , (10)
"Equation (9) shows also that y must be smaller than zero

for self-induced instabilities to occur (see Sec. 6).
38 Using the density of trapped rather than free carriers."K.E. Kroll, Solid State Commun. 6, 691 (1968).'j „must lie well above a minimum current j; =ersIJ, (L~'&)E~&

iwith 8& as deiined in Fig. 2) in order to allow for cycling of the
solution around the second singular point. The value of j„can
be estimated by using the equal-area rule (Ref. 42).

4' Equal-area law (Refs. 17 and 43).
42 This occurs at a current value j~&j„where the voltage drop

across the domain increases just linearly with decreasing current.
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FIG. 8. (a) Undeformed moving high-field domain in a finite
sample (voltage drop V, at the cathode). (b) Curve 1 represents
the current-voltage characteristic of the domain potential AV
Las indicated in (a)]. The dashed curve corresponds to the
current-voltage characteristic which would be measured at
homogeneous held solutions (jz, as indicated by Fig. 6, lower
part). Curve 2 represents the current-voltage characteristic of a
sample with a slightly blocking contact (see Fig. 4), which would
be measured if no instability occurs. LFor low applied voltage,
this curve corresponds to j =j (V,+EzL).) Curve 3 represents
the theoretical current-voltage characteristic of a finite sample
with a slightly blocking contact exhibiting an undeformed moving
domain far away from both electrodes Lace Eq. (10)].

4' P. N. Butcher, W. F. Fawcett, and C. Hilsum, Brit. J.Appl.
Phys, 17, 891 (1966)."J.B. Gunn, IBM J. Res. Develop. 10, 300 (1966).

where Er is the value of the electric field outside of the
undeformed moving domain LFig. 8(a)], and where

U, represents the voltage drop near the cathode )Fig.
8(a)]. Curve 2 in Fig. 8(b) represents the current as
function of the potential E,l.+V„while curve 3 gives
the current as function of the total applied voltage
PV given by (10)].An undeformed moving domain in

a finite sample can only exist if the applied voltage V
is larger than the value V defined by the condition

BV/c) j=0 at U= U .

From the first condition (j)j„) one concludes that
only an upper range of cr,—namely, in the range
o„(o.,(a.I,—allows undeformed moving domains to
exist, with o.„=j„/Ezz(j„). The lower limit o. must
be larger than o-& by a 6nite amount. From the second
condition (V) V ) one concludes that either the width
of the cathode domain has to be larger than a critical
value d (related to V ) or, if d )d„ type-1 domains
have to occur before type-2 domains are possible. This
seems to be predominantly the case for Gunn diodes.
For the transition to the Gunn domain the current
must decrease below the saturation value and a small
high-field domain at the cathode must remain (see,
e.g. , Ref. 44). With increasing applied voltage, the

current must decrease further )see curve 3 of Fig. 8(b)],
and therefore the field at the cathode and the width of
the remaining domain adjacent to the cathode must
decrease. This forces Er to decrease and necessitates a
strong increase of the domain potential, forcing the
solution curve of the undeformed moving domain to
approach Errr. The Gunn domain becomes Oat-topped
and the additional applied voltage merely increases its
width.

If o., is rather close to os, the critical width d, [Eq.
(9)] is rather large, since jy~((1. If a Gunn domain
is formed in this range,

~ p~ can drastically increase,
since the current decreases. This causes d, to decrease,
and, in principle, the remaining domain at the cathode
can become unstable while the Gunn domain moves
through the crystal.

From the preceding remarks the following picture of
self-induced Gunn oscillations can be drawn: The con-
ductivity "at the cathode boundary" and the applied
voltage determine the current through the crystal. If
the cathode is slightly blocking, high-field domains
occur directly adjacent to the cathode and become
unstable if the domain width is increased somewhat
above the Debye length LEq. (9)]. If the boundary
conductivity lies in the range o-„(o.,(o.& and the
applied voltage is large enough (V) U and domain
width larger than d, ), self-induced Gunn domains can
occur. However, it is certain that for o-, (o- or o.,&o.q
or V( V, no Gunn domains can exist in a homogeneous
crystal.

7. CONCLUSION

The field of directions, which have proved to be very
useful for the case of field-dependent carrier concentra-
tion, is applied to the case of Geld-dependent mobility.
There is no difhculty in extending this method to the
case where both the carrier concentration and the
mobility are field-dependent. Stationary high-field do-
mains adjacent to the cathode and (or) to the anode
are predicted in n-type Gunn diodes with their width
and shape depending on the contact properties. The
occurrence of self-induced instabilities in Gunn diodes
is only possible in samples with a slightly blocking
cathode (o.z&o.,&o.s). The classical Gunn effect (unde-
formed moving domains) can only occur if the contact
fulfills the condition o z& o.„&o.,&o s (very slightly
blocking contact). Finally, it is predicted that with
increasing applied voltage, a stable domain first occurs
adjacent to the cathode. Then the domain becomes
unstable and finally becomes stable again, at even
higher voltages. This prediction can only be fulfilled
provided that the domain amplitude remains small
(o.. is ra, ther close to o.

y,).
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