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Electronic Band Structure and Related Properties of Cubic A1P
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A 6rst-principles self-consistent orthogonalized-plane-wave energy-band calculation has been carried out
for cubic AlP using a nonrelativistic formalism and Slater s free-electron-exchange approximation. These
are the first fully convergent, fully self-consistent energy-band solutions reported for AlP. The imaginary
part of the dielectric constant, spin-orbit splitting, effective masses at k=0, and the x-ray form factors
(Fourier transforms of the electron charge density) have been calculated. Since little is known experimentally
about AlP, no comprehensive comparison can be made with experimental data.

I. INTRODUCTION

ERY little study, either experimental or theoretical
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has been given during the past few years to the
cubic III—V compound, AlP. This compound, like most
semiconducting compounds and alloys of aluminum, is
diS.cult to prepare and study because of its high
melting point ()2000'C) and its instability in a humid
atmosphere. '2

The purpose of this paper is to report for AlP a
theoretical calculation of the band structure, the
imaginary part of the dielectric constant e2 derived
from the theoretical bands, spin-orbit splitting, effec-
tive masses at 0 = 0, and the form factors (the Fourier
transforms of the electron charge density).

In the past couple of years a great deal of success
has been attained in calculating the energy-band
structures of group III-V, II-VI, and IV compounds
using a first-principles self-consistent orthogonalized-
plane-wave (SCOPW) model developed here at ARL.
The SCOPW programs used to calculate the electronic
band structure have given surprisingly good one-
electron band energies for compounds such as CdS, '
ZnS and ZnSe, ' GaAs, 5 and Si ' For ZnS, GaAs, and
Si, where relativity is not important, the unadjusted
band energies ht all known experimental facts when
Slater's exchange is used. '

II. SELF-CONSISTENT OPW CALCULATIONS

The orthogonalized plane-wave method of Herring
is used to calculate the electron energies. In the SCOPW
model, '4 the electronic states are divided into tightly
bound core sta, tes and loosely bound valence states.
The core states must have negligible overlap from atom
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to atom. They are calculated from a spherically sym-
metrized crystalline potential.

The valence states must be well described by a
modified Fourier series:

it k, (r) =p B„)(1/QQe)e'k~'
pe~k„r4+g ap (r R )7

where k„=ks+I„, ks locates the electron within the
first Brillouin zone, K„ is a reciprocal lattice vector,
R, is an atom location, tP, is a core wave function, and
Qp is the volume of the crystalline unit cell. The co-
e%cients A,„' are determined by requiring the pk, (r)
be orthogonal to all core-state wave functions. The
variation of 8„ to minimize the energy then results in
the valence one-electron energies and wave functions.

The dual requirements of no appreciable core overlap
and the convergence of the valence-wave-function ex-
pansion with a reasonable number of OPWs determines
the division of the electron states into core and valence
states. For Al and P the 3s and 3p states are taken as
the valence states. Very good convergence is obtained
when 229 OPWs are used in the series expansion.

The calculation is self-consistent in the sense that
the core and valence wave functions are calculated
alternately until neither changes appreciably. The
Coulomb potential due to the valence electrons and
the valence charge density are both spherically sym-
metrized about each inequivalent atom site. With these
valence quantities frozen, new core wave functions are
calculated and iterated until the core wave functions
are mutually self-consistent. The total electronic charge
density is calculated at 650 crystalline mesh points
covering 1/24 of the unit cell, and the Fourier trans-
form [p(r)7'~' is calculated. The new crystal potential
is calculated from the old valence charge distribution
and the new core charge distribution. Then new core-
valence orthogonality coefficients A.„are calculated.
The iteration cycle is then completed by the calculation
of new valence energies and wave functions. The itera-
tion process is continued until the valence one-electron
energies change less than 0.02 eV from iteration to
iteration.

The appropriate charge density to use for both the
self-consistent potential calculation and the form-
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BAND STRUCTURE OF CUBIC AlP

TAI3LE I. Self-consistent energy cigcnvalucs for cubic AlP based
on Slater's and Kohn-Sham's exchange and on a four-point
(F, X, L, S'} zone sampling. 229 OPW's were used at F, and a
comparable number of OPW's at X, L and 8".The zero of energy
has been placed at the top of the valence band (F15,). All entries
are in eV.

Level

F15c
Flc
F15v
Flv

X3,
Xl,
X5v
X3,
Xl,

X3,-X5v
Xjc X5v

Slater
exchange

4.79
3.27
0.0—11.45

2.88
2.14—2.08—5.32—9.15

4.96
4.22

Kohn-Sham
exchange

4.22
3.30
0.0—11.66

1.98
0.97—2.33—5.68—8.98

4.31
3.30 ting is

L

~I

Y

FIG. 1. The zinc blende Brillouin zone with high-
symmetry points labeled.

Ll,
L3c
Llc
L3V
Llv
Llv

L3,-L3v
Ll.-L3v

8.75
5.29
2.96—0.79—5.45—9.80

6.08
3.75

7.57
4.44
2.58—0.85—5.97—9.75

5.29
3.43

where V(r) is the potential, 0. is the Pauli spin operator,
and q is the fine-structure constant. The I'~5„SCOPW
valence functions are used in this calculation.

III. RESULTS

~lc
8'4,
~'4v
8'2,
Wlv
W3v

S'4,-IV4v

6.05
4.85—2.70—3.03—4.99—9.10

7.55

5.81
3.97—3.19—3.54—5.22—8.88

7.16

factor calculation is the average charge density of all
the electrons in the Brillouin zone. In the present self-
consistent calculations, this average is approximated
by a weighted average over electrons at the I", X, I,
and W high-symmetry points of the Brillouin zone
shown in Fig. 1. The weights are taken to be propor-
tional to the volumes within the first Brillouin zone
closest to each high-symmetry point. The adequacy of
this approximation has been tested and the error in the
energy eigenvalues has been shown to be less than
0.2 eV.4

In order to calculate the absorptive part of the
dielectric constant e~, a pseudopotential fit is made to
the relevant energy levels at the I', I, I, and 8' points.
The pseudopotential technique is then used to calculate
energy differences and transition matrix elements
throughout the Brillouin zone. ' In our experience, this
procedure gives the e2 peaks at the correct energies,
although the relative peak heights do not match
experiment.

One way of taking relativistic effects into account
within the framework of nonrelativistic band calcula-
tions is with first-order perturbation theory. The per-
turbing Hamiltonian obtained for the spin-orbit split-

9 R. N. Euwema, D. J. Stukel, T. C. Collins, J. S. DeWitt, and
D. G. Shankland, Phys. Rev. 178, 1419 (1969).
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IrG. 2. SCOPW energy-band structure of A1P. The solid dots
denote SCOPW energy levels. The solid lines were obtained by
fitting a pseudopotential type of interpolation scheme to the
SCOPW energy levels.

"R. W. G. WycoB, Crystal Structures (Wiley —Interscience, Inc. ,
New York 1951),Vol. 2.

The SCOPW model contains no adjustable parame-
ters. However, one must supply the lattice constant.
In these calculations the lattice constant used was
5.42 A." Since the accuracy of the lattice constant is
not known, the dependence of the band energies upon
uncertainties of the lattice constant has been estimated
by making self-consistent calculations with two dif-
ferent lattice constants. A change of 0.2% in the
lattice constant caused a shift of 0.05 eV in the band gap.

The energy bands based on Slater's exchange are
shown in Fig. 2. The energy eigenvalues resulting
from the self-consistent calculation using the Slater and
the Kohn-Sham exchange are given in Table I. The
Kohn-Sham results are shown only because they give
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FIG. 3. SCOPW energy-band structure of Si. The solid dots
denote SCOPW energy levels. The solid lines were obtained by
Gtting a pseudopotential type of interpolation scheme to the
SCOPW energy levels.

one an idea of the effect of varying the exchange
constant. The results obtained using Slater's exchange
are the significant results for comparisons with experi-
ment. It has been shown for group II-VI, III-V, and
IV compounds that the results obtained using Slater's
exchange match experiment much more closely than
those obtained using the Kohn-Sham exchange. ' ' The
opposite conclusion would hold if a non-self-consistent
atomic potential had been used.

The calculated indirect bandgap X~.—7~5, is 2.14 eV.
Experimentally, the correct value for the bandgap is
unresolved. In 1956 Hrostowski reported 3.0 for the
bandgap of AlP based on the color of material "
Grimmeiss et al. have reported a bandgap of 2.42 eV
at 20'C determined from reflectivity and transmission
measurements. "Based on measurements of crystals of
Al Ga&,P with x up to 0.3, Merz and Lynch have
estimated the bandgap of pure AlP to be between 2.6
and 2.7 eV."

Since A1P is isoelectronic with Si, whose band struc-
ture is better known, Herman" and Bassani and
Yoshimine" and Poplavnoi" have attempted to relate

the band structure of AlP to that of Si. The most
recent calculation of this type was that of Poplavnoi in
which he found a bandgap of 2.4 eV. For comparison
purposes the band structure of Si as calculated by our
SCOP& model is shown in Fig. 3.' As one mould
expect, there is a great deal of similarity in the band
structures.

The imaginary part of the dielectric constant e2 is
given in Fig. 4. The locations of some of the major
transitions are also indicated. Since no experimentally
determined e~ exists, it is not possible to make a com-
parison. This ~2 has the same shape as that of Si. It
differs mainly in that all the structure is shifted about
1 eV to higher energies. It should be remembered that
the detailed e~ shape is unreliable, while the peak
positions are much more reliable.

In Table II theoretical Fourier components of the
charge density (the x-ray form factors) are given. The
Fourier components in the column headed RHF are
obtained by the superposition of relativistic Hartree-
Fock free atoms placed in the crystalline lattice. The
columns are headed with the exchange potential used
in the SCOPW model. It can be seen from Table II
that for the higher reflections the RHF results agree
with the Kohn-Sham results. This good agreement
illustrates the well-known general result that the Kohn-
Sham wave functions are very good for free-atom cal-
culations. For the lower reflections, the RHF results
are generally too small in semiconductors. This implies
a concentration of valence charge in the crystal. The
opposite result applies in metals where the valence
chazge spreads out. The Slater results generally give
slightly better agreement with experiment for the lower
reflections. '7

The spin-orbit splitting at k = 0 of the top I'~; valence
band into I'7 and 18 bands has been found by the use
of 6rst-order perturbation theory on the self-consistent
Slater I'~5„wave functions to be 0.023 eV. Braunstein

AIP IMAGINARY PART OF DIELECTRIC CONSTANT

TABLE II. Theoretical AlP form factors determined by
using various exchange potentials.

IO—

111
200
220
311
222
400
331
420

RHF

60.15
5.15

69.94
46.23
2.83

59.78
40.43
3.22

Slater

62.07
5.97

70.49
46.04
2.84

60.07
41.26
2.88

Kohn-Sham

60.94
5.51

69.32
45.39

2.82
59.15
40.49
3.16

(A

B

K
5

Cl
K

N

4
Xic-
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Fxo. 4. Theoretical c~ curve for cubic AlP with the location of
the high-symmetry point transitions shown.
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and Kane have estimated the spin-orbit splitting to be
0.05 eV based on atomic considerations. '

Effective masses have been calculated at k =0 for the
top valence and bottom conduction bands. For the I'15
valence band (where spin-orbit splitting has been
neglected) m*=1.5 for the [111) direction and 0.63
for the $100) direction. For the conduction band,
m*=0.23 for both the L1117 and (1001 directions.
Braunstein and Kane" give 0.13 as an estimate of the
electron effective mass at the k=0 minima.

IV. CONCLUSIONS

The validity of these reported calculations cannot be
judged because of the absence of experimental results.

"R. Braunstein and E. O. Kane, J. Phys. Chem. Solids 23~
1423 (1962).

They are based on no assumptions other than a lattice
constant of 5.42 A (which should be accurate to about
&0.03 A), the applicability of Slater's exchange ap-
proximation (which has been demonstrated to work
for similar compounds), and the validity of the SCOPW
model and programs (which have given good results
on many compounds). It is hoped that this work serves
to stimulate interest in this compound which has con-
siderable potential for applications.
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Theory of Donor-Acceptor Dipairs in Semiconductors*
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From an analysis of the distribution of donors and acceptors we determine the existence and concentra-
tion of dipairs in heavily doped compensated semiconductors. The electronic energy levels of symmetrical
planar dipairs are determined by perturbation theory. States corresponding both to a single bound exciton
and to two bound excitons are considered. Anti-Stokes and double excitation mechanisms of luminescence
are predicted for dipairs.

S INCE donor-acceptor pairs (DA) were proposed as
luminescent centers in compound semiconductors

over a dozen years ago, ' an extensive literature' has
evolved on pairs, particularly as sites for the radiative
recombination of electrons and positive holes. These
investigations include both unassociated pairs char-
acterized by large DA distances, and associated pairs
characterized by small DA distances.

In our recent investigations of II—VI compound semi-
conductors with quite high concentrations of com-
pensated dopants, for example, ZnS:3&10 'CuInS2,
we have become concerned with the existence and
identity of higher associates, with their electronic
states, and with any unique contributions they make to
optical and electrical properties. The purpose of this
paper is to report preliminary analyses of the statistical
mechanics of higher associates, particularly of dipairs
(DA)~, the quantum mechanics of their electronic
states, and Anally predicted contributions of dipairs to
luminescent properties.

In considering the statistical mechanical problem of
* Supported by a Grant from the U. S. Army Research Of6ce

(Durham).' J. S. Prener and F. E. Williams, Phys. Rev. 101, 1427 (1956).
For a review, see F. Williams, Phys. Status Solidi 25, 493

(&968).

the distribution function for pairs, dipairs, and other
associates, we shall consider the zinc-blende lattice with
equal concentrations of donors D+ and acceptors A,
both constrained to occupy the same type of substitu-
tional lattice site, for example, cation sites. Because
there are different isomers of higher associates, that is,
geometrically distinguishable associates, we shall usually
be concerned with the energetically most favorable
isomers, for example, in the case of symmetrical
nearest-neighbor dipairs, with the planar isomer. If we
assume that the D+ and A interact Coulombically
and express the energy of formation from point defects
E& in terms of the energy of formation of the corre-
sponding pair E„, we find that Ed=2.586'„, 2.333'„,
and 2.0008„ for the planar, linear and tetrahedral
dipairs, respectively. The last corresponds to zero
energy of formation from pairs. The binding energy of
the two pairs to form the planar dipair is 0.586 E„.

The relative importance of three-body associates
(DAD)+ and (ADA) and of dipairs can be estimated
by considering their respective energies of formation
and the following equilibrium:

2 (DAD)++2 (ADA) +~ 3 (DA) 2, (1)
where DE=1.76E„, favoring symmetrical planar di-


