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A general formulation of the theory of electron impurity states in a lattice in the extended zone scheme
is presented. The dependence of the impurity states on the band structure is discussed, and it is shown that
the existence of secondary extrema in the band structure may produce additional bound and resonant
states. A prescription is given for computing such states and for estimating the probabilities of transitions
to them from the ground state; some properties of these transition probabilities are discussed. Solutions of one-

dimensional models are presented explicitly.

I. INTRODUCTION

HE problem of the electron eigenstates of an
impurity in a periodic lattice is a classical one in
the physics of semiconductors and insulators.* Koster
and Slater? have developed an approach based on the
expansion of the exact eigenfunctions in Wannier func-
tions® and have shown how to compute the bound states
for the case of strongly localized potentials. Adams* and
Kohn and Luttinger?® have developed an approach based
on the expansion of the exact eigenfunctions in Bloch
functions and have shown that for slowly varying im-
purity potentials this leads to the effective-mass for-
malism. This formalism has been applied with great
success to computing the bound states of impurities in
semiconductors and insulators.!:¢

More recently, attention has been focused on the
existence of resonant states which are degenerate with
the continuum and originate from subsidiary minima
in the band structure.” Peterson® has investigated the
nature of such resonant states in the framework of the
effective-mass approximation and has given an estimate
of their lifetimes. Liu and Brust® have developed a
formalism appropriate to resonant states introduced by
impurities in a zero-gap semiconductor. ,

Experimental evidence which points to the existence
of resonant states in semiconductors has been given by
Kosicki and Paul® for donor states, and for the case of
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acceptor states by Zwerdling, Button, Lax, and Roth!!
and more recently by Onton, Fisher, and Ramdas.!? In
alkali-halide crystals, F-center transitions of energies
well above ionization have been known for some time
as the L bands,’* and recent modulated absorption
experiments have demonstrated that they all originate
from the same ground state.!* Sharp excitonic transi-
tions above the exciton ionization energy have also been
observed by optical experiments.!5

The present paper is an attempt to develop a general
formulation of the problem of impurity states in a
periodic potential and to draw some conclusions on the
nature of the bound and resonant states. To simplify
the formalism, we use the extended zone scheme as in a
previous paper!S; but all the results could be rewritten
in the reduced zone scheme using the appropriate band
indices. The presence of secondary minima at energies
higher than the absolute minimum of the conduction
band is shown to influence the bound states produced
by an attractive potential. It displaces their energies
with respect to the values obtained using the effective-
mass approximation, and it may produce new bound
and resonant states. For the case of slowly varying
potentials, a detailed prescription is given to evaluate
such states taking into account intervalley coupling in
first order. The transition probabilities between im-
purity states are examined, and the contribution of the
secondary minima is shown to be of importance. The
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above results are instructively displayed with the aid of
appropriate one-dimensional models.

In Sec. II, we present a formal discussion of the
eigenvalues and eigenfunctions appropriate to any type
of impurity potential and give a general method to
compute them. In Sec. ITI, we investigate in detail the
influence of the band structure on the impurity states
for the case of a slowly varying potential. In Sec. IV, we
discuss the transition probabilities including the con-
tribution of different minima in the band structure to
the localized wave functions. In Sec. V, we present
soluble one-dimensional examples to show the behavior
of bound and resonant states. In Sec. VI, we sum-
marize the results and discuss the connection with some
experimental data.

II. DISCUSSION OF BOUND AND
SCATTERING STATES

The general equation in the extended zone scheme
for the states of the Bloch electron in an impurity
potential ig?—5-1

[E®) — E]e(R)+ / KUK o(K)=0, (1a)

where E(k) describes the energy-band structure, ¢(k)
indicates the coefficients of the electron wave function
when expanded in Bloch functions

B(r)= / dk oWy (kp), (1b)

and U(kk’) is the Bloch matrix element of the im-
purity potential U(r):

1
U (k,k’)=a‘* f dry* (k) Uy (K. (1c)

)3

In the preceding formulas and in the following, the
integrals on k, k’, and r refer to the whole space, unless
otherwise specified. The solutions of Eq. (1a) give all the
states of the electron in the presence of the periodic
potential and of the impurity potential.

We can obtain formal solutions of Eq. (1a) by reduc-
ing the kernel (1c) of the integral equation to a sum of
products of functions of k alone by functions of k’ alone,
according to a general procedure which is well known in
the theory of integral equations!” and has found applica-
tions in scattering theory.!® We introduce a complete
set of states g,(r) and insert in (1c),

/ $(r—r')dr'=3_ / dr'g.*(r)ga(r)

17 F, G. Tricomi, Integral Equations (Wiley-Interscience, Inc.,
New York, 1957), p. 55-64, 98.

18R, G. Newton, Scattering Theory of Waves and Particles
(McGraw-Hill Book Co., New York, 1960).
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to obtain
U(k,k") =(~271:>—3 g /‘dr/dr’\l/*(k,r)
XU()g*()gn(r (K x).  (2a)

It can be noticed that U(k,k’) is a sum of separable
potentials. To simplify the discussion, we consider
explicitly only the case in which the potential U(r) is
attractive and write

UlkK)==22 1.7 f(k') (2b)

k =(27T)3/2 /dr#/(k,l‘)[—U(r)]lm‘gﬂ(r)' (20)

In the case of a finite range potential, we can always
choose a discrete set g,(r) such that the overlap of
2.(r) with U(r) becomes negligible for # larger than a
finite 7. The integral equation (1a) becomes

[E0)~EJo( — 12506 [ a1, () o(k)=0. 3
A general solution of Eq. (3) will be of the form

o) =P Y £,4(K) / d’ £,(k')o(K')/[E() —E]
ol BB —E), (&)

\

where a(k,E) is a function to be determined from the
boundary conditions, and P indicates that the principal
part has to be taken in any integral. Introducing @,, the
set of constants given by

an= f dl (K)o (k') (5a)

we obtain the infinite number of consistency conditions

Ju(K") fu*(k")
E(K)—F

an=y. aan/dk’

+ / k' £ (K)a(K,E)s(E(k')—E). (5b)

The general wave function (1’) of the impurity problem
can be written in terms of the coefficients @, and of the
function a(k,E) as

S0y
EKk)—E

<I>E(r)=§ anP/d

+ / dha(k E(0)3(EK) —E). (6)
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Equations (5b) and (6) allow an analysis of all the
properties of the eigenstates as functions of the band
structure E(k) and of the impurity potential contained
in f.(k).

First, let us consider energies such that E> E(k) for
any value of k; they correspond to the negative-energy
states of the usual scattering theory, but in the present
case, with the periodic potential, they may occur
whenever there is an energy gap in E(k). The second
terms on the right-hand sides of Egs. (5b) and (6) vanish.
The eigenvalues are obtained from the condition that
the homogeneous system of Eq. (5b) admits nonvanish-
ing solutions for @,. This happens in correspondence to
the zeros of the Fredholm determinant

Onw — / fzk'ﬁ/_)f w* (k)
E(K)—E

Det =0. ™)

The values of E which satisfy Eq. (7) give the bound
states of the system, and it can be easily shown that the
corresponding wave functions (6) are localized.

Let us now consider the scattering states such that a
surface in k space exists where E= E(k). The function
a(k,E) is specified on that surface by requiring that the
function ®(r) of Eq. (6) contain an incoming wave only
in a given direction defined by the initial velocity, as
indicated by Lifshitz and Kaganoff.!® Consequently, the
value of a(k, E) is arbitrary only in that specific direction
ko, while in the other directions all incoming waves
cancel. This corresponds to replacing the second term on
the right-hand side of Eq. (4) by ad(k—ko), with
E(ko)= E, and to extending the energies of the first term
into the complex plane by substituting E-ie for E. The
result obtained is that ®(r) is composed of an incoming
Bloch wave and of outgoing waves. If we subtract from
®(r) its asymptotic part, we are left with a localized
function. Under specific conditions and for some values
of the energy, the localized function contained in ®(r)
may be abnormally large, and this corresponds to the
resonances well known in scattering theory. Next we
show that in our formulation the energies at which
resonances occur can be found as the real parts of the
complex solutions of Eq. (7) extended into the domain
of E complex. In fact, let us normalize the incoming
wave so that =1, and let us suppose that the analytic
continuation of Eq. (7) onto the nonphysical sheet
admits a complex solution with real part Ey and with
imaginary part I' such that I'KZE,, the zero of energy
being referred to the minimum of the band in which the
resonant state is contained. The condition I'K E, corre-
sponds to a solution near the real axis and far from the
origin of the cuts in the complex E plane.

The system of linear equations (5b) for that energy

19T. M. Lifshitz and M. I. Kaganov, Usp. Fiz. Nauk 69, 419
(1959) [English transl.: Soviet Phys.—Usp. 2, 831 (1959)].
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becomes

2z

n'

nk/ n,* k/
<6M,_ )

an = fn(k 5
E(k’)——E—is) Joll), )
and admits an exceptionally small determinant for
near to Ey. Consequently, the coefficients a, are ex-
ceptionally large when E is near E,. For the case of a
finite range potential, since with an appropriate choice
of the set g,(r), the functions f,(k) become first-order
small for all values of k for #>7, we have only a finite
number 77 of exceptionally large coefficients a,. That
this is the condition for the existence of a resonant state
can be seen by writing the wave function (6) for the
present case as

®(r) =3 an f ' G(rx') g ()= U () ]

+o(kr), (6)
e U )
T K
G(r,r') = / dk¢ G (6"
(2m)3 E(k)—E—ie

Since the contributions to the first term on the right-
hand side of Eq. (6") are given essentially by the terms
with #<7, the overlap of g,(r) with U(r) is negligible
for n>7, and the values of @, for n<7 are very large
when E is near Eo, the first term is abnormally large for
E near Ey,. This is the condition for the existence of a
resonant state, because the first term consists of out-
going waves in all directions and a localized part for
values of r near the origin of the potential. When this is
abnormally large, we have a resonant state, which in
the usual formulation is seen as an abnormally large
scattering amplitude or a pole of the S matrix.!” If we
expand the determinant (7) for £ complex, we see that
to first order it is proportional to (E— Ey)-+iI' so that
the coefficients @, are proportional to the quantity
[(E—Ey)+4T' ], which gives a measure of the strength
of the resonance.

Asis generally the case with the solutions of quantum-
mechanical problems,?’ symmetry considerations greatly
simplify the preceding analysis. The symmetry prop-
erties of the impurity potential U(r) in the lattice can
be taken into account by choosing the functions of the
set gn(r) as the basis for the irreducible representations
of the symmetry of U(r). It follows from (2c) that if
gn(r) belongs to a given row of an irreducible repre-
sentation «, fa(k) also belongs to the same row of the
same irreducible representation. As a consequence, the
matrix elements of Eqs. (7) and (5’) vanish when # and
n' label. functions of different representations or of
different rows of the same representation. This allows
the reduction of the matrices (7) and (5’) to block form,
each block associated with a particular row of an

20 See for instance M. Tinkham, Group Theory and Quantum

Mechanics (McGraw-Hill Book Co., New York, 1964); F. Seitz,
Ann. Math. 37, 17 (1936).



738 BASSANI,
irreducible representation. As a consequence, the bound
states are classified according to the irreducible repre-
sentations of the symmetry group of the impurity in the
lattice, and the same property holds for the resonant
part of the scattering state (6”), because the coefficients
@, which are abnormally large correspond to a row of a
given irreducible representation.

We can conclude from the above analysis that the
known results of scattering theory can be extended to
the case of a periodic potential. The existence of bound
and resonant states will depend not only on the im-
purity potential but also on the band structure through
the functions f.(k) and E(k), which determine the
properties of the solutions of Eq. (7) and, consequently,
of (6) or (6"). The present formulation is connected with
the Green’s-function method! ¢ and with the method of
Slater and Koster,? but we feel it has advantages over
them. Some advantages will appear clearly in connection
with soluble one-dimensional models which will be dis-
cussed in Sec. V. The prescription we have given can
also be used for practical purposes and seems to be par-
ticularly well suited for strongly localized potentials,
where one can hope to be able to consider a determinant
(7) of small size by a judicious choice of the expansion
set ga(r).

The above procedure can also be used to clarify the
correlation between bound and resonant states and
critical points of the Brillouin zone where V. E(k)=0. A
detailed calculation could explain how saddle points in
the band structure produce resonant states, whose
existence is still controversial but seems to have now
received decisive experimental support.?! In the par-
ticular hypothetical case in which the potential fac-
torizes in the form

Uk k)= p*(k)o(k’) (2)
Eq. (5') becomes

[ / [p(k)|?
1—P | dk—
E(k)—E

iw / dk|p(k)[*3 (£ (k) —E)}Ff(ko) » (5

and the conditions for the existence of a resonance at

Ly are that
/ lo(k) |2
1—P | dk'———=0
E(k)—E,

and that the second integral in (5") be small. Such
conditions could also be satisfied when E(k) is near a
saddle point, and this suggests that resonances may
exist, in general, also at saddle-point singularities. For
the case of extrema in the band structure, a more
detailed study is made in Sec. III.

2 ]. E. Rowe, F. H. Pollak, and M. Cardona, Phys. Rev.
Letters 22, 933 (1969) and quoted references.
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III. CONNECTION BETWEEN BAND STRUCTURE
AND IMPURITY STATES

From the analysis in Sec. I, we have seen how bound
and resonant states can result from an impurity in a
periodic potential. We wish to illustrate further the
difference between the case considered and the case of
bound and resonant states of scattering theory. In
the present case, various critical points in £ (k) may
contribute to give the bound states and are essential
in producing resonances characterized by long life-times
which would not exist in ordinary scattering theory.
A Coulomb potential, for instance, does not have any
resonant states in the usual scattering of free particles,
while we are going to show that it can have resonant
states if the £(k) function has a relative minimum at
k=k, besides the absolute minimum at k=0.

To express quantitatively the above considerations is
not easy in the framework of Sec. II, because for a
slowly varying impurity potential, the order of the
Fredholm determinant (7) may be extremely large. We
prefer to use an equivalent formulation based on the
integral transform of Eq. (1a) which is particularly
suited for slowly varying potentials. The solutions of
Eq. (1a) can be written as

Uk K)ok
(k) =d(k~kz)— / dk’M

8
E(k)—E—ie’ ®
where the boundary conditions discussed in Sec. IT are
automatically satisfied. We now separate the domain of
definition of the function ¢(k) into a number of sub-
zones 2, such that every one contains a minimum in the
curve E(k) at the point ko;. If such a minimum occurs

Kx

\

Fi16. 1. Schematic representation of some possible subzones in a
two-dimensional quadratic lattice. The three values of ko;, where
the minima in the energy bands occur, are indicated by circles;
they are at the center of the first Brillouin zone and at the bound-
ary between the first and the second Brillouin zone. The subzone
associated with every minimum is indicated by the shading of
the surface.
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on the boundary between the first and the second
Brillouin zone, a translation of the reciprocal lattice
brings this point into an equivalent point which con-
tributes equally to define the subzone of k space about
ko;. Every region about ko; will be brought into another
subzone by a symmetry operation of the lattice R since
the point ko; will be brought into another point of the
star Rko;, so that all the reciprocal space will be covered.
If there is only one minimum at k=0, the subzone
becomes the entire reciprocal space. If there is only one
minimum at k=0 in the first Brillouin zone, but sub-
sidiary minima at the smallest values of k in the second
Brillouin zone, one subzone coincides with the first
Brillouin zone, and other subzones are defined in the
second Brillouin zone. An example to illustrate the
above schema is given in Fig. 1 for a two-dimensional
case with quadratic symmetry. In general, the positions
in k space, where the condition V;E(k)=0 must be
satisfied, are indicated by symmetry considerations, and
semiquantitative studies of the band structure allow a
choice of those where the band has a minimum.??
Needless to say, we would consider the maxima as
favored critical points, if the potential were repulsive.
We will write the envelope function as

@(k) = 901(1() in &
=¢ik) in Q
=o¢a(k) in Q, ©

where ¢, is zero outside of ;. The integral equation (8)
can be split into # coupled integral equations for the
components of ¢ by substituting (9) into (8). We will
discuss separately the case of bound states, where
Es“E(k) for all values of k and the case of scattering
states.

For bound states, the system of coupled integral
equations becomes

[B(k) — Eloik) = — /

(Y]

Uin(kk)e1(K)dk'—- - -

_/ Us, il K) pi(k")dk’ — - - -
%

T

- / UK ou (KK, (10)

where the matrix element U, ((k,k’) is defined for k in
the subzone Q,, k’ in the subzone Q,, and zero outside.
Equations (10) can be solved approximately, if we
suppose that all matrix elements U, (k,k’) for =5 are
first-order small compared with the matrix elements
for r=s5. This condition is certainly satisfied when the
impurity potential is slowly varying on the elementary
cell, and the two minima at ko, and kos do not differ by

22 See for instance F. Bassani, in Proceedings of the International
School Enrico Fermi (Academic Press Inc., New York, 1966),
Vol. XXXIV, p. 33; J. C. Phillips, in Solid State Physics, edited by
F. Seitz and D. Turnbull (Academic Press Inc., New York, 1966),
Vol. 18, p. 55.
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a reciprocal-lattice vector. We can then solve Egs. (10)
by iteration. Neglecting first-order contributions, we
have a set of independent homogeneous equations

CE(k) — E]go0(k) = — / 0K Us (b)) oid(K), (1)

o5

each giving a set of eigenvalues E;,°. Each equation of
(11) can be reduced to the corresponding differential
equation and solved in the effective-mass approxima-
tion, as shown by Kohn and Luttinger.® In the appendix,
we discuss explicitly the case when the minimum occurs
at the boundary between two Brillouin zones, because
we intend to make use of some properties of the envelope
function in Sec. IV. For a Coulombic potential, the
effective-mass equation is particularly simple and re-
duces to an hydrogenlike equation, if the effective-mass
tensor is isotropic. The matrix elements U, ,(k,k’) with
r#s connect states of different subzones through the
impurity potential. Their effect can be taken into
account in first order by expanding the envelope func-
tion (9) in the set of functions ¢:,°(k) relative to all
eigenstates 7 of all subzones 7. We put

gp(k): ;, Ci’n’(Pi’n'O(k). (12)

The general equation (1) becomes

LER) —E]3 cin @irn (k)

+Y corw / Ak’ Uk K) ¢ (k) =0. (13)

n'g’

Multiplying by any of the states ¢;,*(k), integrating
over k, and taking into account the results at zero order
and the orthonormality of the functions in k space, we
obtain the following system of secular equations for the
coefficients ¢;,:

(Eino_E)cin+ Z Ci'n’cuvin,i’n’zo,

i/ #in’

(14a)
where

Wi irr = f dk dk' o0 *(K)U s 0 (kK)o O(k’),  (14b)

the domain of k being ©;, and the domain of %’ being
Q.. The eigenvalues are obtained as solutions of the
secular determinant

Det[ (Eino_E)Bin,i’n'_’_cufin,i’n’(1 "'5731")

=0, (15)

and the eigenvectors give to first order the contributions
of the different subzones to the envelope function ¢(k)
for any eigenvalue. We wish to remark that the indices
#n and #’ can be extended to the states of the continuum
of every subzone. This procedure, of course, is of
practical use for bound states, when the size of deter-
minant (15) can be limited so that only a small number
of states 7, #’ need be considered. This will be the case
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for states well separated from the absolute minimum.
We wish to emphasize that the above procedure gives
the valley-orbit splitting, when the absolute minimum
is at ko0 and tells when additional bound states are
produced by the secondary minima.

We now wish to consider the case of scattering states
which have energies above the absolute minimum and
below the other minima. Performing the same sub-
division (9) for ¢(k), we can write a set of coupled
integral equations similar to (10) except for the presence
of a scattering term in the first subzone:

dk’ U, ;(kK") o;(I
ei(k)=6(k—kg)d1i—>_ / A )‘P (( ) (16)
J Q; E(k)——-E—le&,

In the following we will first show that this system of
coupled equations admits solutions of the type discussed
in Sec. IT with a localized part and a running wave part,
and that we have resonant states for some values of the
energy which, in lowest order, coincide with the eigen-
values inside the continuum, which one would obtain by
considering the higher minima alone. We will show this
explicitly for the case of two minima only; one at k=0,
and a higher minimum at a point k. The minima at the
other points of the star of k¢ are included automatically
in zero order and could be treated to first order, as indi-
cated above, for the case of localized states. The result
can be extended to the case where there are more sub-
sidiary minima. Let us write Eq. (16) for the present
case in the symbolic form

1= 6+V101+V1202,
02="TV2101+Vaz¢s.

(17)

The equation ¢s°=V2%¢s® coincides with Eq. (11) for
1=2, since it can be reduced to Hermitian form; we
suppose that it gives localized eigenfunctions and corre-
sponding eigenvalues above the minimum at k=0. Let
us consider one of such eigenvalues E,° and a corre-
sponding eigenfunction ¢.°. The alternative theorem?®
requires that the solutions of the system (17) must
satisfy the condition

(¢2°00101)=0, (18)
and that ¢, must take the form
e2= fotAe?, (19)

where f» depends on ¢; and is orthogonal to ¢s°. As
before, we can consider Uy2 and Vs first-order small
compared to Ui and Vs, and we neglect the term
V12 f» when we substitute (19) into the first of Egs. (17),
because f, is first order in Vs;. We then obtain for ¢,
the equation

©1= 6+ A01202"4+ V1101 (20a)
The solution of Eq. (20a) is
1= (1=0V11) 164+ V1202 , (20b)
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the operator (1—011)"'=14011+V1>+--- being the
resolvent kernel of Eq. (20a). To determine A, we
impose condition (18) and obtain

920, 021(1 —011)?
- (¢2°,021(1—011)7"0) 1)

(02°,021(1 —=0V11) M 012¢02%)

The fact that a value A\5#20 exists indicates that in corre-
spondence to E,° we have a state with a localized part
of the wave function \¢p?. Furthermore, when the
potential is slowly varying, X becomes large because the
denominator of Eq. (21) is one order smaller than the
numerator, since Uip represents a coupling between
different subzones. To go beyond zero order in finding
the position of the resonant states and their lifetimes,
the coupling between the continuous band in the first
Brillouin zone and the states originating from the
secondary minima have to be taken into account. We
can carry out the same type of analysis given in Sec. II
to define the resonant states and their lifetimes by
including a scattering state in Egs. (14) and by extend-
ing Eq. (15) onto the complex plane. If this continuation
of Eq. (15) admits complex solutions F,—iI' and
I'KE,, then the localized part is abnormally large for
Enear Fy, and we have a resonant state at that energy.
To exemplify this result, we consider only a state FE,°
originating from the secondary minimum and will show
how it is affected by the interaction with the states of
the band in the first Brillouin zone which correspond to
the continuum above the absolute minimum. Equations
(12), in this case, can be written as

oK) =cop (k) + / K COK)ew (WK, (22)

where k’ belongs to the first Brillouin zone.
The system of linear equations (14a) becomes

(Ez“-E)Co+/ dk’ C(K)Urs(k") =0,

(23)
coWar(k)+[E(k)—E]C(k) =0,

where (14b) becomes
Uoy (k') =/dk AR 029% (k) Uz (k, k') 01 O(k"") .

From the second of Eq. (23), we obtain
C(k) =8(k—k) —cof Uni (k) /[ E(k) —E—ie]}, (23')

where k gives the direction of the incoming wave.
Substituting into the first equation, we obtain

U (k) [

iZO_ - k—"““-— 0= — U1 -l-{ "
[(ﬂ P /gld E(k)—E—ie]C k), (237)



186

and, consequently, the resonance may occur in corre-
spondence to the value of the real part of E for which
the coefficient of ¢y vanishes, if the imaginary part is
small. We can observe that this condition amounts to
solving Eq. (15) for complex values of E on the non-
physical sheet. In fact, considering only coupling of a
state from the secondary minimum to the continuum
of the lowest band, Eq. (15) becomes

| Uaa (k) [ 2

E2°~E=/ dk———. (24)
U1 E(k) —E

This equation, in the effective-mass approximation,
reduces to Peterson’s equation for the resonant states.®
Considerations on the lifetime of the state can be made
from the above equations in the same way as done by
Peterson.® In general, we may conclude that the real
solutions of Eq. (15) give the bound states; and the
complex solutions, with a small imaginary part obtained
going through the cuts of the positive axis into the lower
half of the complex plane, give the resonant states, the
whole analysis being appropriate to the case of slowly
varying potentials.

IV. TRANSITION PROBABILITIES

The general analysis given in the preceding sections
can be used to make semiquantitative remarks on the
optical transition probability between impurity states.
In the dipole approximation, the transition probability
between the ground state ¢ and the final state f will be

proportional to
2

[Wif|2=./@i*(r)Ao-ﬁfbf(r)dr , (25)

where A, indicates the direction of polarization of the
electric field. Substituting the expansion (1b) for the
Impurity state, we obtain

W= [k dr o200 QAo BUCK,1). (260)

Because of translational symmetry, the integral in ais
different from zero only when k’=k-+h, where h is a
reciprocal-lattice vector and can be written in the form

/ dr v (1) Ao pU (')
=C(k)o(k—k")+>’ C(k,h)s(k—k’—h). (26b)

In the more common language of the reduced zone
scheme, the term with h=0 indicated as C(k) in (26b)
gives contributions originating from the same band,
while the terms with h>20 indicated as C(k,h) in (26b)
give contributions originating from different bands. The
intraband contributions C(k) are not present in the
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case of electronic transitions in the perfect lattice
because of energy conservation for the Bloch states,??
while in the present case, energy is conserved between
impurity states and, in general, the integral (26b) is
different from zero for k=k’. The amplitude of the
transition probability is proportional to

Wif=/dk ei*(k) o (k)C (k)

Ly / dk o (K)o (kR b (260)

When the band structure is such that two or more
relevant extrema occur at values of k differing by a
reciprocal-lattice vector, both intraband and interband
terms to the right-hand side of Eq. (4) must be con-
sidered. This corresponds to nearly degenerate cases in
the reduced zone scheme, such as those of acceptors in
cubic semiconductors. In the other cases, when the
relevant extrema correspond to different values of k in
the reduced zone, only the intraband terms need to be
considered in Eq. (26c). In this case, it may be of
interest to analyze the dependence of W, on the energy
position of the excited states. Let us consider the case
of a crystal with inversion symmetry and let the initial
ground state be even. Then the envelope function
o:*(k) is even in k and, since C(k) is odd in k, the term
o (k)C(k) is also odd. To obtain a transition prob-
ability different from zero, the envelop function of the
final state ¢;(k) must have the same symmetry as
Ck) (k).

With the above considerations in mind, let us consider
the case where the impurity states originate from two
minima, an absolute one at k=0 and a relative one at
k=k,. We can show that the transition probability to
the excited states below the minimum at k=0 de-
creases with increasing energy, while it may well
increase with increasing energy for the excited states
below the secondary minimum. In fact, the anti-
symmetric function ¢*(k)C(k) decreases to zero for
k— « and has only one node at k=0. Its behavior
along a particular direction of k which contains ko is
exemplified in Fig. 2(a) (the polarization direction Ao
for simplicity is chosen to coincide with this direction).
The envelope functions of the excited states below the
minimum at k=0 are more localized in k space as their
energy increases as indicated schematically in two
typical functions ¢y, (k) and ¢s(k) of Fig. 2(b). It
follows that the overlap of ¢*(k)C(k) with ¢y, (k) is
larger than with ¢y,(k), and, consequently, the transi-
tion probability decreases with increasing energy. The
opposite situation may well occur for the resonant
excited states, whose localized part has an envelope
function about k=k, of the type described in the appen-
dix. The behavior of two envelope functions ¢y (k) and
¢r,(k) for resonant states of increasing energy is
exemplified in Fig. 2(c). Since the state ¢y, (k) is less
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F16. 2. Schematic representation of the terms which contribute
to the transition probability amplitude. (a) Ground-state envelope
function ¢;(k) times the transition matrix element hetween Bloch
functions C (k) in the specific direction ko. (b) Final-states envelope
functions ¢y, (k) and ¢y, (k) in the direction ky. These functions
originate from the principal minimum and are in order of increas-
ing energies. (c) Final-states envelope functions ¢y, (k) and ¢y, (k)
in the direction ko. These functions originate from the subsidiary
minima and are in order of increasing energy. It can be seen that
the overlaps of the functions of case (a) with those of case (b)
behave differently with increasing energy from the overlaps with
those of case (c).

localized about ko than ¢,(k), its overlap with
o*(k)C(k) will be smaller, as can be seen by inspection
of Fig. 2. Consequently, in the case of resonant states
originating from secondary minima, we expect the
transition probability from the ground state to increase
with increasing energy of the resonant states.

V. ONE-DIMENSIONAL EXAMPLES

In order to make explicit some results of the previous
sections and to bring out some features to be found in
physical problems, we consider soluble one-dimensional
models.

Let us first consider the case of an extremely localized
impurity potential of the type

U=V(x). (27a)

This case is similar but not identical to the case con-
sidered by Koster and Slater,? whose procedure
amounted to solving the one-dimensional impurity
problem taking into account only matrix elements of
the potential which are constant within each zone and
negligible between different zones. The matrix elements
(1¢) of our potential become

U(k,k") = (Vo/2m)f* (k, 00 (%',0) , (27b)
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which are already of a separable type. The eigenvalue
determinant (7) in this case reduces to the single

equation
2w / [¥(%,0) ]2
—+ | db—— =0, (28)
Vo E(k)—E
and the envelope function takes the form
o(k)=—(Vo/2m)aly*(k,0)/(E(k)—E)], (29a)
with
a=/dk’¢(k’,0)<p(k’). (29b)

A bound 'state exists for E<E(k), and other bound
states exist in the energy gaps of the band structure as
solutions of Egs. (28) and (29a). We wish to study the
solutions in an energy gap between two bands, a lower
one with a maximum at E; and a higher one with a
minimum at E,. We can split the integral contained in
Eq. (28) in two parts Ci(E) and C:(E), the first one
corresponding to values of & for which E(k)< E; (lower
bands), and the other extended to all values of % for
which E(k) > E, (higher bands). We have

[¢(%,0) 2
Cu(E)= A (28")
em<e EE)—E
and
£,0) |2
Cy(E)= / dku. (28")
zw>n  E(R)—E

It can be seen by inspection that, for E;< EX Es, both
functions C1(E) and Cy(E) are monotonically increasing
functions, the former being negative and the latter
positive. The values of C1(E) and Co(E) at E; and E,
allow a qualitative study of the solutions of Eq. (28).
Those values depend on the functions ¥(k,7) which have
opposite parity at E; and E, in the case of a one-
dimensional lattice with inversion symmetry. Let us
suppose, for instance, that the state at %, is even and
the state at E; is odd. Then C1(E1) = —a, C1(Es)= —8,
and Cy(E;) =1, Cs(E,)= o with a>B. The quantities
a, B8, and v indicate positive values and depend on the
periodic potential through E(k) and y¥(%,0) in (28’) and
(287). We show in Fig. 3 a plot of the integrals appear-
ing in Eq. (28) as the sum of Ci(E) and Cy(E). We
present in Figs. 3(a) and 3(b) the cases where a>v and
a<y, respectively. The former case always occurs for a
sufficiently large energy gap. It can be seen by inspec-
tion of Fig. 3(a) (a>1v) that if the impurity potential is
repulsive (—2m/V negative), Eq. (28) admits a solution
only when V, is sufficiently large, while if the impurity
potential is attractive (—2x/V, positive), we always
obtain a solution of Eq. (28) however small V. In the
latter case, the bound state splits from the higher band
however small ¥, and decreases to a limiting value in
the gap with increasing | V|. In the case a<y [Fig.
3(b)], we have no bound state if the potential is repul-
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sive, while if the potential is attractive, the state splits
from the higher band and its energy decreases with
increasing strength of the potential until it reaches the
value Ei; for a larger potential, the bound state dis-
appears and becomes a resonance in the lower band. A
similar analysis can be made when the parity of the
states E; and E, is reversed; in this case, an attractive
potential gives a bound state only if its strength is
larger than a critical value, while a repulsive potential
gives a bound state however small the potential. To
conclude this example, we can remark that Eq. (29a), in
correspondence to a solution of Eq. (28), gives for (1b)
a square integrable function, whose asymptotic be-
havior is that of an exponentially decreasing function
sufficiently far from the impurity where Floquet’s
theorem can be applied. We could approximate the
Bloch functions ¢(k,x) with plane waves and perform
the integral (28) to obtain analytic expressions for the
bound states, similarly to what was done by Koster
and Slater? for a single band. In this approximation, we
would lose the symmetry effect and, consequently, the
possible resonant states. By solving Eqs. (28) and (29a)
with a band model E(k), we could show explicitly the
effect of including more bands on the eigenvalues and
eigenfunctions and extend somewhat the results of
Koster and Slater.? With an attractive potential, we
obtain a bound state for £<0 and another bound state
in every energy gap independently of the potential
strength. We can also compute the effect of including
more bands. We will not report the details of such easy
calculations, rather we turn to a model where the
potential has a finite range so as to obtain some insight
into the resonant states as well.

Let the impurity potential have the range of the
lattice spacing @ and be schematically represented by

Vo [ ¥k 3a)|?

— —dk’

o) E(F)—E
Ve / zA(/(kl; —%a)w*(k/’%a)dk’
2w E(R)—E

In order to give explicit examples of the qualitative
features of the impurity states derived in the preceding
sections, we wish to solve Eq. (31) in the approximation
in which the Bloch functions are replaced by plane
waves. We choose a model band structure with two
bands, the higher one having a secondary minimum at
the boundary between the first and the second Brillouin
zone,

E(k)=(1/2m*)(k+m/a)*+2E+4, k<—x/a
= Ey(1—coska), k| <m/a
=(1/2m*)(k—=/a)*+2E+4, k>7/a,

with 2Ey+A>0. Of course, in a one-dimensional

lattice, A cannot be negative, but for the purpose of
exemplification, we can let A be either positive or

(32)
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F16. 3. Schematic plots of the functions Ci(E) and C:(E) as
functions of the energy in the gap for the case where E; is an even
state and E; an odd state. The eigenvalue is given by the inter-
section of C1+Cp with —27/V,. (a) Case of a band structure such
that a>v. For an attractive potential a solution always exists,
for a repulsive one the potential must be sufficiently strong. (b)
Case of a band structure such that «<y. A solution can exist only
for an attractive potential when such potential is not too strong.

two extremely localized potentials centered at =3a,
Ux)= Vi o(x—}a)+o(x+30)]. (30)

The determinant equation (7) reduces in this case to

Vo/’¢(k’,%a)¢*(k', *%a)i
2T )

/

E(F)—E
=0. (31)
Vo [ Y, —%a)|?
— | ¥
2 E(})—E

negative. The effective mass is (Foa?)~! at the absolute
minimum as at the top of the first band, and m* at the
subsidiary minimum. By substituting (32) into (31)
with |¢(k,0/2=1 and performing the integrals, we
obtain the following system of equations:

111 2E—E\? 1 Qw*)e
S > 4
2 QE+A—E)12

T
Vo Ea Ew\ —E
— 12(2Eg+A—E)1/27T]
XD__ a(2m¥)1/2(2 Eg+A—E)1 ]_0,

(i (33a)

1 1 1< —E >1/2 1
Vo Ew Eoa\2E,—E 2 QE+A—E)\2

X[l _e—a(?m*)l/2(2E0+A—E)1/2] =0 .
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From a study of the above equations, we can make the
following observations:

(a) For E<0 and V<0, we have a bound state
however small V, from the first of Egs. (33a). A second
bound state appears when | V| is larger than the value
which satisfies the equation

V —1 E 2)—1 2 —1 (2m*)]/2
(Voa)*+(Eoa?) '+ (2a) (—zm

X[14e-e@morreEa 2] =0,  (33b)

The above condition indicates that the second bound
state appears for a potential of smaller strength the
larger the effective masses of the two minima 1/ Eoa*=m’
and m*, and the smaller the separation 2Ey+ A between
the two minima.

(b) For A>0, we always obtain from the second of
Egs. (33a) a bound state in the energy gap 2E,<E
<2Es+A;its energy is close to 2E, for a small repulsive
potential and close to 2Ey+A for a small attractive
potential. For V<0, this bound state, which splits off
from the secondary minimum, remains in the gap how-
ever strong the potential, its minimum value being given
by the second of Egs. (33a) with | V| — «. A second
bound state appears in the gap as | Vo| increases; it
splits from the secondary minimum as a solution of the
first of Eqgs. (33a) when

1 m A\
——=am*{*—l:1—< ) jl—l} . (330)
V() m* 2E0+A

Since V) is negative, this new state appears more easily
the larger m* compared to m'. From the first of Egs.
(33a), we also obtain that this second state reaches the
top of the valence band 2E; when

1 m’ 1
mzm*[w_

Vo m*  a(2m*A)l/2

(1—e‘“<2m*A)"2)]=0. (33d)

This happens more easily if A is small and »* large
compared to m'. If A is very large, one cannot satisfy
Eq. (33c), and the second state remains in the gap
however strong the potential.

(¢) For A<0 and an attractive potential ¥,<0, both
of Egs. (33a) can have complex solutions of the type
E—iT' with I'>0 inside the lowest band 0<E<2E,.
The resonant state originating from the first equation
appears only for | Vo| large and does not have a long
lifetime. The resonant state originating from the second
of Egs. (33a) exists for any value of the potential, and
the value of I' is proportional to a(E)}? and to
a(2E¢+A—E)'?, so that its lifetime becomes infinitely
large at both minima. The energy of the resonant state,
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in the hypothesis I'KE, is given by

1 moe
(Vo) (@B ————
2 (2Eq+A—E)\/?

X (1+e—a(2m*)1/2(2Eu+A~E>1/2) =0.

(33e)

This equation, apart from the term (aFEy) ™!, would
coincide with the bound-state equation one would
obtain neglecting the band in the first Brillouin zone
(|%] <m/a). We can conclude that the approximation
of taking into account only the band states above the
subsidiary minimum in computing the energy of the
resonant state (our zero-order approximation of Sec.
I1T) is justified when

—1/Voa)>(1/a*Ey)=m'. (33f)

This means that the accuracy of the zero-order approxi-
mation increases the smaller are the potential and the
effective mass m’ of the absolute minimum. Equation
(33¢) coincides with (33b), when |V,| becomes so
large that Eq. (33e) can be satisfied by E=0. At this
critical value of Vy, the resonant state becomes the
second bound state which splits off below the bottom of
the band for larger values of |Vy|, as explained in a.

The above one-dimensional models illustrate ex-
plicitly the conclusions derived in Secs. IT and III. In
particular, the second model shows that the qualitative
results obtained in Sec. III as to the effects of band
structure on bound and resonant states are not confined
to slowly varying impurity potentials, but can be
expected to hold for any extended potential.

VI. CONCLUSIONS AND DISCUSSION

The main results of the preceding sections can be
summarized as follows:

(a) The eigenstates of an impurity potential are
formed, in general, from Bloch functions of many
Brillouin zones, and their respective contributions
depend on the band structure and on the strength and
the nature of the impurity potential. In the language of
band theory, this corresponds to having to consider a
number of bands when computing impurity states.

(b) The existence of more extrema with large effective
masses may increase the number of bound states with
respect to the number the potential would have without
the lattice. For slowly varying potentials, most of the
contributions to the bound states comes from Bloch
functions near the extrema of the unperturbed energy
bands, and a prescription has been given in Sec. III
for computing the states in this case.

(c) The energy-band structure may produce resonant
states in the continuum which are more localized and
have longer lifetimes than the usual resonant states
considered in scattering theory. Subsidiary minima
above the absolute minimum in the band structure give
resonant states in the presence of an attractive poten-
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tial. Saddle points in the band structure could also give
resonant states as discussed at the end of Sec. II, but
we think that to prove this point a detailed three-
dimensional calculation is required.

(d) Transitions from the ground state to states which
originate from secondary minima may have transition
probabilities which increase with increasing energy,
while this cannot happen if all the states originate from
the principal minimum.

Though we hope to have given a more convincing and
general analysis than before, we wish to point out that
most of the above concepts are already present in the
literature™® and have been used in connection with a
number of experimental results in semiconductors. The
existence of a multiplicity of bound states associated
with degenerate minima at k%0 has been shown by
Ramdas and collaborators?® in their spectroscopic
investigation of donor states in a number of III-V
compounds. The existence of resonant states in the
continuum in connection with secondary minima of the
conduction band has been shown experimentally by
Kosiki and Paul®® on Se-doped GaSb and more recently
by Ahlburn and Ramdas?® on Se-doped AlSb. Acceptor
states associated with the spin-orbit-split secondary
maximum of the valence band in cubic semiconductors
have also been observed.!!:12

In the above scheme, one can also explain the origin
of the L bands of the F center, which lie above ionization
energy.!® Chiarotti and Grassano have shown that
those bands are due to transitions from the ground state
to some states above the continuum. A number of
hypotheses have been made on the nature of such
states,? but the present results, and particularly con-
clusion (c), give strong theoretical support to the con-
viction that they are resonant states with long lifetimes
which originate from subsidiary minima with large
effective masses at k= (2r/a) (1,0,0) and equivalent
points, the existence of such minima in the band
structure being strongly suggested by recent theoretical
calculations.?® Since the coupling between equivalent

minima is expected to be fairly large for an F-center -

potential in alkali halides, it is not surprising to find
three or more such states separated in energy by about
1 eV. Furthermore, our conclusion (d) agrees with the
fact that the oscillator strength of the L bands in-
creases with increasing energy. We also wish to point
out that to have transitions from the ground state to
the resonant states it is necessary that both contain
Bloch functions of the same k value, which for resonant
states originating from the subsidiary minima implies

28 See, for instance, B. T. Ahburn and A. K. Ramdas, Phys.
Rev. 167, 717 (1968) and related references.

24 F. Bassani, Aiti del Convegno Nazionale dei cristalli ionics
(G. Spinolo and R. Fieschi, Milano, 1966), p. 172.

25Y, Onodera and Y. Toyozawa, J. Phys. Soc. Japan 22, 833
(1967); S. Oyama and T. Miyakawa, sbid 21, 868, (1966); P. D.
?icco5 Phys. Rev. 153, 931 (1967); A. Barry Kunz, ¢bid. 175, 1147
1968).

BAND STRUCTURE AND

IMPURITY STATES 745
that the ground state also contain Bloch functions from
the same minima. This is in agreement with the analysis
of the paramagnetic resonance of the F center given by
Peckar,?® which requires a predominant contribution
from the Bloch function at the point X of the Bril-
louin zone.

More detailed numerical calculations for real prob-
lems can be carried out with the approaches of Sec. IT
and III, and we hope that existing results for bound
states can be improved and quantitative results for
resonant states can be obtained.

Similar techniques could be also applied to exciton
transitions, where the excitonic interaction substitutes
the impurity potential.
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APPENDIX

Let us consider the case when the minima of energy
E® occur in the conduction band at a point at the
border between the first and the second Brillouin zone,
for example, in a fcc lattice at the points

ko= (27/a)(1,0,0), koa=(27/a)(0,1,0),
k()s: (27!'/(1) (0,0,1)
and

_k01: (27I'/d) (iy0>0)7 —k02: (27I"/(l) (OrLO);

—‘kos—_— (271'/0) (0,0, i)

For any couple of points which differ by a reciprocal-
lattice vector, we can write, for values of k in the
second Brillouin zone in the vicinity of the secondary
minima, Eq. (11) in the form

12 ky—kos)? HE(Ry2HR2
[ (beboo)? WA EO-—E]@(k)
zmll*

*

Zml
+ / Uk K) o(I') k' =0
1k’ 1>27/a

for k,>2w/a and
[h2(ka:+k01)2 | hz(kx2+kz2)
I

2 * *

+E°—E]¢(k>

2m,

n / U(kK)o(K)dK =0 (A1)
1k"1>27/a

for k.,<-—27/a,

26 S, 1. Peckar, Nuovo Cimento 60B, 291 (1969).
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where we have neglected interaction between non-equivalent valleys. Choosing as the origin of k the critical
points ko;, —ko, and performing appropriate transformations under the integrals, Eq. (A1) becomes

h2k$2 hZ(ky2+kz2)
[l Bk

EO—E]w(kz"‘kOx: ky, k)

2m“* 2ml

i / K Ukt hus, by, ks b ko, By ) ok ko, B/, B
ke >0

+ K" Ukatkos, ky, ke ko' —kos, k', k) o(ke' —koay by, k) =0,

k! <O

for k,>0,
h2k1:2 hZ(kyZ_i_kzZ)

[ + +

*

and, with more compact notations,

E° —E] w(k—km)

Zm“* 2ml

—|—/ dk’ U(k—ko1, k" —ko) o (k' —ko)+
kg <O

for £.<0.

Equations (A2) can be written in the condensed form

thxﬁl h?(ky2+kz2)
[+ -2 |9
Zm”* 2’}%1
—I—/dk' U:(kk)f(k')=0, (A3a)
with
f(k)= o(ks"kos, ky, k2y  for k>0,
= o(ky—koz, ky, k.) for k,<O,  (A3b)
and
Uik, k)= Uk+ko, K'+kot), %£:>0 k>0
= U(k+k01, k/‘kol) 5 kx>0 kx/<0

= U(k—k()l, k/+k01) y k;,;<0 kxl>0

=U(k—ko, K’ —ko1), k.<0 k,/<0. (A3c)
The above expressions for U; can be simplified in the
vicinity of the minimum by taking v (k,r) = e T (ko,r)
and making use of the property that y(ko,r)=y¢(—ko,
—r1). We obtain then

Ur(k, k') = / dr e U (r) |u(kor) 2. (A4)

dk’ U(k—ko1, k'+kor) o (' +kor) =0,

kg’ >0

(A2)

With this substitution, we can write Eq. (A3a) as

h? 62 h2 / 62 62
[ —— >+E°—E:| /@)
21%] [* (")x2 2m1*\6y2 652 i

+U@®) | u(ko,r)

f(r)=0, (AS)
where f(r) is the Fourier transform of f(k). The
modulating term |#(ko,r)|2, in general, must be taken
into account, and it gives an effect related to the
symmetry at the point ko. If the Bloch state at kg is
odd, for instance, the potential goes to zero at the
origin. When the potential U(r) is slowly varying, the
term |#(ko,r)|? can be taken equal to 1, and we have
the usual effective-mass equation at ky;.* Similar equa-
tions can be obtained about the minima at koz and kos,
and they give in this approximation degenerate eigen-
values. Because of the definition (A3b), any solution
o(k) of Eq. (A1) is obtained from (AS) or (A3a) displac-
ing symmetrically any function f(k) on the second
Brillouin zone.



