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T Matrix for a Substitutional Imyurity in Diatomic fcc and bcc Lattices
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The phonon scattering T matrix is analyzed according to the irreducible representations of the point
group pertaining to the perturbation caused by a substitutional impurity in the diatomic fcc and bcc lattices.
The effects due to change in mass at the impurity site and the changes in the nearest-neighbor central- and
noncentral-force constants for the impurity —host-crystal interaction are taken into account. Relations
between lattice Green s functions are derived for the nearest-neighbor interactions in the pure lattice.
Simple expressions for the irreducible representations of the 1' matrix are obtained, by assuming only
central forces.

I. INTRODUCTION

'UCH attention has been drawn in recent years
~ towards the study of static and dynamic prop-

erties of crystals containing substitutional-impurity
atoms. The behavior of the phonon scattering T
matrix for the defect is investigated in a number of such
studies. The evaluation of the T matrix is of central
importance for calculating the phonon relaxation times
in transport theory. ' The elastic properties' and the
infrared lattice-vibration absorption due to gap and
resonance modes in imperfect solids may also be inves-
tigated using this formulation. The resonance denomi-
nator of the T matrix determines the condition of occur-
rence and the frequencies of these resonance and gap
modes. The explanation of several other phenomena,
e.g., the first-order Raman scattering, ' the Mossbauer
eRect, and the second-order Doppler shift, ' involves
the evaluation of the perturbed Green's functions,
which may be determined easily if we know the ele-
ments of the T matrix.

Several attempts~' have been made to analyze the T
matrix in some realistic models, where e8ects due to
changes in mass and nearest-neighbor force constants
were taken into account. The change in the noncentral
force interactions were also included in later publica-
tions. Benedek and Nardelli~ have studied the case of a
single impurity in a lattice having rock-salt structure.
One substitutional impurity in a monatomic bcc lattice
has been discussed by YussouB and Mahanty. ' However,
their results are in error because of their neglect of some
nonvanishing elements of the perturbation matrix (see
Sec. IV). Mannheim' has studied the optic-active F~„
modes in the case of monatomic bcc and fcc lattices.
Recently, ' " numerical calculations of some of the T

' M. V. Klein, Phys. Rev. 141, 716 (1966).
~ G. Benedek and G. F. Nardelli, Phys. Rev. 167, 837 (1968).
' G. Benedek and A. A. Maradudin, J. Phys. Chem. Solids 29,

423 (1968).' G. Benedek and G. F. Nardelli, Phys. Rev. 154, 872 (1967).
'P. D. Mannheim and A. Simopoulos, Phys. Rev. 165, 845

(1968).
6 T. P. Martin, Phys. Rev. 160, 686 (1967).
7 G. Benedek and G. F. Nardelli, Phys. Rev. 155, 1004 (1967).
8 M. Yussou6 and J. Mahanty, Proc. Phys. Soc. (London) 90,

519 (1967).
~ P. D. Mannheim, Phys. Rev. 165, 1011 (1968)."R.F. Caldwell and M. V. Klein, Phys. Rev. 158, 851 (1967).
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matrix elements have been made. It is therefore inter-
esting to analzye the T matrix in some other realistic
cases.

In the present paper, the T matrix accounting for
the phonon scattering is worked out according to the
irreducible representations of the point group which
pertains to a single-substitutional-impurity perturba-
tion in the case of diatomic fcc and bcc lattices. We take
into account the effects due to change in mass at the
impurity site, and the changes in the nearest-neighbor
central and noncentral force constants for the impurity—
host-crystal interaction.

A brief account of the dynamics of the perturbed
crystal with the reduction of the T matrix into various
irreducible representations is presented in Sec. II. We
block-diagonalize the 39-dimensional T matrix of fcc
lattice and the 27-dimensional T matrix of bcc lattice,
using the lattice-site symmetries in Secs. III and IV,
respectively. For simplifying the calculations, relations
between the lattice Green's functions are derived for
nearest-neighbor forces in a diatomic lattice in the
Appendix. These relations are utilized to obtain simple
expressions for the diferent irreducible representations,
especially the optic-active F&„modes, for the case of
central forces only in Secs. III and IV.

II. THEORY

The time-independent equation of motion for a
perturbed crystal may be written in matrix form as'

Ll,+P(~')]4'= /d'@

where Lp= 3fp
~ @pap ~ is the dynamical matrix of

the perfect host lattice and P(/d') is the perturbation
matrix, explicitly given by

p(~2) — ~2/)f —1/2+/lf/III —1/2+~ —I/2+@/)Il —1/2 (2)

Here SIp and Cp are the mass and force constant
matrices of the perfect lattice, and 635 and AC are the
corresponding perturbation matrices due to the presence
of defect atoms in the lattice. + is a column vector
related to the usual displacement-column vector U by

U —~ —I/2+
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In diatomic cubic lattices, J.o is a 6S&(6S matrix,
vrhere A is the number of unit cells in the crystal. The
6N solutions of Eq. (1), i.e., the eigenvectors and the
eigenvalues, may be written as {%z}and {zgz'},where lz

is an index running from 1 to 6S. These eigenvectors
{%'&,}satisfy the orthonormality condition,

(4'y CVp z (1Vp+DM)ez')= l5$z, '. (4)

The perturbation matrix P(zg') is a 3nX3n matrix,
where n is the number of the atoms (including the im-

purity atom) directly disturbed by the presence of the
defect atom. The 3n&3n subspace, which is the space
of P(zgg), will be the target of our study. The T matrix
satisfies the equation

T(z) =P(~') —P(~')G(&) T(&) (5)

where G(s) is the Green's-function matrix operator for
the unperturbed lattice defined by

G(s) = (Lp —sI) '.

Similarly, we hereafter abbreviate (r Ig(z) I
I") by gz(s).

The T matrix may thus be written as

(12)

III. DIATOMIC FCC LATTICE

p;;(0,0) = —pzg'+4pz+2X'),

p;, (Q, Q) = 0,

p, ,(O,R„)= —', xzzpp, +V),
= —x»V

p, ,(O, R„)= ——,'xz "p —X')n, n, ,

p;;(R„,R ) =-,'x(K+V),

if n;WO

for n;= 0;

if n;QO

for n;= 0;

The elements of/the 39X39 perturbation matrix
P(&g') for the fcc lattice are as follows:

Here, z is the complex frequency a=zgp+2izgg in the and
limit as q

—+ 0+. The formal solution of Eq. (5) is
p,,( ., ~ =-,'xP. —X')n;n, )

T(&)=P(~')Lf+G(&)P(~') j '
ij = 1, 2, 3 (13)

The introduction of the symmetry coordinates ac-
cording to the various irreducible representations of the
point group of the impurity site block-diagonalizes
simultaneously the two matrices P(zgg) and G(a) L= g(s)
in the subspace 3nX3nj. Consequently, the inverse
matrix appearing in the expression of T matrix, can be
expressed as

D+g(s)P( )3- =2 2 Ir,~)(r,~I
r m, mi

XLI+g(a)P(zp') j 'I r, nz')(r, nz'I, (8)

where Ir, nz) denotes the norznalized symmetry co-
ordinate, which transforms according to the first row
of the irreducible representation F. The index m has
values from 1 to n(I'), where n(1') is the number of
tiznes the irreducible representation r occurs in P(zgg).

Each of the projected inverse matrices appearing in Eq.
(8) may be written as

(r ID+g(a)P(~')7 'I r) = &'r(&)/Dr(&) (9)

where Dz(s) is the resonance denominator

det
I
I+g(s)P(zp') I, (10)

coming from the representation I', and 1Vr(s) is the
corresponding adjoint znatrix adjII+g(a)P(zgP) I. We
may therefore write for the irreducible representation
Tr (a)of the T matrix

2"r(a) = Pr(zp')&r(s)/Dr(a) ~

where Pr(zg') is the abbreviation for (r. IP(zgp)
I
I'),

the matrix element of P(&g') for the representation I'.

where p is the mass-change parameter=hM/cV+ and
x=31~/M+ is the ratio of the masses of the ions of two
host sublattices. lz= Ay/cV~ and lz'= 5y'/3JJ+
changes in the central and noncentral nearest-neighbor
force constants, repsectively, in units of squared fre-
quency. R„, the lattice vector of the immediate neigh-
bors of the impurity site at the origin, is given by

IR. I

= (o/~&)(nz, np, np),

where one of the numbers of the index triple (nzn&np)

has value zero, and each of the remaining two may have
values &1. The constant a is the lattice spacing. In
Eq. (13), the upper signs apply when the impurity
occupies a positive-ion site, and the lower signs when it
occupies a negative-ion site.

The irreducible representations for an impurity site
having symmetry 0& in the fcc lattice are

r 4Pz~+ 2Pp g+ 2tzg+ 2Fpg+ 2Eg+ Eg.

+Ap +Azg+A„. (15)

The necessary symmetry coordinates, i.e., the sym-
metrized linear combinations of the 39 ionic displace-
ments in the space of the impurity ion, have been
worked out by Dettmann and Ludwig. "However, their
results for the irreducible representations 2E, and E„
are in error. They have been corrected and presented
in Table I. After using the corrected normalized-sym-
metry coordinates for block-diagonalizing the per-
turbation matrix P (zgg), we obtain the following znatrix

"K.Dettmann and %. Ludwig, Phys. Condensed Matter 2,
241 (1964).
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elements for the various irreducible representations:
-—6~ +4(X+2Z') —2x j9,' —(2x) 1 p, yV)
—2xii2Z'

(2x)»&p. —X')

P». (go ) =
—(2x)"'p.+X')

(2x)'"(&—X') 0

-', x(x+x')
—-', x(x —x')

—-,'x(x —x')

—;x(xyx')

3K+X' —V3 P.—X')
Px„(oo') = 61X

—VB(l —Vj X+39 )

go

2gl 2g5+gll 8 (go+g7)
g5,„(S)=

g& 8 (go+g7) g4+g5+2go+2glo+2g14 2go+glo

2&2go

8 go 2V2go 2go+g15 g4
—go+2glo —2glo+2g17.

g4+g +2gg 2glo —2g14 2go+glo
g~..(s) =

—gg+g g —g+gg +gg —ggr)
glo 2glo —2g17 —2go+2g7+2go

g~, (s) =
—gg +ggr+gg —

g —g +gg —g )

(
glo+2glo+2g17 2go —2g7+2go

g~, (s) =
gg, 2gr+2g, —g, g,+2g, +—g„)—
—g4+ go

—2go+2glo —2gl6+2g14+kgl5+ g16+gl. 7

gx, (s) =
o~3( g15+2g16+2g17)

glo~(s) = 2g5+gll+2glo 2gl7 g gAQ~(s) = 2g5+gll 4glo+4gl7 g

gAog(s) = —g4+g5+4go+2glo —2glo+2g14 —g15 —2glo —2g17,

gAgg(s) g4+g5+4g8+2g10+2glo 2g14+g15+2g16+2g17 g

where the different combinations of the elements of the Green s-function matrix g(s), are given by

Q 6 j„+(k|S)
g.'(-') =

(27r)' g=l ss ool. ..'—s

o V3 (—g 15+2g16+2g1 7)

—g,+g, —2g, +2g„.+2g„—gg„—-'grr —grr —Or)

(17)

TABLE I. Unnormalized symmetry coordinates according to the irreducible representations 2E, and 8„for an
impurity site having Qh, symmetry in the fcc lattice.

Ps.(go') =XX'g PA,.(o&') =XX', PA„(go') =XX', PA„(oo') =XX. (16)
From Eq. (16), one may note that for central forces only, i.e., for V=O, the matrix elements of P(goo) for the
irreducible representations Ii ~„E„,A2„, and A2, vanish, and therefore these symmetry motions of the ions of the
impurity space are absent.

The projected matrix elements of the Green's function g(s) are as follows:

2gy 81/2g 81j2g

0 0 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

—g -u 01 1

—1 0
1 0—1 1 0—1 0

0 0 0
0 0 —2

—,u 0 —,a1 1

1 0 0
1 0 —2
1 0 2
1 0 0
0 —1 0
0 1 0

0 —u —e1 1

0 1 0
0 1 —2

0 —1 —2
0 —1 0

1 0 0
1 0 0

—a —-a 01 1
2 2

—1 1 0
1 —1 0—1 —1 0
1 1 0

0 0 0
0 0 2

0 ——a —a1 1
2 2

0 —1 0
0 —1 —2
0 1 —2
0 1 0

—1 0 0—1 0 0

——81
2

—1

—1—1

0 —,'a

0 0
0 —2
0 2
0 0

0 1 0
0 —1 0
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0 is the primitive unit cell volume of the lattice, the number s indices the six polarization branches, and k and
co&,, are the wave vector and frequency of the normal mode of the perfect lattice, respectively. The integration
is to be taken over the first Brillouin zone (BZ). The j„+(kIs) for )(1=0 to 17, have the following expressions:

jg+(k
I
s) =

I
e,(& I k, s)

f
',

ji+(k Is) = e.(W I k, s)e *(W fk, s) cos(-', kpa) cos(-,'k,a),
jg+(k

I
s) = e (W I k,s)e ~(&

f k, s) cos(-,'k a) cos(-,'kpa),

jg+(k
I s) = e.(W Ik,s)ep*(a fk, s) sin(-', k.a) sin(-', kpa),

j6"(k
I s) =

I
e (W fk, s) I' cos(k.a) cos(kpa),

j5+(kfs)= fe (W fk, s) I' cos(kpa),

jg"(k Is) =
I
e.(w fk, s) I' cos(-', k.a) cos(-,'kpa),

j7+(k fs)= fe (W fk, s) I' cos(-', k a) cos(-,'kpa) cos(k7a),

jg+(k
I s) = e (W I

k s)ep*(W
f k, s) sin( —,'k a) sin( —'k pa) cos(—'k a),

jg+(k fs) = fe.(W fk, s) I' cos'(-,'k.a),
ji()+(k Is) =

I
e.(W fk, s) I' sin'(-,'k.a),

j»+(k I s) =
I
e.(a I k, s) I

gf 1+cos(kpa) cos(k, a)],
j»+(k

I
s) =

I
e.(+ f

k, s) I
'L1 —cos(k pa) cos(k, a)],

pig+(k fs)= fe (~ fk, s) I' cos(-,'kpa) cos(-,'k a),
j14+(k fs)= fe (a fk, s) I' cos(k a) cos(—,'kpa) cos(-', k7a),

j»"(k
I
s) = e.(a f

k,s)ep*(~ I k, s) sin(k. a) sin(kpa),

jig+(k fs) = e (W fk, s)ep*(% fk, s) sin(-,'k a) sin(-,'kpa) cos(k7a),

j17"(k
f s) =- e.(W I

k, s)ep*(W
f
k, s) sin(-,'k.a) sin(-,'kpa),

(n, P,y= 1,2,3 but nWPWy) (19)

where e (& fk, s) are the Cartesian components of the polarization vector at the two different sites of the unit
cell of the host lattice. The polarization vector e(W

I k, s) should be multiplied by a phase factor e'~'"~ to compare
it with the components of the eigenvectors e (k I y;) of Born and Huang. "

We may now write the different irreducible representations Tr(s) of the T matrix after using Eqs. (9) and (11)
as follows:

TAgg(z) XXL1+X~( g4+g5+4gg+2gio+2gig —2gi4+g15+2gig+2g17)]
—',

TA,g(e) =XX "I 1+XX'(—g4+g5+4g, +2g, ()
—2g„+2g„—g, —2g„—2g,7)]—,

TAggg(s) =XX'L 1 —XX'(2g5 —g»+4gig —4g17)]—',

Tig„(s) =XX'L1—x)1'(2g5 —gii —2gig+2g17)] '
g

(2o)

(21)

(22)

(23)

vrhere

X 3)1+X'+4XXX'g@g,gg

Tg„(z) =
414.,(-)(—&3(x—x') —gxxx'g, ,"

—x3 (x —x') —gxxx'gx, ,")
X+3K'+4XV.'ge„"

D~.,(s) =1+XL(X+X')(—gg+g5 —2gg+2gio) —( —X')(g» —g16—gi"+gig+g»)]+X'»'I:( —gg+g5 —2gg+2g»)'

4(g16+g 17) g15 +2g15(g16+g17) 4(g13 g14) (glg g14 9g15 g16 g17)]~ (24b)

X'+XXX'g F„" —XV.'g F „"
TF„(s)=

D (x)(—xxx'g " x+xll'g ") (25a)

XX' (1+XX'gF„" —XX'gF„"
TF,„(s)=

Dx„(x)(—xl'g " 1+xX'g „") (26a)

&~ M. Born and K. Huang, Dyeamica/ Theory of Crystal Lattices (Clarendon Press, Oxford, England, 1954), p. 298.

vrhere

DFggg(&) 1+X@( g4 g5+2gg+g15)+X (glg+2g16+2g17)]+XXX'I (gig+2gig+2g17)( —
g4

—g5+2gg+g15)
—4(gg —g7+gg)'] (»b)



BAL KR ISHNA AGRAKAL 186

where

Dpig(s) 1 Xll Lg4+g5 g12+g15 2(g9 g16 g17)]+X Il L(g12 2g16 2g17)

X (—g4
—g5+2gg —g15) —4(g6 —

g7
—

gg) ']. (26b)
X+X'+2XV.'gp 2'

Tp,„(s)=
2D .„(s)(—X+X'—2XXX'g

—X+X'—2XV, 'g p,„"
X+X'+2XV, 'g p

(27a)

where

Dpg~(s) 1+X[(Il+Il )(g4+gg+glg g18 g14+g16 g17)+p Il )(2gg gl5)]

+X'V'L(g4+g5+2gg —2g,8
—2g„)(g4—g„-+2g„+2g„—2g„)—(2g,—g„-)']. (27b)

kQj yWi n&m k&p

X(ling») .+[Pp,.(s)
~ g;;, (29)

where 8, j, k, 778, 73, p, etc. = 1, 2, 3, 4.
Here ~;; or g;; are the matrix elements of the 4X4

matrices Pp, „(s) or gp, „(s). (»;~), ogr (Ag;p);9 are the
2X2 subdeterminants containing the matrix elements of
the two rows or columns ip and the two columns or
rows jk of Pp, „(s) or gp, „(s). (HP, »), „ is the 3X3
subdeterminant containing the matrix elements of the
three rows or columns jPk and the three columns or
rows imn. In writing these subdeterminants the orders
of the rows and columns should be kept in mind. One
interchange in the rows (or columns) means a multipli-
cation of the subdeterminant by —1 once. Ug;; or
QI'„are the cofactors of the matrix elements g;; or

P;;. ~Pp, „(s) ~
is the determinant of Pp, „(s). The sub-

determinants of the projected perturbation matrix
P p,„(s)may be simplified to have the following values:

In these Tr(z) matrices, gz" denote the matrix elements
of the corresponding projected Green's function of the
representation I', i.e., gr(s).

For the optic-active 4F~„modes we have

Tp,„(s)=Q/Dp, „(s), (28)

where the matrix elements Q;, of the 4X4 Q matrix are
given by

Q,,=P;;+2 Z(»'.);.g..+ZZ ZZ(oP;:)'-

(CIP284) 284= CIP11=X Il~

(QP234)134 QP12 ———2X"9A",
(DP184)134 P22 X V (4X 600 ),
(+P324) 124= &Pig = (2X) XV.

(ClP124)124 P38= 2X Il L16V 6M (X+X )]1
(C1P123)128 P44= —2X Il /+X )6M

(I—IP314)214 I-jP23

( P812)412 P34 2X ~ P' ll )6~

( P423) 128 ( P418)213 I—I P14 I—I P24

The resonance denominator

Dp. (s) =1+2 Z g'P'+ZZ ZZ(~g-)' (»-)'

+2 2 &g'&P'+IP .(s)llg .(s) I, (32a)

where the second term

P P g;~P;, =$4(Ii+2K') —6402]gg —8X'lgP(gg —g,)

+ll (gl+g2+g8)]+XP +~ ) (g4+g9+glg

+gl3+gl4 g16+g17)+X~ (2g5+gll)

—X(Il —X') (2g8+gl, ), (32b)

(»12)12=XV/4(Ii+29) —6502],

(»„)„=-,'XP,+I ') Le, ' —,~2],

(»14)14—2XX (5ll+Il ) 2XPE+Il )640

(»23)23 = (»24) 24 ———,'X9,'(P,+Il'),

(»„)„=XV.', (»14)84
—(2X)"9,X', ——

(»12)18= —2'l'XIl'P, +Il'), (»13)„=—X'I'g'P, +g'),
(+Pig)14 2'"XIl'P, —Il') ) (»13)24 X'7'll'(ll —X'),

(»12)28
——(2X) '"XVP.+V),

(»23)24= ——,'X9 '(X—V),
(»12)24= —(2X) 'l2XX'P. —Il'),

(»12)84 (»13)34 (»28) 84 (»24) 84

= (»14)23 (»14)24 0, (30)

and the fifth term simpli6es to the form

iPp, „(s) i igp, „(s) i

= —XR 7'640'p gl,Clg17. (32c)

The third and fourth terms, which are too lengthy to
reproduce here, may be written after using values of

(» ),, and CIP;;, given by Eqs. (30) and (31), and

the Green's-function matrix gp, „(s).
For the fcc diatomic lattice the relations between

the various Green's functions may be written after using

Eqs. (A6)-(A8) of the Appendix. Equation (A6) reduces

to the form

4L(+2 ')go —X"'{ ' +(+ ') —( —')g)]
= 1+40'g0. (33)
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If we substitute the two values (a/v2)(0, its, ri~) and reducible representations Tr(s) are:
(45/V2)(p, &6,0) for

~

R„'~, in Eq. (A7), we have

4(rl+2ri )gi X P2 rt'(2 g5+ gii)+ 4( li+ ti') (go+gv)

4(~—n')—gol=~'gi, (34)
where

D„„(z)(—1 I) (39)

4(~+2~')g X'"—P~'(g +g )+l(~+a')(g +g +2g
+2gio+2gi, ) —

2 (ti —ti')(2g, +gi5)j=og'g2. (35)

The choice of
~

R„'~ = (a/v2)(&, 0,ii,) in Eq. (A8) gives

Dg, „(s)= 1+XX(g4+2g8+g9+glo gl5 g14

g15+g16 g») ~ (40)

Tp„(s)= xltL1 —xX(g4+ g5
—2go —gl5) $

—', (41)

T~,g(s) =XXL1—XX(g4—g5 4gs 2gio —2gla

+2gi4 —gi5 —2gio —2g»$ ', (42)

4(~+29')g6 —X'"L29'go+ 2(n+~') (2g6+g»)

2('9 —rl )(g—4 g'+—2glo 2gio+—2g») j="g6
—

VBZ)x 3X

D „(s) —V3X
(43a)T~,(s) =

The matrix elements of the 27)&27 perturbation
matrix P(462) in the CsC1 structure are

ll 12 18
1

In these relations li=y/cV+ and ti'=7'/cV~, where y
and y' are the central- and noncentral-force constants
of the pure lattice.

The problem is immensely simplified if we confine
ourselves to central forces only. For this particular case g15+g16+gl2) (43b)
the use of the above relations between the Green's func-
tions help us a lot, and the 4X4 matrix E5, (s) reduces IV. DIATOMIC BCC LATTICE
to a 3)&3 one. For this particular case we have

Tp, „(z)= 21 22 23
D p,„(2)

31 32 33

Qll (4X 640 ) pere /4ri )(1+46 g )+ pE/'g)64g

&& C~'go 4~X'"(g —g6)7, —

Q =¹= —(2X)'"~I1+(~'/4n)(1+ 'go —4~go)l,

Q„=Q„= (2X)' 9 L1+( '/4')(1+ 'g, —49igo) j,
Q22 = Q66 = —,

' (Xk) (1—6462go),

Q26= Q62 = —', (XX)(1—64g2go) . (37)

The resonance denominator

Dg,„(s)= 1+(4X —6492)go+ (X/4'�')

&&t (1+ )~'+4n(2 — 'go) jL1+ 'go —4~goj

+4XXi&2(1—6~'go) (g, —g,) . (38)

p, ,(0,0)= —6542+ —228P+2X'),

p'4(0, 0)= 0,
p, ,(0,0)= ——',x'"(X+27),

p@(O,R„)= ——,'X'i2p —X')n;n, ,

p, ,(R„,R„)= —;X(~+2V),

p,,(R„,R„)=-;xp, —V)n, n, ,

(i,j= 1,2,3) (44)

where
I
R

I

= (45/~3)(n, ,n„no) and each of the numbers
of the set (n} may have values &1. Yussouff and
Mahanty' have considered the case of substitutional
impurity in the monatomic bcc lattice. They neglected
the matrix elements p,;(R„,R„), which are, in fact,
nonvanishing elements. "The inclusion of these matrix
elements in P(tg2) alters significantly the final results.

The various irreducible representations for a sub-

stitutional impurity having 0& symmetry in bcc lattice
are

I =3Pl~+2P2g+Plg+F2g+ Eg++u+~2u++ lg ~ (4 )

The perturbation inatrix P(542) has the following

For the monatomic-fcc lattice this denominator reduces » Dr. M. Yussouii' has accepted this correction (private
to Eq. (31) of Mannheim. ' The other nonvanishing ir- communication).
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matrix elements for these irreducible representations:

—360&'+8('A+2K') —(8X)'"P +2K') —4(X)'"(X—X')

P,„(oo') =-', —(8X)'"P +2K')

.—4X'~9(X—X')

X(&1+2K')

%2X(X—X')

&2X(X—X')

X(2X+X')

& +&l ' K2(k —X'))
p9'9, (oo ) =6"

V2 P.—X') 2X+&1'

po„(009) =XX', p9,„(009)=X&1', pe, (o&9) =Xy',

ps„(409) =XX', p~o„(409) =X&1, p~„(409) =XX. (46)

For central forces only, we observe that the matrix elements for the irreducible representations F&„F2„,E„
and E„vanish, and these symmetry Tnotions are not present. These results are different from those of Yussou6
and Mahanty, who have shown that all the irreducible representations contribute in this particular case.

The projected Green's functions for these irreducible representations are

go 81/2g

g5,„(s)= 8'~'g1 gp+gp+go+2gq+2gp —&2(gp+g10)

- —4go —v2(go+ g1o) g4+go g6+g9 glo

g4 —g5+gp+2gp —2go
g~.,(s) =

—v2(gp —g1o)

—~2(gp —g1o)
)

gp g5 g6+g9+glp

g5'&g(S) =go g" go gp g1o &

go'9-(S) =g4+g5 —
go

—gp+g&p &

gE, (s) =g4 g;+g, 2—g9+2g8 —
g9 glp &-

gi„(s) =go+go+go —2g& —2gs go+g1o,

g~9„(s) =go+g;+go —2g1 —2go+2g, —2g1p &

gx&&&(s) =g4 g5+gp —2g9+2go+2gp+2g10.

Again, the Green's functions g,+(s) are the complex-valued integrals given by Eq. (18).Now, however, j„+(k
f
s)

for p= 0—10 has the following expressions:

jp+(k f
s) =

f
e.(+ f

k, s)
f
',

j1+(k fs) =e (~ fk, s)e.*(~fk, s) cos(-,'k1a) cos(-,'k, a) cos(-,'kpa),

jo+(k
f s) = e (~ f

k,s)ee*(a [k,s) sin(9'k a) sin(9'tea) cos(ok~a),

go+(k
f
s) = 2

f
e.(W f

k, s) f' cos'(-', k.a),
j4+(kf s) =2[e (~[k,s) [' sin'(pk a),

j,+(k[s) = [e (W[k, s) [' cos(k1a) cos(kpa) cos(kpa),

jo+(k[s) = [e.(w [k,s) [' cos(kea) cos(k,a),
j9+(kfs)= [e (% [k,s) f' cos(k a) cos(kea),

jp+(kls)= le (~l»s) f'cos(4a)

jp+(k fs) = e (W f
k, s)ee*(W fk, s) sin(k. a) sin(kea),

j10+(k [ s) = e (w f k, s) ee*(w
f
k, s) sin(k a) sin (AI9a) cos(k,a), (48)
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where n, p, p= 1, 2, 3, and 53M p&y. Again, the polarization vector e(W
I
k, s) should be multiplied by a phase factor

e'~' & to compare it with that of Born and Huang. "
The different irreducible representations TI(s) may again be written down as

where

T~„(s)=XX[1+X',(g4 —g,+g, —2g7+2gg+2gg+2g»)) ',

Tpg„(3) =XX[1+Xl1(g3+g5+g5 —2g7 —2gs+ 2g0 —2g1o)] ',

Tp„(z) =G'[1+XX'(gg+g5+gg —2g7 —2gg —gg+g10)] ',

& s,('-) =xl1 L1+""(g4 —go+go —2g7+2gg —
gg

—g»)?'

Tp .(3) =»'L1+»'(g4+g" —
gg

—gg+g10)?",

Tp„(z) =xl1'[1+XX'(gg —g, —g, —gg
—g10)]

—',

x Zy2Z'y3XXZ'g» &2/, —x') —3nz'gp»
Tp, ,(z) =

20,,(s)LI(X—X') —XxXX'4,," 2X+X'+3xXl '4 „" )

(49)

(50)

(51)

(52)

(53)

(54)

(55a)

Dpg (s) = 1+(3X)[(2K+X )gg+ p+2X ) (g4+ 2g7 —2gg) —3(X+X )go —(X—X )gg —(2X—5X )gg+ 3(2X—X )g10)

+XgXV[(g4 —g, +go+2g7 —2gg)(gg —go —go+gg+glo) —2(gg —g1o)'). (55b)

Here gp„'J are the matrix elements of g p„(z).
For the optic-active modes 3F~„, we have

Tp,„(s)= Q/D, „(s), (56)

where the elements Q,, of the matrix Q are given by

kgb mPj
(57)

in which Ag;, are the cofactors of the elements g,, of the matrrx gp „(s),and
I

Pp,.(s) I
is the determinant of P p, (3).

The subdeterminants (AP;5);, which are to be written as discussed in Sec. III, are given by

(+Pgg) gg X'XX', (DPI3) gg ——(2X) 'I'XV,

(&PI3)13=- ox[24M—' 540'(2.'A—+X')), (APIg) gg ——0,

(AP12) 12
—ox(x+ 2X )Eco, and (APgl) 13 gv2x(X X )Eco

The resonance denominator

Dp .(3) =1+22 P' g'+ 2 2 (»'.). (~g'5).+ I
Pp.(3) I I g p .(3) I,

(58)

(59a)

where

Q Q P;7g;;=[—5403+(Sj3)(X+2K')]go —(16/3)XIIg[(l1+2X')gI —2(x —X')gg]

+(3X)[(X+2K')gg+(2K+X')g4+3(X+X')g; —(X—X')go+2(x+2K')(g7+gg) —(2X—5X')gg —3(2X—X')g10], (59b)

Q Q(A P)4„1~,(k g)4„5,
= XXX'[ DXg+IIhSggg+(24)'X"5 g]Ig—' gx54[0(2—+XX')Dg +gg(+X2 )XA ggg

kgi y&j —23tg(x —X')Agog], (59c)

and

IPpx (4) I I gpx (3) I
XXX &40 [go+glI+s gl+glg 4gg+glg] ~ (59d)
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D~, (s) =1+(xX/3)(2g, +g4 —3g,—g,+2g,
—2gp —2go+6gio) (66)(8/3) (())+2))')go —x'i'! (g+2g')gg —2(q —g')go)}

= 1+o)'gp, (60) ACKNOWLEDGMENTS

Again, Eqs. (A6)—(A8) of the Appendix give the follow- where

ing relations between the Green's functions:

( '"/3)L (n+ n')g x'"—
f,(n+ n')(go+go+go The author is grateful to Professor G. S. Verma for

+2 +2 ) 2( )( + )}~ o (61) his encouragement, and to Ashok Kumar Gupta for
reading the manuscript.

(4/3)! 8(g+2g') go
—x ( (g+2g') (go+gio)

(~ n—')(g —+g. g+g- —go)}3—= 'g, (62)

T);,„(s)= Q/Dp, „(s), (63)

where g=y/M+ and g'= y'/3I~.
For the particular case of central forces only, we have

Q C.p(k)ep —=o)), ,'e„—!,
k s k~s)

(A1)

APPENDIX: RELATIONS BETWEEN
GREEN'S FUNCTIONS

The time-independent equation of motion for a pure
diatomic lattice may be written as

where the Fourier-transformed dynamical matrix
where the explicit forms of the matrix elements Q;, are

3X X

Qn = ((SX/3) —oo)') — oo)'(1+o)'gp)+ —oo)'
8~2 is defined by

C p(k)
KK

8g
X ~'go ——x'"(g|—2go)

3

3607 87)
Q)o=Qn= —(Sx)'t'-', & 1+ 1+o) go

——
go

8g 3

3EM
' 8'g

Q =Q = —4x'"-', X 1+ 1+ 'go ——
go

8g 3

(k) Q L 0( $ )e
—ik R(l)

KK

(A2)

Here l=l f', R(l—)=R(l,~) —R(l', ~'), and R(l, ~) = RP)
+R(~), where R(l) is the lattice vector of the cell (l),
and R(a) is the position vector of atom ~ with respect
to the cell (f).

I- p'(l)

Qoo = ox'(1 —oo) gp), Qoo = ox'(1 —opt) gp),

and

Q2o= Qo2= 2'"xp(1 —oo)'go) . (64)

are the elements of the dynamical matrix I.o of Eq. (1).
The eigenvalues of the matrix C are the squared fre-
quencies o))...', and the eigenvectors e (~/k, s) are the
Cartesian components of the polarization vectors
e(~/k, s). They are orthonormal and normalized as

The resonance denominator P e *(~/k, s')e (~/k, s) =6„, (A3)

Dp,„(s)= 1+(SX/3 —po)') gp+ (3X/Sg')

X!(16$/3)+. (1+o)o)' (8))/3) oo)—'go)

X 51+~'go —(Sv/3)go&+(@/3)
Xx'"(1—oo)'go) (gi —2go) . (65)

Again for the monatomic bcc lattice this determinant
reduces to that of Mannheim. ' The other nonvanishing
contributions to the T matrix are from the irreducible
representations T~„(s), T~,„(s), and Tp„(s) which are
given by Eqs. (49), (50), and (55).

Out of these, T~„(s) simplifies to

xX 1 %2i
!T);„(s)=

3D);„(s) v2 1J

Qe.*(a'/k, s)e (p» /k, )s=b.pb„„. . (A4)

The eigenvectors of Eq. (A1) should be multiplied by
the phase factors t."~'"&") to compare them with the
eigenvectors e (kI y;) of Born and Huang. "

For nearest-neighbor forces only, we may write Eq.
(A1) as

Z L.po(o 0)ep(~ Ik,s)+2 e '"'""Z L-p'(o, R-)
Ros P

Xep(% I k,s) =o))...'e (& I k,s), (A5)

where the two different sites of the unit cell are repre-
sented by + or —,and R denote the position vectors
of the nearest neighbors of the ion (+) or (—) at origin.
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Multiplying (A5) by e (&
~
k,s), dividing by

(co~,,' —co'), and then integrating over the first Ilrillouin
zone in k space, we have

z '(0,0)go++ z '(O, R.)g .(R„)

+Q Q z p'(O, R„)g p(E„)=1+co'g (a). (A6)
R~ Pge

In writing Eq. (A6), the symmetry properties of the
Green's functions g p(E ) and the elements of the
dynamical matrix have been kept in mind. The per-
tinent Green's functions are defined below.

Multiplying Eq. (A5) by e„*(W
~
k,s)e*"'" ', where R„'

denotes one of the nearest-neighboring sites, and by
repeating the process we find

Z..'(0,0)g. (w)+Q I. '(O, R„)g (i R„—R„'i)

+2 P Z.po(O, R.)g„(IR„—R„'I)=~ g.,(R„'). (AS)
Rn Pga

In these relations the various Green's functions

g (&), g (~), g „(W), and g p(~R„—R„'i) are ob-
tained from Eq. (18) after using the following values
for j+(ki s):

j +(a)= jo+= e (a i k, s) e *(+
~
k,s),

j +(~)= e (~
~
k,s)e, *(~

i
k s)e'~ R

j ~+(W) = e (+ i k, s)e7*(+
~
k,s)e'" '""',

(A9)

(A10)

(A11)

Again repeating the process after multiplying (A5) by
e~*(a

~
k,s)e' '""', one gets

I..'(0,0)g, (w)+Q z.."(O,R„)g.,(~ R„—R„'~ )

+p p Z po(0 R )g p(( R R ))—~2g (g ') (A7) j~p(~ R„—R„'~)=e~(R„~ k, s)ep*(R„'(k,s)e
R Pga (A12)


