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operations: (1) If a vector is off the surface and off the
contour, we must replace, it by one which is closer to
the surface and contour; and (2) having a vector that
is on the surface and on the contour, we must generate
a new vector which is also on the surface and contour
but which had advanced by a known angle.

We define the following four unit vectors:

i=VE/|VE|, #Ay=kX71/|kX#1|,
ﬁ?,:ﬁ]XﬁQ, ﬁ4=k/[kl

Consider first process (1). If we have a vector k which
is off the surface and contour, we want to replace it by
a vector k’=k+0k which is closer to the surface and
contour. We require 8k to lie in the plane formed by the
vectors 7 and 73, i.e.,

6k= dﬁ1+ bﬁs .

The values of @ and b are found using Eq. (6) together
with the condition k= | k+8k|?22k?+ 2k- 6k, where ko
is the radius of the contour under consideration. The
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result is
Er—E(k)
g=—
|vE|
and 1 he—? Ep—E(k)
0 — F—
b= / 7‘%1'1{).
PAND) |VE|

We repeat this process until ék/k is smaller than some
specified number (0.001, in our case). Now consider
process (2). Having a vector k which is on the surface
and contour, we wish to replaced it with a vector
k’=k+6k which is quite close to the surface and con-
tour but which makes an angle 6 with k. We require
6k to lie in the plane formed by the vectors 7, and 4.
A short calculation shows that

8k =2k sinif (7, cosif — 74 singh).

By alternatively applying operations (1) and (2),
we may advance around a contour of constant radius.
Figure 10 shows the contours of constant radius for the
T-centered surface of platinum.
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The main result of this paper is that two centers of dilatation in an infinite, isotropic domain do possess
an interaction energy according to the linearized version of Toupin’s strain-gradient theory of elasticity—in
contrast to the classical theory of elasticity, where the interaction energy was shown to be zero. The center
of dilatation has been adopted by many investigators as a representation of point defects in crystalline solids,
so the above result may have significance in evaluating the long-range interactions which may occur between

point defects.

I. INTRODUCTION

HE classical theory of elasticity has been used by

a number of authors to study the behavior of
point defects and dislocations in crystalline solids.
While this approach admittedly may not be appropriate
in a number of cases to which it has been applied, it has
yielded several useful results. In order to simplify the
analysis the crystalline solid is assumed to be isotropic
and infinite in extent. Within this general framework
the present paper applies a recently developed, non-
classical theory of elasticity to the problem of the inter-
action of two centers of dilatation in an infinite,
isotropic, elastic medium. In contrast to the statement
which is frequently made, based on the work of Bitter,*
that the interaction energy of two centers of dilatation
in an infinite, isotropic, elastic medium is zero, an

1F. Bitter, Phys. Rev. 35, 1527 (1931).

explicit expression for the interaction energy will be
given. This seems to be more in line with the results
obtained from digital-computer computations based on
lattice models. The classical result has been especially
noted and criticized by Hardy and Bullough.?

A number of investigators have considered generaliza-
tions of the fundamental model of a continuum which
forms the basis of the classical theory of elasticity. The
generalized continuum models have the common
feature that they take into account more of the details
around a material point. There is evidence that the
generalized continuum models may incorporate some of
the lattice characteristics of crystalline solids in the
continuum approach. However, most of the nonclassical
theories are in their early stages of development, so it is
still somewhat premature to judge the potential value
of these new models.

2J, R. Hardy and R. Bullough, Phil. Mag. 15, 237 (1967).
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The nonclassical theory used here will be the
linearized form of Toupin’s strain-gradient theory.?
This theory is based on a strain-energy density which
includes the components of the first gradient of the
strain as well as the strain components. Toupin* in-
dicates that the configuration of the points in the
neighborhood of a particular material point is more
accurately described as higher-order gradients of the
strain are included in the strain-energy density. He
refers to a material governed by a strain-energy
density which is a function of the (N —1)-order strain
gradients as an elastic material of grade V. Thus, the
strain-gradient theory used here is the theory cor-
responding to elastic materials of grade 2.

The interaction problem for two centers of dilatation
(which can be thought of as equivalent to two spherical
cavities subject to an internal pressure p) can be
approached from the viewpoint of applied mechanics
in terms of stress concentration factors or from the
viewpoint of chemistry and physics in terms of the
interaction energy. From the standpoint of applied
mechanics, it is necessary to provide an explicit repre-
sentation of the stress field. This problem has been
investigated by Sternberg and Sadowsky® using the
classical theory of elasticity. They showed that the
tangential stress components at the surface of one
sphere were changed by as much as 149, due to the
presence of the second sphere when the spheres were
separated by a distance of four radii. At a separation
distance of eight radii, the two spheres appear to have
negligible influence on each other. The computations
were based on only one value of Poisson’s ratio: »=0.25.

The physicist, in dealing with imperfections in solids,
is primarily interested in various energies (the binding
energy, migration energy, interaction energy, etc.)
which may be associated with a particular defect or
distribution of defects. The energy approach is based
on the assumption that the stress and strain fields
arising from any number of individual defects can be
superimposed (which is true for the linear theory of
elasticity); however, while this method provides the
correct value for the strain energy, the boundary con-
ditions are not satisfied when more than one defect is
considered. Thus, the precise stress distribution for
several defects cannot be readily determined by this
method. The solution given by Sternberg and Sadowsky
indicates the modification that occurs in the stresses
at the boundary of one pressurized sphere due to the
presence of a second pressurized sphere. If the total
strain energy for this exact solution could be evaluated,
it should be equal to the sum of the self-energy for each
sphere.

The center of dilatation has been used by several
authors in a variety of contexts. It has provided a

8R. A. Toupin, Arch. Ration. Mech. Anal. 11, 385 (1962).

4R. A. Toupin, Arch. Ration. Mech. Anal. 17, 85 (1964).
( 55E5 Sternberg and M. A. Sadowsky, J. Appl. Mech. 19, 19
1952).
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representation of a substitutional atom, an interstitial
atom, and a vacancy in an otherwise perfect lattice.
The interaction energy for two centers of dilatation is
defined as the difference between the total strain energy
and the sum of the self-energies for the isolated dilata-
tion centers. The usual criterion for the existence of an
interaction energy is that the cubical dilatation have a
nonzero value. Since a center of dilatation according to
the classical theory of elasticity produces a pure shear
stress, Eshelby® showed that an interaction energy can
be found only for finite bodies where an interaction
occurs via the image displacements which must be
applied to the surface of the body in order to satisfy
the boundary conditions. The interaction energy for
substitutional atoms has been based on the assumption
that the elastic constants of the foreign atom (if one
considers this to be a valid representation) are different
than those of the host material. In an infinite domain
the interaction energy (based on the inclusion problem
from the classical theory of elasticity) was shown to
vary as R—% where R is the separation distance between
the two defects.” When the elastic constants of the
foreign atom and the host material are identical, the
interaction energy vanishes in agreement with our
earlier remarks.

In Sec. IT the stresses and displacements for a spheri-
cal cavity subject to a uniform internal pressure p in an
infinite domain are evaluated according to the strain-
gradient theory of elasticity. We observe that the
cubical dilatation is not zero, so we proceed to define
and evaluate the interaction energy for two centers of
dilatation. This involves lengthy algebraic manipu-
lations. An outline of the procedure is given in the
Appendix. Fortunately, the solution can be expressed
in terms of two dimensionless parameters involving the
five additional elastic constants introduced in the strain-
gradient theory. The experimental determination of the
new elastic constants is not yet available for any ma-
terial, so one can only speculate on the appropriate
values to assign to these parameters. Some restrictions
on the magnitude of the two parameters are imposed by
requiring that the strain-energy density function be
positive definite. Numerical values of the displacements
and interaction energy are given for selected values of
the material constants.

II. ELASTIC MATERIALS OF GRADE 2

The classical theory of elasticity is based on a strain-
energy density function W of the general form

W=FO(), ¢y

where £=2%(0x+ dmr); ur is the displacement field
and dx( ) denotes differentiation with respect to the
spatial variables. Toupin® considers a strain-energy

6 J. D. Eshelby, J. Appl. Phys. 25, 255 (1954).
7 1. M. Lifshits and L. V. Tanatarov, Fiz. Metal. i Metalloved.
12, 331 (1961).
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density function which depends on the first and second
gradients of the deformation; Mindlin® displayed the
linearized form of Toupin’s strain-gradient theory
which is obtained from a strain-energy density function
of the form

W= f(Ekikim) , 2

where kpim= 9r9:2,. Materials governed by a strain-
energy density function of the above form will be
referred to as elastic materials of grade 2.

A. Governing Equations

Recently Bleustein® rederived the linear form of
Toupin’s equations defining a different set of forces to
be present on the surface .S and within the interior of a
body with volume V. We shall use the equations de-
veloped by Bleustein in our subsequent work.

In Cartesian tensor notation

9;(tji— Oiiji) + fr—0;®;,=0, nV (3)
ni(rje—Oipije) — Di(manir) = it 7;@56—D;Tji, on S (4)
onS (5)

where 7; is the unit outward normal to the surface S and
D;( ) is the surface-gradient operator (8;x—n;#x)dx( ),
where 8;; is the Kronecker delta. The vectors fx and #
are the body force per unit volume and the surface
force per unit area, respectively, as in the classical
theory of elasticity, while ®;; represents the body double
force per unit volume, and 7' is the surface double
force per unit area. The stresses corresponding to the
kinematic variables & and kzi, are

ntipsin="n;1 jx

ow
Tm=——=1y, (force-stress components), (6)
&k
ow
Mkim= =pim (double-stress components).  (7)
achlm

We see that third-order stress components arise due to
the inclusion of the second gradients of the displace-
ments in the strain-energy density. Physically, the 18
components of uxm» represent double forces per unit
area. In analogy with the classical theory of elasticity
the first subscript indicates the normal to the element of
surface across which the component acts; the second
subscript gives the direction of the moment arm for the
double forces acting in the direction indicated by the
third subscript.

If we restrict our attention to linear constitutive
relations, we can assume the strain-energy density is a
homogeneous, quadratic function of the 24 kinematic
variables #r (= &), Kkim (=kmm). For a centrosym-
metric, isotropic material,

W= %)\fiifjj‘}'ﬂ&j&j‘l‘ Q1K itk g+ QoK ijiK ik
+ sk kit Ak kK QoK kK kg3 5 (8)

8 R. D. Mindlin, Arch. Ration. Mech. Anal. 16, 51 (1964).
9 J. L. Bleustein, Int. J. Solids Structures 3, 1053 (1967).
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where A and p are the Lamé constants and a4, ..., as
are five new material constants having the dimension of
force.

B. Displacement Field for a Center of Dilatation

The displacement fields for a center of dilatation and
a spherical cavity subject to a uniform internal pressure
in an infinite domain are of the same general form in the
classical theory of elasticity; therefore, the problem de-
scribed below will be interchangeable with what is
usually referred to as a center of dilatation. The
strength of the center of dilatation can be represented
in terms of the pressure acting on a spherical surface.?

Consider a spherical cavity of radius R, subject to a
uniform internal pressure p in an infinite domain.
Using the center of the spherical cavity as an origin, we
introduce the spherical coordinates 7, 6, and ¢ with unit
vectors e, €, and e,. Since the present problem involves
only radial displacements, we can write

u=u(r)e,. 9)

For this case the nonvanishing components of the strain
tensor and the strain-gradient tensor are

ETT=M/ ) 5002540(0:“/7
and (10)

—
Kprr= u )

_ _ _ _ _ _ ’
Kr00= Kor6=K00r= Krpop= Koreo™= Kppr= (14/1’) )

where ()’ denotes differentiation with respect to 7.
From Eq. (8) in conjunction with Egs. (6) and (7) we
find for a centrosymmetric isotropic material

Trr— ()‘+ 2ﬂ)¢t/+ (2)‘74’/1’) )

To9= Top=Nt'+2(\+u)u/r (1)

and

trre=2(a1+as+as+ast+as)u” +4(a1+ax+as) (u/r)’

r06= 16r0= Krpp=bore=13 (a1 2az) [t/ +2(u/r)"] (12)
+2(astas)(u/r),

1o0,=koor= (@1 2as) (4" +2(u/r) 1+ 2(astas) (u/7)’.

These are the only nonvanishing components of the
force-stress and double-stress tensors.

Equations (3)—(5) can be rewritten in dyadic notation
and then transformed to spherical coordinates. Using
Eqgs. (11) and (12), we obtain a single displacement
equation of equilibrium and two boundary conditions
expressed in terms of the displacements. Setting the
body force, body double force, and surface double
force equal to zero, we have for t= —pe,

d 4 1 2
__[ulfl_l___u// __<u/+_u>:| — 0 ,
dr 7 12 r

1 A. E. H. Love, A Treatise on the Mathematical Theory of
Elasticity (Dover Publications, Inc., New York, 1944), 4th ed.

(13)
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6/u\’
2(01+d2+(13+a4+05) [%m—*<—> i‘

7 \7

1/u\’ u
—4(a1+a2+a3)—<—> —(\F2p)u —22—=p
r

r\r
on r=R,, (14)
prrr=2(a1F02Fa34-0474-a5)u" +4(a1+a2+as) (u/r) =0
on r=R,, (15)

where

P=2(a1+axtas+astas)/ (M -2u).

The quantity 7 is often referred to as the characteristic
length of the material.
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The general solution to Eq. (13) is
Re? R
u=A—-+B—1+r/l)e""t
r? 72

R
—C——2—(1 —r/De""+Dr. (16)
r

In addition to the boundary conditions on #=R, we
have the uniformity condition for the infinite domain:

u—0asr—o,

This implies that C=D=0. The integration constants
4 and B can now be found by evaluating the boundary
conditions on 7= R,; we find

4ur?

where

2a= (a4+as)/ (a1t a2+ as+as+as)

and y=Ry/!.
We see that the displacement field found from the

classical theory of elasticity
= pRo?/4ur? (18)

is modified by including strain-gradient effects. Large

values of v indicate that the radius of the spherical -

cavity is large in relation to the characteristic length £
of the material. As y approaches infinity, the classical
displacement field is obtained from Eq. (17).

The solution for the displacement field in Eq. (17)
agrees with that given by Cook and Weitsman!! for a
spherical cavity acted upon by a hydrostatic tension at
infinity. The theory they employed, however, is based
on a strain-energy density function of the form

W = f(Ert Rt Riim) 5

where kx1=3€imntn,mi are the gradients of the rotation
vector, and

(19)

Reim= % (KetmTKimeTKmicr)

are the components of the symmetric part of kxim; €imn
is the permutation symbol. A detailed discussion of the
relation between various decompositions of the strain-
energy density function can be found in a paper by
Mindlin and Eshel.?

The couple-stress theory of elasticity is a special case
of the strain-gradient theories mentioned above. It is
based on a strain-energy density function of the form

W= f(&r,r) « (20)

1T, S. Cook and Y. Weitsman, Int. J. Solids Structures 2, 333
(1966).

12R. D. Mindlin and N. N. Eshel, Int. J. Solids Structures 4,
109 (1968).

Ro*ry*(14+y) +ay?+12a(14+y) —12a(14y7/Ro)er =R
ol ]
v (1) +ay?+12a(1+y) +6a(1-+y) (14)/(1—25)

(17

The couple stresses are related to the antisymmetric
portion of uzim and thereby are combinations of only
double forces with moment. Some of the unusual effects
predicted by the couple-stress theory have motivated
Toupin to indicate a preference for the full strain-
gradient theory.*

As indicated in the Introduction, an interaction
energy will exist if the cubical dilatation is not zero. The
cubical dilatation is zero in both the classical and
couple-stress theories of elasticity for a center of
dilatation. It is only when the strain-gradient theory is
introduced that the cubical dilatation for a center of
dilatation will not vanish.

C. Interaction Energy for Two Centers of Dilatation

In this section we shall consider the interaction energy
for two centers of dilatation in an infinite domain from
the viewpoint of the theory of elastic materials of
grade 2.

Having the solution for a single center of dilatation,
we can use the superposition principle for linear
elasticity to evaluate the interaction energy for two
centers of dilatation. The strain energy is defined by

1 1
E=—/ ‘ruEkde—i“/ LrimKiem@V .
2)y 2J)y

We now consider two dilatation centers which we label
A and B; then

1
E=- f (T E Frrim A 2)AV
2J)y
1
+5/ (TleEle_I"ﬂklmBKklmB)dV
v

+/ (et rrim®kem®)dV ,  (21)
v
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TasiE I. Nondimensional displacements.
vy 7/Ry a=10° «a=10"1 «=10"2 «a=10"% «a=10"
1 0.0769 0.2500 0.7391 0.9653 0.9964
2 0.2148 0.3621 0.7781 0.9705 0.9970
4 0.3463 0.4689 0.8153 0.9754 0.9975
10 0.3844 0.4998 0.8260 0.9769 0.9976
5 1 0.5365 0.8811 0.9859 0.9986 0.99986
2 0.6891 0.9202 0.9905 0.9990 0.99990
4 0.6910 0.9207 0.9906 0.9990 0.99990
10 0.6910 0.9207 0.9906 0.9990 0.99990
10 1 0.7911 0.9664 0.9964 0.9996 0.99996
2 0.8608 0.9776 0.9976 0.9998 0.99998
4 0.8608 0.9776 0.9976 0.9998 0.99998
10 0.8608 0.9776 0.9976  0.9998 0.99998

where the symmetry relations 7u48uf= 784 and
Wiim K kim® = wrimBrem® have been used. The interaction
energy is defined as the difference between the total
energy and the sum of the self-energy for each dilatation
center, or

Eint=/ (rrt &P+ prim K m®)AV . (22)
v

This integration extends over an infinite domain. The
interaction energy is more easily evaluated when the
volume integral is converted to a surface integral; there-
fore consider

TszEsz‘l‘MkzmAKksz = 31(TlmAMmB)+ 6lt9k(ukzmA%mB)
—201(OrkimAtn®) — (8171m A — 0190kt k1m™) thn® ,

where the last term on the right-hand side is zero in
accordance with the equilibrium equations (3). Hence,

Eint=/ nl[TlmAumB+ak(ﬂklmAumB)
S
—2(3kuk1m‘4um3)]ds

=f nl(TlmAumB_ak#klmAumB+#klmAakumB)dS,
8
(23)

where #; is the unit outward normal to the surface S.
We will divide the interaction energy into two parts,

Eint: Eintl+ Eint,/ ) (24‘)

where Ei¢ is the interaction energy which can be at-
tributed to the force-stress components, while Einy'”
is the interaction energy due to the double-stress
components.

Bitter! outlined a procedure for evaluating the inter-
action energy according to the classical theory of elas-
ticity; he found that the interaction energy was zero.
We shall follow Bitter’s approach to evaluate the inter-
action energy in Eq. (23). Consider two spherical
cavities, 4 and B, of radius R, separated by a distance
R along the line between their centers. The integration
in Eq. (23) can be carried out over the surface of each

WILLIAM F. ADLER

186

sphere; however, we observe that

1
Eint'=5 / 1(Tim U B4 T1mBtm?)dS
s

1
=_[ nlA(TlmAumB+TlmBumA)dS
2 Jsy .
+_ ”lB(TZmA%mB+TlmBumA)dS
2 Jsg

=/ A (T U+ T1mPUm*)dS (25)
84

where 7;4 is the unit outward normal to the surface
S4. Similarly,

1" __
By = / 114 (— O rlrim™ U — Okt im Btk
84

F kim0 xthm® - rimZ O 14 A)dS .

The evaluation of the integrals in Egs. (25) and (26)
involves rather lengthy algebraic manipulations. An
outline of the procedure used is given in the Appendix;
the final result is

(26)

s )
int = v+4a)| coshy —— sinhy |—
C? ¥ 1—2

X {3a coshy+[3v*(1+7)+ay?—3a]}

1 o7 (=)
X— Sinh'y:l , 27
¢4 $
_ a 1—p
Ei” =a 1—’2{[201272—}—01(18—72)(1 +7)] coshy
— 4y

—[2a*y* 4229+ A+7) —v) —1v*(1+7)]
X (1/y) sinhy}er@=0 /¢, (28)
1+4+»

where

C=7*(1+v)F4ay*+12a(1+v)+6a(1+y)

4Ly

and {= R/R,. The bars over Ei,’ and Ei,’ indicate that
these are nondimensional energies which have been
normalized with respect to (1/u)247wp2Re®. The total
energy is given by

_ «a
Eing =~[<72(1 +y+4a)

2

1—»
+a1 ; [18(1+4) —72(4+'y)+2a72]>
—4Zy

1
X (cosh'y - sinh'y)
Y

(29)

—4y

1 —y e? 1-$)
—3a71—ﬂ(1 +7v) sinh'y:l .
[y
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TasLE II. Nondimensional interaction energies.

¥ ¢ a=10° a=1071 a=1072 a=10"8 a=10"*
1 2 3.744 X107 3.529X10~ 2.023X10~* 3.184X1075 3.363 X106
4 2.534X107° 2.388X1075 1.369X107° 2.154X107¢ 2.275X1077
10 2.512X1078 2.368X1078 1.357X1078 2.136X107° 2.256X10710
5 2 —1.004X10~4 6.981X1075 1.249 X107 1.325X107¢ 1.333X1077
4 —2.278X107° 1.585X107? 2.834X10710 3.007X107 3.025X10712
10 —8.528X10728 5.932X107% 1.061X10728 1.126X107% 1.132X107%
10 2 —7.745X107° 1.343X1075 1.966X107¢ 2.037X1077 2.045X1078
4 —7.981 X107 1.384X10714 2.026X1071 2.100X10716 2.107X107Y
10 —2.796X10740 4.846X10741 7.097X10742 7.355X10743 7.381X1074

The form of the interaction energy in Eq. (29) is
rather fortuitous in that the strain-gradient effects can
be represented in terms of only two additional parame-
ters: @ and 7. Although problems have been solved
using the strain-gradient theory (and the other newly
developed, nonclassical theories of elasticity referred
to in the Introduction), we note that only qualitative
results are obtained, since, so far, there has been no
experimental determination of the five new material
constants in the isotropic case and the numerous
additional constants which would be present for the
various crystal classes. It is therefore only by indirect
procedures that some knowledge of the probable values
for these constants can be found.

Upon imposing the condition that the strain-energy
density be positive definite, we find that, in addition to
the usual restrictions on the Lamé constants,!3

a4+a5>0 and (10/3)(01+dz+(l3)+2(d4+d{,)>O, (30)

along with some additional inequalities that are not
very pertinent to the present work. The last inequality
can be rewritten

2(d1+ dz‘l— ds+d4+ 05) > (8/10) (d4+ (15) >0. (3 1)

These restrictions can also be expressed in terms of «
and v:

0<a<5/4 and v>0. (32)

Table I gives some idea of the magnitude of the non-
dimensional displacements due to a single spherical
cavity. The nonclassical displacements can be quite
different from the classical case, but a preference was
given to those cases which do not deviate too much from
the classical values. As y approaches zero, the maximum
displacement at the spherical surface approaches zero
for the range of a given in Eq. (32). As v approaches
infinity, the nonclassical displacements rapidly approach
the classical values. It can be seen from Table I that

13 These inequalities are obtained from those given by Mindlin
and Eshel (Ref. 12) for the strain-energy density given in Eq. (19)
and then relating the material coefficients for this decomposition
of the strain-energy density to the one given in Eq. (2). We have
considered Eq. (8) directly, but we were only able to show that

as+a;>0 and 2(e1+as+tas+astas) >0,

The remaining inequalities could not be rearranged into a form
that would yield the more restrictive conditions given in the
second of Egs. (30).

the difference between the two cases is quite small when
v=10, especially for small values of a.

Table IT lists corresponding values of the nondimen-
sional interaction energy. In most instances the inter-
action energy is positive, which, by the usual convention,
indicates that the two pressurized spheres will repel
each other. The interaction energy Ein¢’ is always nega-
tive, while Ei" is always positive. Thus, we see that
E;,/" is generally greater than Ei, in absolute value;
however, Ei,:' is predominant when v>0.5, and Ejy is
negative over a narrow range of values of y when
v2>0.43. We note that when y=0.5, a;4-a,+a;=0, and
a1+ as+a3<0 when v>0.5. Some idea of the behavior
of the interaction energy in this region can be obtained
by referring to Table ITI. The interaction energy is
evaluated for {=2 only. As & changes, the corresponding
change in the form of the energy curve as a function of
v can be seen by comparing the listed values.

All of the numerical computations have been carried
out for »=%. It was found that variations in » did not
affect the results to any great extent.

III. POINT DEFECTS

In the macroscopic analysis one crystalline solid is
distinguished from another by means of the symmetry
group to which it belongs and the magnitude of its
elastic constants. In the present analysis the assumed
isotropy of the material does not permit us to make a
distinction between materials from the various crystal
classes, and the lack of information pertaining to the
elastic coefficients associated with the strain-gradient
theory hinders the presentation of definitive results. If
the present analysis is taken to be applicable to problems
on the atomic scale (in the same sense that the classical
theory has been used in this regard), then we see that
the continuum representation of point defects is some-
what limited. From this viewpoint a substitutional (or
interstitial atom) with physical properties similar to
those of the host atoms but having a radius larger (or
smaller) than that of the host atoms will be assumed to
cause an outward expansion (or inward contraction) of
the surrounding lattice. In reality this is not always the
case, as Eshelby® points out. Also, a vacancy in an
otherwise perfect lattice will produce an inward con-
traction of the surrounding lattice. It has already been
emphasized that the classical theory of elasticity is
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Tasre III. Variation of nondimensional interaction energy with respect to v for {=2.

Y a=0.001 a=0.1 a=0425 a=0.43 a=0.5 a=1.25
0.001 2.310X107° 2.310X107° 2.310X107° 2.310X107° 2.310X107° 2.31 X109
0.01 2.269 X107 2.269X1077 2.269 X107 2.269X1077 2.269X1077 2.269 X107
0.1 1.810X107% 1.897X107% 1.899X1078 1.899 X107 1.899X1073 1.902X107%
1.0 3.184X1075 3.529 X107 3.540X 107 3.541X10™ 3.560X10~ 3.851 X107
2.0 1.077X107% 2.893 X107 2.50610™ 2.502X10* 2.468X10™ 2.852X107*
4.0 2.326X107¢ 1092107 43761075 4.231X107° 2.315X107% —5.509X107%
6.0 8.221X1077 4.675X1075 5.910x107¢ 4.660X1076 —1.296X1075 —1.428 X107
8.0 3.781X1077 23601075 8.399X107" —5.892X107° —1.238X107% —1.351X10™*

10.0 2.037X1077 1.343X107% 4.106X1077 —1.439X1077 —8.456X1076 —1.087X107*
12.0 12201077 8.327X107°¢ 4.972X1077 1.265X1077 —5.529X1076 —8.399X107®
15.0 6.461X1078 4.564X107¢ 5.571X1077 3.422X1077 —2.997X1076 —5.671X107%
20.0 2.819X1078 2.059X107¢ 4.602X1077 3.599 1077 —1.228X107¢ —3.107X107
50.0 1.917X107° 14831077 7.678X1078 6.967 1078 —4.740X1078 —3.011X107¢

incapable of evaluating the interactions which occur
between defects of this type using the energy method.
The analysis given in Sec. IT remedies this deficiency,
but the continuum representation of the physical
situation is still somewhat naive. One outstanding
difficulty in establishing a correspondence between the
continuum and lattice models is the determination of
the appropriate characteristic length of the material
which arises in the continuum analysis. The character-
istic length for the problem cousidered here is probably
a function of the lattice parameter of the crystalline
solid we are trying to describe, but we have not found a

suitable means for determining this function. However,
in order to obtain some quantitative results, we shall
follow a rather direct procedure.

The pressure p appearing in Eq. (17) is not easily
defined when a lattice structure is under consideration;
therefore, we will assume the radial displacement is
specified instead at some point in the medium. Hence,

| =ry=10 (a positive constant). (33)
For a vacancy replace #y by —uo. It follows from Eq.
(17) that

Y2(1+y+4a) +12a(1+y) —12¢[ 14y (r/Ro) Jer O—r/Bd 1

U=1Ug

Y14y +4a)
p="4u(uo/Ro)C/v*(1+v+40).

Therefore, substituting into Eq. (29), we have
Eine=384mud? R {C?/[v* (1+7+4) P} Eine,  (36)

where 8o=1¢/Ro.

Quantitative results can be obtained from Eq.
(36). Let us assume that u=10'2 dyn/cm?, Ry= 1078 cm,
and 8o=10"2: These values will be used to represent a
standard crystalline solid. Equation (36) in conjunction
with Table II shows that the interaction energy will
generally be quite small. Specific cases can easily be
evaluated from the above information.

IV. DISCUSSION

The main result of this paper is that two centers of
dilatation in an infinite, isotropic domain do possess
an interaction energy according to the linearized version
of Toupin’s strain-gradient theory of elasticity. Since
the center of dilatation has been adopted by many
investigators as a representation of point defects in
crystalline solids, several attempts were made to relate
this result to the literature pertaining to point defects.
A number of interesting correlations were investigated,
but they all seemed to produce undesirable as well as

, 34
(r/Ro)* 39

(35)

desirable results. Therefore, the straightforward inter-
pretation given in Sec. III was only presented here in
order to illustrate the approximate magnitude of the
interaction energy.

In evaluating the interaction energy in Sec. II, the
simplest boundary condition was assumed. It is feasible
analytically to consider substitutional atoms whose
mechanical properties are different than those of the
host lattice, but this would introduce additional un-
known material constants into the final result. It does
not seem worthwhile to extend the existing analysis to
more complicated problems, until an appropriate
physical interpretation of the characteristic length 7
has been given for particular materials.

APPENDIX

The evaluation of the integrals appearing in Egs. (25)
and (26) is not difficult, but it is rather tedious. We will
only outline the procedure used to obtain the final
results given in Egs. (27) and (28). Following Bitter,!
we see that the integration can be carried out in terms of
two variables 4 and ©, which are shown in Fig. 1.
The point P’ in Fig. 1 identifies an arbitrary point on the
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Fic. 1. Coordinate system used for
evaluating interaction energy.
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surface S4. We note, however, that the integrands are
independent of O, which is evident from the symmetry
around the line passing through 4 and B. Thus, we will
only have to consider the geometric relations between
the unit vectors lying in the plane 4PB.

The unit base vectors associated with a system of
spherical polar coordinates are represented by e,, €j,
and e,; then the unit outward normal to the surface
S, is —e,4. Equation (25) may be written

2T T
Eint, = —/ / {TTTAMB(erA : erB)
0 0

+[7B (e e,5)24T00% (e, - €4%) 2 Jut}
X Ry sinf4 dOR b4,
where it is easily shown that
e4-e,f= —cos(B4+05), e-eB=sin(Bs+05).

The displacement field given in Eq. (17) can be substi-
tuted into Eq. (11) to obtain explicit expressions for
the Cauchy-stress components. Let

(37

u=(pRo/4uC)[A —B(1+yp)er =2 ]1/p*, (38)
where p=7/R, and
A=y*(1+v+40)+12«(147y),
B=12a,
C=A+46a(14+~)(1+»)/(1—2).
Then
b4
Tre=—— A—B(1+yp)er—»
C
1—» 1
__m___._B.szzem—p))_ ,
—_ 3
2(1—2») * o)

?
TOO="Top =~ZE<A —B(14vp)ert—n

14

+
1—2

1
Bry2p% (=0 )— .
o’

When the expressions for the radial displacement and
stresses are substituted into Eq. (37), we find that

372(1—1/))
2(1—2)

Tp2Ro3
; B[<A —B(1+y)—

Eint’ =
2uC

™1
X/ —;(1+'yp)e"(1—") cos(fa+0z) sinf4db 4
o p

/1
+3[4 —B(H—’Y)]/ <"3(1+’yp>e’¥(1—ﬂ)
o \p

vy? 1 1
———— =" —[3(1+yp)+yip?}—er =P
1-2p 03

Xcos2(9A+9B)) sinéAdéA] . (40)

Working in the 4PB plane, we see that
cosfz=(1/p) (¢ —cosb4) , sinfz=(1/p) sinby.
Now consider an integral of the general form
T 1 m
/ <«> e~ cos™(§a+05) sinf dl,
0

p

T I\™  {—cosfa _ sinfa\"
= / (—) e—‘ff’(cosoA —sinf, >
o \p P p

X SinéAdéA

T 1 m+n
=/ (-> e (¢ cosfa—1)" sindadby.
0

(41)

pr=¢2+1—2¢ cosba,

cosBa=(1/28)(¢2+1—p?) and sinBadfs=pdp/s.
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Then The integrals on the right-hand side of Eq. (42) are in

a form which can easily be evaluated. Using the result

N given in Eq. (42) for the specific values of m and #

/ (_) e cos*(B4+05) sinfadfa which appear in Eq. (40), the interaction energy Einy’

o \p can be determined. After some algebraic manipulations,
we obtain the expression given in Eq. (25).

1 N The evaluation of Eq. (26) is slightly more complex.

= / ( ) e [((2—1)—p2]rdp. (42) The explicit form of Ei,/' for the problem under

)y~ consideration is

¢—1 \p

4 dpret 2 . duB u®b du® u® o
E~.,t"=/ { -( p ——(uroo* +#oorA)>uB c0s8(04+05) —pros? [(—-{-——)—(—————) cos?(f4 +03):|
0 '

¥ dr 7 dr r

d,ur'rr d,urﬂoB 1 " " dﬂrﬂoB 1
+uAl:< — >+'(2#m3—5#r003—3#0013):] cos?(04+05) +74A< +”(3MrsoB+uaerB)>
dr ar 7 r r

dut  u4 .. du* .
+<7 ——-> (krrs® —2pr06® — o0, %) cos®(0a+05) +d—(2,urooB+uaarB) cos(04+06z)
r 7 r

u4

+—(urre® —u0,:%) cos(64+05) } 2wR?sinf4dfs, (43)
7

where we have used the boundary condition in Eq. (16) and set u,,4=0. The expressions for the nonvanishing
hyperstress components are

Mrrr=

64
{2(04‘{‘05) [—:—B

p

—34 3 3y 42 IR
{2(a4+a5)[ : {B(4} -+ >e"<1‘/’):|—%(a1+2a2)B<—2+—>67““P)}, (44)

p ot PP p? P p

—34 /3 3y 4 y? Ay
{2(a4—{—a5)I:——+B<—+—+—)67(1—P)]—(a1+2a3)B<~—+—>67<1“P>} .
p* p* P p? V)

6 6y 3y? +° y? Ay
(—-—I—_——i————l——)e’y (1—/2)} — 2(al+a2+a3)B<_+—>e’Y (1—p) } s
4uRyC ot PP pr p VI

Mrof = More =

4[.L.R 0C

Moor =
4uRC

Again the dependence on §5 can be eliminated from Eq. (43) by means of the geometric relations given in"Eq. (41).
Upon substituting the expressions for the radial displacement and the double-stress components into Eq. (43),
we find that there are a number of integrals of the general form given in Eq. (42) to evaluate. After carrying outjthe
lengthy algebraic manipulations required, we finally obtain the result given in Eq. (26).



