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would be in the value of &II. If we chose ~II——0.15 eV,
then excellent agreement with experimental results
would be obtained in that the theoretical total energy
distribution would then have a peak at about the same
energy as that observed by Swanson and Crouser. "
Since we do not really know what e~ is, however, and
because of the approximations mentioned above, this
result must be treated with reservation. Also, the accu-
racy of this procedure for estimating e~ depends on the
approximations mentioned above.

The modifications suggested by Gadzuk and improve-
ments in our band-structure model might result in
better agreement with the experimental results. How-
ever, in view of the doubtful accuracy of the WEB ap-

proximation as applied to this problem and the validity
of separating the energy of an incident electron into
transverse and normal part for any but a parabolic
energy band, a diGerent approach would seem to be
more promising, e.g., the formulation of the problem in
terms of scattering theory or more exact treatment of
tunneling from periodic structures in a WEB
approximation. "
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The Fourier-series representation is shown to give an accurate representation of the band structure of
transition metals in a restricted energy interval, e.g., near the Fermi energy. A 19-term 6t to the fifth
and sixth bands in fcc Pt is used to compute the de Haas —van Alphen areas and effective masses of all
orbits expected for the Fermi surfaces associated with these bands.

INTRODUCTION

ANY methods may be used to calculate energy
bands in metals through the entire Brillouin

zone and over all energies of interest. The interpreta-
tion of various experimental quantities in terms of these
energy bands is complicated. Most quantities that can
be determined experimentally are averages over some
region of momentum space and/or energy. If such
averages are found from quantities derived directly
from band calculations, much computer time is ex-
pended. Even with the comparatively fast interpola-
tion techniques' the process requires considerable
computational time.

For many properties, e.g. , transport phenomena, all
that is required is a knowledge of the band structure
(momenta and velocities) in. the immediate vicinity of
the Fermi surface. Even in such a restricted energy
range, the time required to derive momenta and veloci-
ties (%RE) from the band-structure calculations is sub-
stantial. Therefore, a parametrization scheme is re-
quired capable of giving a faithful representation of the
constant-energy surfaces near the Fermi energy using
relatively little computational time. Moreover, ex-
perimental momenta and velocities are modified by

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' F. M. Mueller, Phys. Rev. 153, 659 (1967).

many-body effects. A properly constructed scheme
should have sufficient generality to include such effects.

Such a representation is particularly useful in con-
verting the extremal areas and eftective masses meas-
ured in de Haas —van Alphen experiments into Fermi
rnomenta (radii) and Fermi velocities. The inverse
process of comparing the results of band-structure
calculations with experiment is also of interest. For
closed, single-valued surfaces possessing inversion
symmetry, the problem of converting areas and masses
into radii and velocities has been solved by the present
authors. ' 4 The problem has also been treated by
Foldy. ' The techniques make use of a series expansion
of a theorem due to Lifshitz and Pogorelov. ' The terms
in the series are appropriate combinations of spherical
harmonics such that the point-group symmetry of the
surface is maintained in each order of the expansion.

One of the surfaces to be discussed here is the open
fifth-band hole surface of Pt. This surface, because it is
open, does not satisfy the conditions for application of
the Lifshitz-Pogorelov theorem. The proper representa-

' F. M. Mueller, Phys. Rev. 148, 636 (1966).
3F. M. Mueller and M. G. Priestley, Phys. Rev. 148, 638

(1966).
4 J. B. Ketterson, L. R. Windmiller, S. Hornfeldt, and F. M.

Mueller, Solid State Commun. 6, 851 (1968).' L. L. Foldy, Phys. Rev. 170, 670 (1968).
I. M. Lifshitz and A. V. Pogorelov, Dokl. Akad. Nauk

SSSR 96, 1143 (1954).
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tion of an open surface requires an expansion which is
invariant under the operations of the space group, i.e.,
it must be invariant under translations by reciprocal-
lattice vectors in addition to the point-group rotations.

E (k) =p CR"e""

where 8„is the energy of the nth band or sheet of the
surface. The vectors R of the real lattice are generated
from the primitive Bravais lattice vectors a, b, and
cby

R =la+mb+ec,

where l, m, and e are integers. We also require a repre-
sentation of the velocity v =V'kE, i.e.,

v.=Q iRCR"e'k R.
R

The energy is of course a real function of k. Since most
crystals of interest have inversion symmetry, the series
(1) reduces to a cosine series. However, we will show
shortly that it is important from a computational point
of view to keep the complex exponential form. Since the
energy E„(k)belongs to the identity representation of
the space group, the CR" are not all independent, but
fall naturally into sets in which the value of CR" is the
same for each member of a given set. In analogy with
the case of the reciprocal lattice, the set of vectors R
having a common CR" is called the star of the vector.
The vectors R associated with a given star all transform
into one another under the operations of the point
group. All Ca" associated with vectors R of different
length must fall, therefore, into different sets or,
equivalently, different stars. The converse need not be
true in crystals of high symmetry, i.e., coefficients CR"
associated with vectors of the same length are not
necessarily in the same star. In the fcc structure, for
example, the vectors R=-,'z+-,'j+2k, and R=-,'z+ —,'j
(in units of the lattice constant a) have the same length
but belong to different stars. One should thus factor the
summation over R in Eq. (1) into a double summation
over stars and star elements. We define the sum

01

S;(k) =
R in jth star

haik
~ R

E„(k)=Q C,"S,(k) .

In practice, Eq. (1) is restricted to a finite number of
terms. In order that the final representation have the

' G. H. Wannier, Phys. Rev. 52, 191 (1937).

FOURIER-SERIES REPRESENTATION

A representation of the energy bands which is in-
variant under the space group has been given by
Wannier. ' This representation may be viewed as a
three-dimensional Fourier series of the form

TARSI,z I. Classilcation of star elements under cubic group.

Type

000
a00
aaO

abO
aab
abc

Degeneracy

1
6

12
8

24
24

proper symmetry, it is necessary that all elements of a
given star be included, i.e., that Eq. (1') be used. One
would then include stars of increasing length until a
satisfactory representation of the energy bands (in
some interval) was achieved.

COMPUTATIONAL TECHNIQUES

The Fourier-series technique has been effectively
used by Roaf' to construct the Fermi surface of the
noble metals Cu, Ag, and Au from the dnvA measure-
ments of Shoenb erg. ' Some of the computational
techniques developed by Roaf were also used in the
present investigation. The Fermi surface of copper is
quite close to being spherical, and it was possible to
obtain a reasonably accurate representation using only
a six-star fit. The sixth-band electron surface of Pt is
considerably distorted from a sphere, while the open
fifth-band hole surface bears no resemblance to a
sphere whatever. It is expected that a faithful repre-
sentation of the Fermi surface in Pt would require a
much larger number of stars, and therefore com-
putational efficiency is of the utmost importance.

We will deal first with the problem of factoring the
summation over R into the double summation over
stars and star elements. We begin by generating an
array of real lattice vectors R(l,m, n) with t, m, e assum-
ing all permutations of integers from —iV to +X. The
value of E must be large enough to include all vectors
contained within the largest star used. As remarked
earlier, in a crystal of low symmetry the elements of a
given star can be identified by comparing the lengths
of the vectors in the array, i.e., the values of E'=R,'
+E„'+R,2; those with the same R' are in the same star.
In crystals of high symmetry such as fcc, an additional
test is required. If we compare the absolute value of the
largest component of the vector, we may distinguish
between stars the length of whose vectors is degenerate.
An alternative test which may be applied is to compare
I&*l'+I&.l'+I& I'

For the remainder of this paper we will confine our-
selves to the fcc lattice. The vectors of the real-space
lattice are of the seven di6erent types listed in Table I
together with the number of vectors in the star.

Table II lists the first 21 stars of the fcc lattice. We
have included the length of the vectors in the star, the

D. J. Roaf, Phil. Trans. Roy. Soc. London A255, 135 (1962).' D. Shoenberg, Phil. Trans. Roy. Soc. London A255, 85 (1962).
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TABLE II. Stars of the fcc lattice. These multiplications were carried out in complex
double precision, saving considerable time over evaluat-
ing (4) directly each time.

Equation (1) is an. implicit function of k, and since
one usually wants values of k at fixed energy, it is
necessary to use some iterative technique. We have
used the Newton-Raphson technique, which was first
applied to this problem by Roaf. ' Consider a vector
k and a closely neighboring vector k'=k+6k. Using a
first-order Taylor expansion, we may relate the energy
associated with these two vectors by'

Fundamental
vector

Xo. of
elementsStar E. 2+Ry2+E, '

0
2Z+ 22

2Z+ 2/+k
Z+j
2Z+ 2g
-'+2+k
—,'z+ j+-,'k
2z

-"+lj
—',Z+-',j+2k
z+2j
x+2 j+2k
Z+ j+2k
—',Z+-,' j+2k
2Z+ 22

—',z+j+—,
' k

2'+2j
2Z+2 J
2Z+ 2j+2k
i+2j+2k

1

2

3

5
6
7

8
9

10

12
13
14
15
16
17
18
19
20
21

12
6

24
12
24

8
48

6
12
24
24
24
24
48
24
48
12
24
24
24

Z(k+Sk)=E(k)+vs Sk. (6)

One important calculation is the cross-sectional area
(in momentum space) of the orbit swept out by the
motion of an electron on the Fermi surface in a magnetic
field. As is well known, the orbit of an electron in a
magnetic field I is given by the intersection of the
plane k.II=k l &

with the Fermi surface, hi l being the
component of the electron's momentum along II. If
we write k(E~) =k„0+k,, the area of the orbit is
given by

13
2
13
2

15
2

17/2
17/2

9
1 2

ki2 (9)dg,
2 p

(7)

where 0 is an angle in the plane of the orbit measured
from some convenient reference point. Such integrations
are performed accurately and simply using Simpson's
rule. In order to accomplish this we must be able to do
two things: (1) With both the plane of the orbit and
the angle of k, in this plane specified (i.e. , k„and ti

TABLE III. InterpoLation-scheme parameters.

Parameter (in rydberg a.u. )
as calculated in Ref. 11

+0.5465—0.0624
+0.0258
+0.0196—0.0003
+0.0116

0.0027
0.0033
1.7822
2.5114
2.0984
1.8206
0.0214
0.6542
0.0026'

D bands dp
ddp
dA 1

ddt

Ul 11

U200
A
IEp
8
IXI
Ey
Ey
+~,2

Conduction bands

(4) Orthogonalityelk R —ei(lIca+mkb+nkc)

HybridizationThe machine programs for calculating transcendental
functions run comparatively slowly (approximately 10
times slower than complex double-precision multiplica-
tion), so it is important to make minimal use of these
subroutines. It is for this reason that the complex ex-
ponential representation is preferable to a sine-cosine
Fourier representation. In general, we can evaluate (1)
by making use of the complex exponential subroutine
only three times. All that it is necessary to do is to cal-
culate e'~, e'Icb and e'~ and then perform repeated com-
plex multiplications, i.e.,

Spin orbit
Fermi energy
Representative error

& Derived from Fermi surface fit.

It should be emphasized here that this parametrization
technique does not attempt to 6t all the sheets of the Fermi sur-
face with a single set of parameters C;". Each energy band n
defines a sheet of the Fermi surface (or sheets related by the sym-
metry of the crystal) which is parametrized independently of all
the others by its own set of Cp. The procedures outlined in this
paper are actually applied to each Fermi-surface sheet in-
dividually. Thus, when the band index n is omitted in the follow-
ing sections of this paper, it is to be assumed that only a single
band is always being considered.

ei(ika+mkb+nkc) = (eikaeik~. . .$ times)
X (e'"'e+' .e times) &&(e'"'e'"' . .e times). (5)

magnitude R; '" of the absolute value of the largest
component of the vector, number of elements in the
star, and one of the vectors in the star. Observe that
stars 10 and 11, 15 and 16, and 19 and 20 are degenerate
with respect to length. The value of E used in generat-
ing the array was 4 in these calculations. This value of
E&'„',is sufficient to generate the first 18 stars together
with the 20th. The 19th star will be incomplete. The
19th and 20th stars are degenerate with respect to
length, however, and for these reasons we reordered
the 19th and 20th stars appearing in Table II for the
calculations to be presented in this paper.

Consider next the generation, for a given k, of the
energy as given. in Eq. (1). We decompose the vector

into its components along the three primitive vectors
of the reciprocal lattice a*, b*, and c*, where a*=b&(c/
a b&&c, etc. Thus k=k, a*+ktb"+k,c* and the complex
exponential becomes (for a given R)
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specified) for some trial vector k, we must have a
"return-to-surface" routine. This routine starts from
the vector k and corrects its k& component to generate
a new vector which is on the derived energy surface

& & Having such a correct vector, we must have a
"stepping" routine which will change it by a vector 8k
which is parallel to the surface and in the plane of the
orbit (i.e., 8k=OH, where n= VEXH/~ VEXH

~ ) and
has a magnitude such that 0 will be increased by some
speci6ed increment do. This new vector will now have
the correct values of k„and 0+d8 but may need a cor-
rection of k~ to bring it back to the derived energy
surface again. Thus, by alternatively performing the
"return-to-surface" and the "stepping" routines we can
step around the orbit and perform the Simpson's-rule
integration.

Both of hof the above routines can be conveniently
carried out by exploiting Eq. (6). In order to carry out
the return-to-surface routine we must replace the vector
k by a new vector k' given by

1'=1 —k, (E—E,)/VE 1„
where E~ is the energy of the desired shell and E,
VE, and ki are evaluated at k. To accomplish the
stepping routine& the incremental vector bk=b&has,
direction, as above, A= VEXH/~ VEXH~ and magni-
tude bk found from the solution of the quadratic
equation

(k~+Nn) k,

/
k,+akn f[k, f

where k, is the "starting vector" from which the
Simpson's-rule integration has begun (i.e., the ki for
8= 0). One may also simultaneously calculate the
cyclotron effective mass of the orbit using the relation

Thai.z IV. Coefficients of the 19-star Qt to
the sixth band in Pt. Eg=0.6565.

TABI,E V. CoeKcients of the 19-star 6t to the
fifth band in Pt, 8~=0.6565.

Star

I

3
4,

5
6
7
8
9

10
11
12
13
14
IS
16
17
18
19

CoefBcient

—1.29381—1.42782—1.03738—0.75751—0.54141—0.38847—0.28025—0.19179—0.13092—0.09117—0.08814—0.05880—0.03827—0.02357—0.01607—0.01469—0.00533—0.00330—0.00235

m*= (1/n. ) (dA/dE) in rydberg atomic units, where

2x P2
do.

k, VE

CALCULATIONS

To generate a Fourier-series representation in the
vicinity of the Fermi surface one must have either a
band-structure calculation or a set of experimental
Fermi-surface data such as dHvA areas and effective
masses. For the purpose of this initial investigation it
was thought best to use a band-structure calculation
rather than dHvA data. This is because it is easier to
evaluate the convergence of the series if one can com-

pare directly with radii and velocities rather than areas
and effective masses, which might tend to average out
distortions of the constant-energy surfaces. The band
structure used was the interpolation scheme calcula-

Star

I
2
3
4
5
6
7
8
9

10
il
12
13
14
15
16
17
18
19

Coefficient

0.855902—0.061665
0.007611
0.019434—0.028622—0.013214—0.021314
0.001050
0.013655—0.004074—0.007675
0.000062—0.001328—0.002014—0.000791—0.001946
0.000290—0.000081—0.000416 FxG. I. Sixth-band electron surface in Pt calculated using

the interpolation scheme.
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iterated back to the corresponding constant-energy
shell. The rms change 5k/k resulting from this process
was 0.0032 for the sixth band and 0.012 for the fifth
band. A 10-star Gt was also carried out. The resulting
rms energy was 0.0014 and 0.0035 Ry for the sixth and
fifth bands, respectively. The above convincingly
shows that a Fourier series can yield an accurate repre-
sentation of a transition-metal band structure over an
energy range of a few hundredths of a rydberg, pro-
vided enough stars are included. The calculation of one
iteration with 19-term 6t takes 0.4 sec on the IBM
system 360/50/75 computer of the Argonne Applied
Mathematics Division. Usually one iteration is required
to return to the surface when going around an orbit.
Thus a convergent k vector can be calculated in
less than 1 sec. Our criterion for convergence was

i (z—z,)u„/vz k,
i
&0.0001.

Figure 1 shows the sixth-band electron surface to-
gether with the fcc Brillouin zone. The [100], [110],
and [111]radii of this surface are shown as the dashed
portion of the vectors FX, FE, and I"I., respectively.
Shown also are the [100], [110],and [111]extreinal
areas in the planes normal to these directions. Figure
2 (a) shows the open fifth-band hole surface. This surface
has the topology of cylinders extending in the (100)
directions and intersecting in pairs at the point X in the
zone. Figure 2(b) shows the various extremal orbits
expected for this surface. The surface of Fig. 2 is based
on an earlier band calculation and is slightly different
from the one calculated here. The center of the n orbit
is the point W when the field is along the [100]direc-
tion and very close to t/I/' for a general field direction.
The center of the p orbit is at X for all field directions
where this orbit exists. The y orbit is located within
the junction formed by the intersection of the
"cylinders" and exists for a narrow range of field angles
near [110].The center of this orbit does not lie near
any symmetry point, however. The 6 orbit also exists
for a small range of field angles near [110]but does
not lie within the junction. The actual shape of this
orbit is somewhat different from that shown in Fig.
2(b). The center of this orbit is also far from any sym-
metry point. The e orbit runs around the "square"
formed by the intersection of the "cylinders. " This
orbit is centered on the point F for all field angles where
it exists. The orbits o., y, and 8 have been observed ex-
perimentally. " Orbits 0. through 5 are holelike in the
sense that the area of these orbits decreases with in-
creasing energy. Orbit t. is electronlike. Orbits centered
on symmetry points are easiest to calculate since the
area and eRective-mass integrals need be performed only
once. For orbits not centered on symmetry points it is
necessary to calculate the area and eRective mass for
several values of k« in order to determine where an
extremum is located. After the approximate location
of the extrernum is found using a coarse mesh on Ail, the
areas and effective masses of three orbits very close to
the extremum are calculated. The k«corresponding to
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FiG. 3. (a) Calculated dHvA areas for the sixth-band electron
surface in the (100) and (110) planes; (b) calculated effective
masses for the sixth-band electron surface in the 1100l and (110)
planes.

the extremal area is then found using quadratic inter-
polation. The eRective Inass is then interpolated to the
same kI, .

The unit of length used in these calculations is
ki&—=1. All energies are in rydbergs. Up to this point
we have been writing the vector k as the sum of com-
ponents perpendicular and parallel to the magnetic
field, i.e. , k, and k„from an origin at the point r. How-

ever, orbits which do not include the point r (e.g. ,
the P orbit) present a special problem since the center for
Simpson s-rule integration must be within the orbit.
In such cases the center of integration must be moved to
a point within the orbit. For the p orbit a convenient
center is the point X, and the vector k can be written
as k=ks+ki+k„, where in this case we set ke s+j——
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O. I 2

O. I I

O. l 0

0.09

0.08

(I00)

0
[I00)

(I lo )

0.I70

0.160

O. I 50

O. I40

O. I 30

O. I 20

O. I IO

0. IOO

measured in reciprocal Bohr radii. The scale at the right
is the one actually used in the calculations. The unit
of length is the distance from the center of the zone I'
to the point X. The lone point for H~~L111j is an off-
central orbit. The plane of this orbit does not include
the point I'. This orbit exists for field directions within
approximately 20' of $111$,ultimately merging with the
main branch. The magnitude and angular dependence
of the area in the (110) plane are in good agreement
with the experiments of YVindmiller and Ketterson. "
Figure 3(b) shows the angular dependence of the
effective mass in the (100) and (110) planes. The
scale at the left gives the effective mass re* measured
in units of the free-electron mass. The scale at the right
is the quantity dA/dE, where dA is in the area units
used for the calculation and dE is measured in rydbergs.
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FrG. 4. (a) Calculated dHvA areas for the fifth-band 0, orbit jn
the (100) and (110) planes; (b) calculated effective masses for
the fifth-band n orbit in the (100) and (110) planes.

Similarly, to compute the o. orbit the point W ls a
convenient origin, so ks ——-',i+j. The center must also
be moved to calculate the y and 8 orbits.

It is also necessary to start the initial iteration( for
the first k vector on the orbit) at a value k, which is
sufficiently close to the surface that Eq. (6) is approxi-
mately valid. If this is not done, the value of k after
iteration may be on a different part of the surface or,
alternatively, in a neighboring zone.

dHvA AREAS AND EFFECTIVE MASSES

2.9

0
[I Io]

(Ilo) —I 5.0

-l4 5

'4' dA
dE

- I3.0

-l2.5

Figure 3(a) shows the angular dependence of the
sixth-band electron dHvA areas calculated for the
(100) and (110) planes. The scale at the left of the
6gure is in the usual atomic units where length is

(b)

FzG. 5. (a) Calculated dHvA areas for the fifth-band y orbit in
the (100) and (110) planes; (b) calculated efFective masses for
the fifth-band i orbit in the (100) and (110) planes.
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TABLE VI. Comparison of calculated and
experimental areas and masses.

~ + ~

P 0

'~ ~

Area
Direction Theory Kxpt

Electron surface (100) 0.772 0.778
(110) 0.869 0.865
(111) 0.708 0.695
(111) 0.749 0.725

Open-hole surface (100)n 0.0828 0.0744
(110)P 0.274
(110)y 0.216 0.218
(110)B 0.167 0.182
(100)e 1.880

Mass
Theory Kxpt

2.00 2.44
2.71 3.16
1.80 2.06
2.05 2.50
1.01 1.53

79 ~ ~ ~

2.88 3.32
2.77 3.62

95 ~ ~ ~

The lone point for the field along $111jis the effective
mass of the off-central orbit described above. As is
well known, the experimental mass will generally be
larger than the calculated band mass, because of
many-body eGects. Thus we cannot compare any of
the masses calculated here directly to the experiments of
Ketterson and Windmiller. ' We do expect, however,
that the anisotropy of the measured and calculated
masses will be similar, since the mass-enhancement
effects tend to be isotropic. Every feature, including
the "bump" near 30', is reproduced in the experiments
which were carried out in the (110)plane.

We now turn to orbits on the open hfth-band hole
surface. Figure 4(a) shows the dHvA areas calculated
for the holelike n orbit in the (100) and (110) plane.
Calculations were carried out for the held within 30'
of L100), although experimentally this orbit exists
over a slightly larger angular range. The calculated
areas are somewhat larger than the experimentally
determined values, but the anisotropy is similar.
Figure 4(b) shows the angular dependence of the effec-
tive mass of the n orbit. Again, the anisotropy is similar
to that observed experimentally. For the field in a (110)

I'IG. 6. o. orbit for the fifth-band holes with the magnetic field
along (100). The orbit is centered on IV.

'4 J. B.Ketterson and L. R. Windmiller, Phys. Rev. Letters 20,
321 (1968).

FxG. 7. P orbit for the Gfth-band holes with the magnetic Geld
along $100). The orbit is centered on X.

plane, symmetry considerations show that the plane of
the orbit must include the point 8". When the held is
tipped away from (100) in an arbitrary direction, that
is not necessarily the case. The observed position of
minimum area was, however, observed to stay very
close to W ( 0.01 unit measured along the I-W line)
in the (100) plane. Observe that dA/dE is negative for
hole orbits.

Figure 5(a) shows the angular dependence of the
dHvA area for the y orbit with the field in the (100)
and (110) planes. The orbit exists for the field near
L110$ and is holelike. The plane of this orbit does not
include any symmetry point, so that it is necessary to
search for the extremal orbit at each held direction.
The y orbit has been observed experimentally and agrees
well with the calculated values. The calculations do not
extend over the full angular range for which the orbit
exists. Figure 5 (b) shows the calculated effective
masses for the (100) and (110) planes.

We next discuss the 6 orbit which exists for the held
near L110$.It was found that for the center of integra-
tion on the X-S' line, orbits near the position of ex-
tremal area could have double-valued radius vectors.
However, the radius vector could be made single-
valued by moving the integration center off the X-S'
line. It was further observed that the position of this
center had to be changed for different held directions,
since otherwise the radii again became double-valued.
For this reason few calculations were performed for the
5 orbit. For the field in a (100) plane there are two
branches for this orbit corresponding to the arms~&along

each of the two (100) axes in this plane. However, in
the (110) plane these two branches are degenerate.

The angular dependence of the extremal area and
cyclotron effective mass for the P and e orbit was also
calculated. Since these orbits have not been observed
experimentally, we will not report these results.

In Table VI the measured and calculated values of
A and m* for the magnetic held along the major sym-
metry directions are given.
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C —=C;+Bc,. Then we have

6'(C ' C ')=5'(C C )

m A+2 m

BC,+-', P BC,BC, . (12)
~=& BC; ~, & BC,BC)

We minimize this with respect to 6C;, obtaining

~ ~ e o + + + ~ ~ ~4 ~ +&&eetttettseeeHseeeIestoeeesstcost ~ && ~ s s e ~ + ~ ~ m,

+ Q Bc(——0.
BC; &=j BC,BCi

(13)

FIG. 8. p orbit for the Gfth-band holes with the magnetic Geld
along L100j. The plane of the orbit intersects the I'I line 0.126
units from X.

In Figs. 6—9 we show various cross sections of the
open-hole surface. Figure 6 shows the o, orbit for the
field along L100), while Figs. 7 and 8 show the P and y
orbits for the field along f110). The y orbit is located
0.126 units away from X along the I"X line.

INVERSION OF dHvA DATA

We now discuss inversion of dHvA areas and effective
masses into radii and velocities. This was erst done suc-
cessfully for the noble metals of Roaf using the Fourier-
series representation. Roaf used both a four-star and a
six-star representation. Because of the rather large
number of terms required to obtain an accurate repre-
sentation of the Pt Fermi surface, it is essential that the
calculations be performed in an economical manner. An
inversion of the Pt experimental data has not yet been
attempted using the Fourier-series representation but
has been accomplished for the I'-centered surface using
the inversion scheme of Mueller. ' 4 Nevertheless, we
will discuss how an inversion (using a Fourier series with
a large number of stars) could be accomplished. It is our
belief that without data on the sensitive e and P orbits
an inversion of the open-hole surface is not possible.

We begin with the problem of inverting the dnvA
areas into radii. Assume that we have an initial set of
C, generated from a band-structure calculation. We
furthermore assume that we have a set of experimental
areas selected such that the electron in traveling around
these orbits samples most of the Fermi surface. We
would require at least as many experimental data
points as the number of stars in the representation.
From the initial C; we could calculate areas correspond-
ing to each of the experimental areas. Let A be the
set of experimental areas and A be the calculated
values. As a measure of the quality of the fit we define
the function 6 by the relation

Using the laws of differentiation of implicit functions,
and the fact that

we have"

BC;

1 2"
A'=—

2 0

(Bki ( BE)4
l BE,, (BC,)„

BE/BC, is nothing more than the sum of e'~'" over all
vectors in the jth star, this sum being defined as
S;(ir). Thus we have

2x P2
S, (k)dB.

p k~ ~E
This completes the calculation of Bhs/Bc, . Now,
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The above is a set of linear equations in 8C~, and the
problem now is to evaluate the vector and tensor coef-
ficients MP/Bc; and B'LP/BC, BC~. Now, we have

862 2 ()A;c
=—P (A,'—A')

BC; E '=& BC;

6'(Cp, ci, . . . ,C~) =—Q (A —A ')'.

The initial C; do not in general minimize this function.
Let the values of C; which do minimize this function be

FIG. 9. e orbit shown in the extended zone scheme. The positions
of the a, P, y, and b orbits are indicated.

'~ The treatment here assumes that the plane of the orbit re-
mains constant, i.e., the orbits include a point of sufficiently high
symmetry. The generalization to the case where the orbit moves
on varying C; is straightforward.
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FIG. 10. Contours of constant radius for the sixth-band electron surface.

B'6'/BC, BC~ is given by

BLV 2 & BA'BA' BA' )
+(A —Ag')—

BC,BCi X '=I BC; BCi BC;BC(/

The only quantity which we have not already evaluated
is B'A /BC, BC& Asho. rt calculation yields

Ac

S,(k)k, .~S((k)+Si(k)k, qS, (k)
k~'

(k, vE)'

S~(k)S, (k)k, ~pE.k,i
(&&)

(k, ~E)' )

where the dyadic V VE is given by

P ~E(k) P RRCRngik ~ R

R

The important point is that a complete iteration re-
quires going around each orbit only once. At each point
in the ith orbit we calculate the contributions to the
integrals for the elements of the vector BA,'/BC; and
the tensor B'A,'/BC;BCE. It is also possible to extend
this technique to simultaneously 6t areas and effective
masses.

As outlined in the calculation section above, the least-
squares procedure used to fit a band-structure calcula-
tion yields a best rms 6t to the energy, i.e., the value of

N
6'=P (E,'—Ep)2

is minimized where E is the calculated energy at the
ith k vector. However, it would sometimes be desirable
to use the C; which yield the best rms 6t to the energy
as the initial values for obtaining a new set of C, which
yield a best rms fit to the radii. Obvious extensions of
the techniques developed in the present section make
this possible.

CONTOUR GENERATION

There are two common ways of presenting the details
of the shape of the Fermi surface. One might graph the
intersection of the surface with planes spaced uniformly
along some axis such as the $100j axis. This is not very
economical, since many such slices would be required
for an accurate presentation. However, such slices are
easily generated using the same techniques used to
calculate dHvA orbits. The second and most economical
way is to construct a contour map of the surface. VVe

will now discuss how contours of constant radius may
be generated using the Newton-Rhapson approach.
To generate a contour we must be able to carry out two
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operations: (1) If a vector is off the surface and off the
contour, we must replace, it by one which is closer to
the surface and contour; and (2) having a vector that
is on the surface and on the contour, we must generate
a new vector which is also on the surface and contour
but which had advanced by a known angle.

We define the following four unit vectors:

result is
Zp —Z(k)

1 ko2 —k' Ep —E(k)
b= — rir k

n k 2 ~VZ

ni VE/~——vE~, n, =k&(ri /r~k&&ri, ~,

n, =n, Xn„n4=k/)k(.
Consider first process (1). If we have a vector k which
is off the surface and contour, we want to replace it by
a vector k'=k+bk which is closer to the surface and
contour. We require 8k to lie in the plane formed by the
vectors n1 and n3, i.e.,

We repeat this process until bk/k is smaller than some
specified number (0.001, in our case). Now consider
process (2). Having a vector k which is on the surface
and contour, we wish to replaced it with a vector
k'=k+bk which is quite close to the surface and con-

tour but which makes an angle 0 with k. We require
6k to lie in the plane formed by the vectors n2 and n4.
A short calculation shows that

bk= 2k sin-', 0(n2 cos-', 8 n4 sin-',—9) .
bk=&i+ bn3.

By alternatively applying operations (1) and (2),
The values of u and b are found using Eq. (6) together we may advance around a contour of constant radius.
with the condition ka' ——~k+8k~' —k'+2k bk, where ka Figure 10 shows the contours of constant radius for the
is the radius of the contour under consideration. The I'-centered surface of platinum.

P H YS I CAL R EVI EW VOLUME 186, NUM HER 3 15 OCTO B ER 1969

Point-Defect Interactions in Elastic Materials of Grade 2

WILLIAM F. ADLER

Battelle Memorial Institute, Columbus Laboratories, Columbus, Ohio 43Z01

(Received g May 1969)

The main result of this paper is that two centers of dilatation in an infinite, isotropic domain do possess
an interaction energy according to the linearized version of Toupin s strain-gradient theory of elasticity —in
contrast to the classical theory of elasticity, where the interaction energy was shown to be zero. The center
of dilatation has been adopted by many investigators as a representation of point defects in crystalline solids,
so the above result may have signihcance in evaluating the long-range interactions which may occur between

point defects.

I. INTRODUCTION

HK classical theory of elasticity has been used by
a number of authors to study the behavior of

point defects and dislocations in crystalline solids.
While this approach admittedly may not be appropriate
in a number of cases to which it has been applied, it has
yielded several useful results. In order to simplify the
analysis the crystalline solid is assumed to be isotropic
and infinite in extent. Within this general framework
the present paper applies a recently developed, non-
classical theory of elasticity to the problem of the inter-
action of two centers of dilatation in an infinite,
isotropic, elastic medium. In contrast to the statement
which is frequently made, based on the work of Bitter, '
that the interaction energy of two centers of dilatation
in an infinite, isotropic, elastic medium is zero, an

explicit expression for the interaction energy will be
given. This seems to be more in line with the results
obtained from digital-computer computations based on
lattice models. The classical result has been especially
noted and criticized by Hardy and Bullough. '

A number of investigators have considered generaliza-
tions of the fundamental model of a continuum which
forms the basis of the classical theory of elasticity. The
generalized continuum models have the common
feature that they take into account more of the details
around a material point. There is evidence that the
generalized continuum models may incorporate some of
the lattice characteristics of crystalline solids in the
continuum approach. However, most of the nonclassical
theories are in their early stages of development, so it is
still somewhat premature to judge the potential value
of these new models.

F. Bitter, Phys. Rev. 85, 1527 (T931). ~ J.R. Hardy aud R. Bullough, Phil. Mag. 1S, 237 (1967).






