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We consider the sum of the one-electron energies of the occupied bands for a metal which has d bands
interacting with nearly-free-electron bands. Using Hubbard s hybrid form of the Korringa-Kohn-Rostoker
band-structure method, we consistently retain terms in the energy to first order in the width of the d scatter-
ing resonance. For the alkaline-earth and noble metals (the metals at each extreme of the transition series),
it is shown that the lowest-order eGect of the interaction between the d bands and the free-electron bands,
and, in the case of a noble metal, also the effect of the finite width of the full d' bands, results in a simple net
contribution to the total energy given by Uq= (10I'/~) ln(~ fp —6r ~/eo), where fp and r are the energy and
width of the d scattering resonance, and ez is the Fermi energy for the unperturbed free-electron band. It
is shown that this term is to be added to the usual pseudopotential contribution to the total energy, where,
if the pseudopotential is expressed in Ziman s phase-shift formulation, the d' phase shift is to be replaced by
the residual phase shift which remains after the resonance part is extracted. It is also shown that the term
Ud gives a negligibly small contribution to the cohesive energy and to the compressibility of Cu, indicating
that the d-band contributions to these properties are to be found either in the volume dependence of the
energy of the d resonance, or in contributions to the total energy of the metal other than that of the total
band-structure energy.

l. INTRODUCTION the strength of the hybridization. We calculate the
contributions to the total band-structure energy from
the free-electron bands, the d bands, the hybridization
interaction, and the pseudopotential interaction, con-
sistently retaining lowest-order terms in I" and the usual
second-order terms in the pseudopotential. This can be
considered as a perturbation treatment of this problem,
where the zeroth-order state is a set of d bands of zero
width located at eo, the energy of the d scattering reso-

nance, crossing a free-electron band without hybridiz-

ing; the perturbation is concerned with the widening of
the d bands and the hybridization, as well as the
pseudopotential interaction. It is shown that there is a
great deal of cancellation and combination among the
various d-band contributions to the total band-structure

energy, yielding a simple result for the net effect of the
presence of the d bands.

1
W~NE of the major advantages of the pseudopotential

formulation for the simple metals is that it has
been possible to use perturbation theory starting from
a free-electron gas to calculate the total energy of a
metal and the dependence of the total energy on the
lattice positions in the crystal. This has led, for example,
to calculations of cohesive energy and the elastic con-
stants, explanation of observed crystal structures, and
the calculation of phonon frequencies for these mate-
rials. ' The present work is intended as a step towards
calculating such properties for transition metals, in
which the presence of the d bands must be explicitly
considered. . Specifically, this paper is concerned with
calculating an expression for the total band-structure
energy (i.e., the sum of the one-electron energies of the
occupied bands), which is the major contribution to the
total energy. We consider the limiting cases of a transi-
tion metal in which, in zeroth order, the d bands are
empty (alkaline-earth metals) or full (noble metals);
for these materials the proximity of the d bands to the
Fermi energy appreciably alters the nearly-free-electron
(NFE) behavior.

Our starting point is the hybrid secular equation
derived by Hubbard' and improved upon by Hubbard
and Dalton, ' based on an approximate transformation
of the Korringa-Kohn-Rostoker (KKR) secular equa, —

tion. In this hybrid theory, the energy bands of a
transition metal are represented as the hybridization
between NFE bands and d bands. In this formulation
the width I' of the d scattering resonance of the mu%n-
tin potential controls both the width of the d bands and

2. SYNOPSIS OF KKR-HYBRID THEORY

Since much of this paper deals with mathematic~i
manipulations of the K.K.R theory and, in particular,
with Hubbard's transformation of the KK.R equation
to a hybrid form, this section is devoted to summarizing
the aspects of this theory which will be used here.

In the KKR method, ' the energy bands e(k) for a
crystal with one atom per unit cell are the roots of a
determinant

~&r, r, (k,e)+K8II. cot/((e)
~

—0.

Here e is measured relative to the zero of the muffin-i;in

potential, I- stands for (l,m), x=e't', r)t is the / phase
shift of the muon-tin potential, and Al, l, is a structure
constant. In a transition metal the l =2 phase shift has
a resonant form' (following Refs. 2 and 3, we use the
symbol X for the orbital angular momentum of the reso-

* Supported in part by the U. S. Army Research Oftice
(Durham), under Contract No. DA-HC04-69-C-0007.

' W. A. Harrison, Pseldopotentialsin the Theory of 3IIetals (W. A.
Benjamin, Inc. , New York, 1966).' J. Hubbard, Proc. Phys. Soc. (London) 92, 921 (1967).

3 J. Hubbard and N. W. Dalton, J. Phys. C1, 1637 (1968).
4 W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).
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nant state, which for a transition metal is X=2):

ti(e) —= taniti ——I'/(ep —e) +tg'(e),

of the procedure of retaining only lowest terms in F in

our total energy calculations.
(2.1)

where ep and I' are, respectively, the position and width
of the X scattering resonance, and t~' is a smooth residual
phase shift. Apart from the resonance the phase shifts
are considered to be small, and will be treated to low
order.

Hubbard and Dalton' ' have transformed the KKR
equation by splitting the phase shifts and the structure
constants in the following way Lsee Eqs. (HD1) and

(HD2); HD denotes equation numbers in Ref. 3]:

3. HYBRIDIZATION AND PSEUDOPOTENTIAL
EFFECTS

In this section, we calculate the effect of hybridization
and the pseudopotential on the lowest free-electron
band. (Here it is assumed that the resonance occurs at
an energy within the lowest free-electron band; if the
resonance crosses the free-electron band k+K for some
nonzero reciprocal-lattice vector K, then replace k by
k+K in the following. ) First, rewrite (2.4) as

Rial e ) ep e)
tl(e) =ti'(e)+ — —

I
exp I, (2 2)

6p —6 6p p )
ks+ vpp (k) e Mt

=0, (3.1)

+LL' +LL' (t3)++LL' (P) ~ (2.3)

=0
8 9

(2.4)

Here p is an arbitrary positive constant, and ALL' and

Al, l,
" are defined in Ref. 3. This results in an approxi-

mate hybrid secular equation of the form

where we have explicitly written the 6rst diagonal term
in the NFE block, and the matrices M and N denote the
reinaining elements of the determinant of (2.4). Next,
we follow a procedure employed by Heine' to obtain the
eRect of M and N on the lowest conduction band. By a
matrix transformation of (3.1) I see Eq. (30) of Ref. 6]
the root corresponding to the lowest NFE band is con-
tained in the equation

k"+sop —p —MtN iM=0
where C, D, and I are matrices representing, respec-

or
tively, the conduction (NFE) bands, the d bands, and
the hybridization between them. The matrix elements
are given by (HD30) —(HD33):

e =k'+~ —M~N —'M (3.2)

CKx =(Ik+KI' —e)&xx+ixx (k),

D„„.= (ep —e)8 .+I'T„.(k)

—I'4' P 2-"2-"-, (2.6) I&-(k) I'—I' P . (3.3)
mpx'(k)

e=k'+capp(k) —g
xwp Ik+KI' —k' m gp —P2

H =I"'t'k (k+K) —I'""t 'Q & & (k+K), (2 7)
LThese lowest-order terms can be obtained by in-
spection from (2.5)—(2.7) by (a) replacing e by k' in
MtN 'M, (b) ignoring the last two terms on the right-
hand side of (2.6), which contribute to order I", (c)
ignoring the second term on the right-hand side of (2.7),
which contributes to order I'v, since, from (HD21) and
(HD12), tq' is of order v, and (d) also ignoring cross
terms between ~ and h, which contribute to orders
v'I"'t' and vi'.]The third term on the right-hand side of
(3.3) is the familiar pseudopotential result of second-
order perturbation theory, while the last term is the
hybridization correction.

From (HD22) and (HD12), we have

tn/

where K denotes the reciprocal-lattice vectors of the
crystal and m denotes the magnetic quantum numbers
of the d states; the functions ~KK, 1,and h, all of
which are P-dependent, are defined in Ref. 3.

Note that I' determines both the width of the d bands
and the strength of the hybridization. In the limit
I'-+ 0, H vanishes and (2.4) gives a set of d bands of
zero width at 6=Op which do not hybridize with the
NFE band. This limit will be taken as our zeroth-order
model, and we will treat the corrections due to hy-
bridization and d bandwidth to lowest order in I'.

The approximations that have been made in Refs. 2
and 3 in deriving these equations are essentially a
narrow-band approximation for the d bands and an
NFE approximation for the remaining bands. These
approximations will not introduce errors into our calcu-
lations to the order which we retain. The accuracy of
the narrow-band approximation in describing the band
structures of actual transition metals' is a justification

4ir (2t+1)ti'(k')
zoo(k) = ——P—

kr ~ 1+(1—5n, )H&(k')ti'
(3.4)

where r is the volume per atom, and Hi(e) is defined in
Ref. 3. It is useful to separate the terms in happ which

' V. Heine, Phys. Rev. 153, 673 (1967).

where the last term in (3.2) is a function of e. Consider-
ing the last two terms on the right-hand side of (3.2) to

(2 5) be small corrections to the free-electron energy, we keep
only contributions of order I' and v' in MiN 'M, giving
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6p —6

(o '+'' top —o)
expl &pi

(3.6)

depend on the d-resonance parameters from those due
to the residual d phase shift. Equating (2.1) and (2.2),
we obtain

(3.5)
where

4. TOTAL BAND-STRUCTURE ENERGY

Here we apply the results of Sec. 3 to calculate the
effect of the d bands on the total band-structure energy
of the alkaline-earth and noble metals. The effect of the
pseudopotential contribution (hp) ~, is discussed in
Sec. 5.

A. Alkaline-Earth Metals
From (3.4), the contribution to vop from t), is

spp(4") = —(4m/kr) (2'X+1)t),"(ko)

(o,—k')-
expI

47r (2K+1)I' - ( k'~ "+'('

kr (op —k') (op)

An alkaline-earth metal in zeroth order consists of a
(3.7) free-electron band f)lied to a Fermi energy p); =k) ', with

an occupied set of d bands of zero width at an energy
ep) eg. The zeroth-order contribution to the total band-
structure energy per atom is then

Finally, (3.3) can be rewritten as
(3.8) 2

U);s ———Q k',
g k(kF

(4.1)

where

with

.=k&y(a.)„,+r(a.)„
&pK

2

(Ao)„.= ()pp'(k) —P-
K~o Ik+Kl' —k

4x tl+t)(X(tX tX)
~oo'= ——P (2t+ 1)-

k7- & 1+(1—()ig)H&ti

(3.9)

(3.10)

(3.11)

where X is the number of atoms in the macroscopic
crystal, and the factor 2 accounts for the two spin
states corresponding to each k value. From Sec. 3 the
resultant first-order contribution due to the presence of
the d bands is

2F
Ug= —p (ho)d.

From (3.16), we have

(&p)), =
poo(t.")

I &-(k) I'

I' m qp —P2
(3.12) 20r ~ kdk

ep —k'

From (HD19) the hybridization function is given by = (10r/~)inI (o.—o,)/o, ]. (4.2)

A (k+K) =F),„(k+K, op) =4~I k+KI"
~1/2~ X+1/2

B. Noble Metals

XI'), *(k+K)exp
-op —(k+ K)'

(3.13)

By use of (3.8) and (3.14), Eq. (3.12) becomes simply

(Ao) g ———(4s/kr) (2K+1)/(op —k'), (3.15)

which for d bands (X=2) is

(Do) g
—— 20~/kr (op k')—. (3—.16)

The term (Dp)„, is to be interpreted as the NFE
pseudopotential correction to the free-electron energy;
this term vanishes if the s, p, and residual d phase shifts
vanish. The last term on the right-hand side of (3.9) is
the lowest-order correction to the free-electron energy
due to the presence of the d bands, and vanishes as
r o.

where )(p= (pp)'(P. Then the second term on the right-
hand side of (3.12) becomes, after simplification,

Ik„(k)IP 4~ (2)+1) k»+'&P
exp . (3.14)

pp
—k kr (oo —k ) op

~ ~

A noble metal in zeroth order consists of a free-elec-
tron band filled to a Fermi energy ep=k+2, with an
occupied set of d bands of zero width at an energy
ep( c~. The zeroth-order contribution to the total band-
structure energy is then

2
U() ———Q k'+10op, (4.3)

since there are 10 electrons per atom in a full d band.
The 6rst-order correction Ud, due to the nonzero width
of the d bands and to the effects of hybridization and the
d-resonance pseudopotential, consists of three con-
tributions:

Ud —U~(i)+ U~(&)+ Uo(p) (4 4)

2r
(&p) a

Q k(1(,y
(4 5)

is the net effect of the d bands on the occupied free-
electron band, Ud(" is the correction to the total energy
of the d bands due to their nonzero width, and U~(" is
the correction to the energy of the d bands due to their
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hybridization with the free-electron bands. It is now
shown that U~ "&+Ud&'& =0.

The total energy of the d bands of nonzero width,
without hybridization, is obtained by summing the
eigenvalues of the 0 block of (2.4) for all states k in the
reduced Brillouin zone. For each value of k, the sum of
the eigenvalues of the matrix equals the trace of the
matrix, so the total energy is

Here the summation over the reciprocal-lattice vectors
K (including K =0) takes into account the hybridization
effect on the d bands due to interaction with all the
free-electron states. By use of (3.13) this becomes

2r
~
F,„(ky K. .p)

~

p

1V &»z m po —Ik+Klp

2—g g(D +p),
g kBZ m

(4.6)

However, from (HD6) we obtain

1 Fz(k+K, p)Fr, *(k+K,h)
—Air, '=

where RBZ denotes a summation over all vectors k in the
reduced Brillouin zone. The 9 matrix elements can be
written in a tight-binding form (HD26)

D ~ =Lpp+rHg(pp& —p]6

+Q v'„„(R)exp(ik R) (4.7)
R+0

by appropriate definition of K . Then (4.6) reduces to

2 (2X+I)$pp+rHi (pp) $,

21'
Ud"'=—Q Q Ao o '(po)

QIfp kBZ m

Combining (4.8) and (4.9), we have

2r
Ua"'+Us"'= —2 2 (Ap p '+A2 p "),

2VKO kBZ m

(4.9)

which, from (2.3), becomes

Ud +Ud = p p A2 2 m(pmo).

g ff'0 kB Z m

(k p) Q gikR
RQQ

since the sumination over kiiz causes the last tenn in
(4.7) to contribute zero. The term rHi, (pp) is a shift in 2r
the mean position of the d bands to an energy greater (4.10)
than pp, resulting from their nonzero width. (This can
be identified with the volume-dePendent quantity dp'

However, from E s. (A2. 14) and (A2.22) of Ref. 4, the
previously introduced by the author. )

From (4.6) and (2.6) the first-order correction to the
energy can be written as

2r
~(2) — Q g T

gkBZ m

However, from (HD25) we have

as far as the k dependence is concerned, where the
summation is over all the nonzero direct lattice vectors
R of the crystal. Then, (4.10) becoines

so that
Tmm' =Ko A i,mmmm' (pp) &

Ua"' —— P Q Ao„o "(po)
litle:0 kBZ m

(4.8)

Ug "&+Ug &'& P P exp (ik R) =0.
R+0 kBZ

Finally, we have

20F ~i' kdk

(4.11)

The total hybridization effect on the energy of the d
bands at point k in the Brillouin Zone, due to inter-
action with a free-electron state of wave vector k+K,
is equal and opposite to the hybridization effect of the
d bands on this free-electron state. The latter was
calculated to first order in Sec. 3, giving Lsee the last
term on the right-hand side of (3.3)j

~

k„,(k+K) ~'—FW—
- pp —tk+K~'

2I' iA„(k+K) i'

X K»z -.,—~1+K~p

' R. A. Deegan, Phys. Rev. 171, 659 (1968).

ep —k'

Taking the principal part of the integral, we obtain

Ug ——(10r/ir) 1nt (p p —pp)/opj. (4.12)

U. =(10r/~) In(~ pp —pP~/pp), (4.13)

for both the alkaline-earth and noble metals. Equations
(3.16) and (4.13) are the principal results of this paper.

Note that (4.11) represents an exact cancellation
between the raising in energy of the mean position of the
d bands due to their nonzero width and their lowering in
energy due to hybridization with the free-electron band.

Equations (4.2) and (4.12) can be written in the single
form,
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5. PSEUDOPOTENTIAL CONTRIBUTION

For both the alkaline-earth and noble metals there is
also the following NFE pseudopotential contribution to
the total energy:

2
U». = E—(~~)",

Q j&1~
(5 1)

)&P((cosL(k+ K), (k+ K') j) . (5.2)

To low order in the phase shifts the square-bracketed
terms in the denominators of (3.11) and (5.2) may be
replaced by unity. Then (he) ~, depends on the splitting
pa.rameter P, through the @0K' terms of (3.10), in two
ways: (i) The phase shift ti' entering ioK for KWO con-
tains a P dependence from ti," )see (3.5) and (3.6));
however, this is a term of order I' in eoK', which we
neglect. Then, to lowest order, we replace tq' by tq' in
i OK. (ii) From (5.2), vol contains the following multi-
plicative factor:

0' —[%+Kf'
= exp . (5.3)~ ~

2p

This factor involves the approximation in Ref. 3 of
replacing e by k' in the pseudopotential terms, as
explicitly demonstrated in (5.3). However, to the same
order we can instead replace e by

~

k+K
~

' in the second
expon. ent of (5.3), since from the energy denominator
in (3.10) this contribution will be sizable only for
k' ~k+K~'. Then the P dependence vanishes from
(6t)pg) giving

where

(p s)2

(i1e)~ =woo (k) —P«o ~k+K~' —k'
(5.4)

4m. fl+Bo (Ix 8i)
(k) = — P (2l+1)

k2l+1

&&
~
k+K~ '~ k+K'~ 'Pi(cosL(k+K, k+K') j), (5.5)

and the phase shifts t~ and t~' are evaluated at e=k'.
Note that this is precisely the Ziman form of the
pseudopotential LEq. (52) of Ref. 5j, in the limit
r, r' —+ 0, with the d phase shift replaced by the residua,
d phase shift t~'. This also shows that in the limit I"—+ Ol

where (Ae)„, is given by (3.10) and (3.11). From
(HD21) and (HD12), the pseudopotential is

4~ (2l+1)t('(k') ik+Ki 'ik+K'i '
~zK (k) = ——Q

r t k"+'Ll+ (1—Bti,)H((k')ti'j

» —lkei~l -1k+i~
I

)(Xexp—
2

for which the d-band term U~ disappears, we recover the
usual NFE result for the total energy.

6. APPLICATION TO COPPER

Attempted calculations of the cohesive energy and,
particularly, the compressibility of the noble metals
which are based on an NFE approach are in serious
disagreement with experiment. For example, Fuchs'
calculated a value of 1.45 eV for the cohesive energy per
atom of Cu, using a Wigner-Seitz method to obtain the
bottom of a free-electron band, compared to an experi-
mental heat of vaporization of 3.10 eV. The compressi-
bility of Cu on a free-electron model is 2.6&10 '
cm'/kg, compared' with an experimental value of
0.70 X10 '. The discrepancy between theory and
experiment for these properties is ascribed to the effect
of the d bands. In particular, the major contribution to
the compressibility of the noble metals is usually
attributed, on an atomic model, to an effective hard-core
interaction between closed atomic d shells on adjacent
atoms in the lattice. In this section, we calculate the
effect of the d-band term of (4.13) on the cohesive
energy and the compressibility of Cu.

which has very little effect on the cohesive energy. Thus
the effect of hybridization and the d-resonance pseudo-
potential plus the shifting from eo of the mean position
of the d bands gives a very small net contribution to the
binding energy. This indicates that the principal
contribution of the d bands to the cohesive energy is due
to either (i) the difference in energy between the free-
atom d level c~'" and the energy of the d resonance,
which contributes a term equal to

10(&a —
&0 & i) (6 1)

where c & is the position of the muon-tin zero relative
to the zero of the free-atom potential (recall that eo was
defined relative to e i), or (ii) contributions to the total
energy other than the total band-structure energy, such
as correlation effects. In particular, note that it requires
only a very small difference in (6.1) to contribute
appreciably to the cohesive energy (which also shows
that the energy of the d resonance must be within a few
hundredths of a Ry of the free-atom d level). Either
possibility is in agreement with the results for the
compressibility described below.

K. I"uchs, Proc. Roy. Soc. (London) A.151, 585 (1935).
~ G. A. Burdick. , Phys. Rev. 129, 138 (1963).

A. Cohesive Energy

For Burdick's' potential for Cu the d-resonance
parameters have been determined in Ref. 3 to be
eo ——0.306 Ry and I' =0.008 Ry. For the lattice constanI;
of Cu (a=6.8309 a.u.) the free-electron Fermi energy
for one electron is ez =0.518 Ry. Then, from (4.13), we
have

Ug ———0.0093 Ry = —0.126 eV,
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1 1 d2U

12m'Eo dro rp=gp
(6 2)

where U is the total energy per atom, ro is the radius of
the Wigner-Seitz sphere, and r p =Ep for the equilibrium
lattice spacing. From Sec. 4 8, the contribution to the
total energy from the d bands (relative to the zero of the
free-atom potential) is

10eg+ Ud, (6 3)

where Eg=60+E,„&, and Uz is given by (4.13). If we
assume that I", eo, and e ~ are independent of volume
(physically, this means neglecting the self-consistent
dependence of the potential on volume), the lowest-
order d-band contribution to the compressibility of a
noble metal would be

1 1 d Vg

12WEO dro
(6.4)

where the variable in Ud is

cr ——kg' ——1/cr0', (6.5)

where c= (4/9')"' for a free-electron band containing
one electron per atom. Substituting from (6.5) in (4.13),
Kq. (6.4) becomes, after differentiating,

1 —SI' (3ceo Ep ')—
X„3~'Eo (1 ccoEp')'—

Using the values ep, eo, and I' for Cu, as given in Sec.
6A, we have

1/Xq = —3.28 X10' Ry/(a. u.)'= —0.0483&(10' kg/cm

which is a very small contribution to the compressi-
bility. Thus the effect of hybridization and the d-
resonance pseudopotential plus the shifting of the mean
position of the d bands gives a nearly vanishing net
contribution to X. This is in agreement with the results
of Dalton and Deegan" on the structures of the transi-
tion metals, where a band-structure calculation which
neglected the dependence of e~ on the crystalline struc-
ture failed to give the effective hard-core repulsion
required to favor the close-packed structure near the

"N. W. Dalton and R. A. Deegan, J.Phys. C (to be published).

B. Compressibility

In the low-temperature limit the compressibility X
of a metal is given by Le.g. , Eq. (8) of Ref. 87

noble-metal end of the transition series. This result
indicates that the effective hard-core interaction is to
be found either in (i) a dependence of cq on volume,
which could give a strong contribution to X from the
first term of (6.3), or (ii) a dependence on volume of
those contributions to the total energy other than the
sum of the one-electron energies.

7. SUMMARY AND DISCUSSION

It has been shown that, to lowest order, the energy of
a free-electron state k is modified, because of interaction
with d bands, by an amount I'(Ae) q, where (De) d is given

by (3.16).This leads to a simple net d-band contribution
U~, given by (4.13), to the total band-structure energy
of an alkaline-earth metal, and a d-band contribution of
10fg+ Ug to the energy of a noble metal, where ed is the
energy of the d scattering resonance. This includes the
hybridization and pseudopotential effects due to the d

resonance and, in the case of a noble metal, also the
shift in the mean energy of the d bands due to their
nonzero width. It has been shown that these terms are
to be added to the usual free-electron and NFE pseudo-
potential contributions, where the 1=2 phase shift
entering the pseudopotential in the KKR-Ziman'
formulation is to contain only the residual, nonresonant
part of the d phase shift.

As demonstrated for Cu, one of the most striking
aspects of these results is the small size of the net
contribution to the band-structure energy due to inter-
action with the d band. Hybridization contributions are
frequently invoked to qualitatively explain various
d-band effects, and it is hoped that one result of this
work will be to focus attention, as in the case of the
cohesive energy and compressibility of the noble
metals, on the direction in which to look for explana-
tions of such eRects.

The method employed here cannot be directly ex-
tended to the case of transition metals with partially
ulled bands, since then in zeroth order e~ ——eo and U~
will consequently diverge; also, the sum U&&'&+Ud'3i

of Sec. 43 will no longer vanish, but will give a more
complex, structure-dependent contribution. (It appears
at this time, however, that it is possible to devise a
procedure to overcome the difficulties and thus provide
a method for dealing with many of the so-far incalcu-
lable properties of the transition metals. )
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