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The Anderson model for dilute magnetic alloys is studied in the renormalized random-phase approxima-
tion recently applied to the Wolff model by Suhl and co-workers. The resulting integral equations are
solved analytically in an approximation which treats the key logarithmic divergence correctly. The solution
indicates that the characteristic temperature in this theory depends exponentially on (U/nl', where U is
the Coulomb interaction and 6 the d-level width. This shows that the Kondo effect is not properly in-
cluded in the basic approximation.

I. INTRODUCTION

M~UR understanding of dilute paramagnetic alloys
has advanced along an entirely new path as a

result of recent calculations by Suhl and co-workers. ' '
They studied a model consisting of a band of interacting
electrons and a local impurity potential. This model was
shown by Wolff4 to possess a magnetic instability in the
Hartree-Fock approximation as the electron-electron
repulsion approached a certain critical value depending
on the impurity potential. Suhl reasoned that the large
local spin

fluctuations

existing near this threshold
would modify the effective impurity potential in such a
manner that the threshold would never quite be reached.

Under even the simplest assumptions, correspond-
ing to a renormalized random-phase approximation
(RRPA), this idea translated into a set of two coupled
nonlinear integral equations. These were solved by
brute force numerical iteration. The resulting tempera-
ture-dependent magnetic susceptibilities and electrical
resistivities bear a marked resemblence to the experi-
mentally observed properties of a number of alloys.

In the course of exploring some of the interesting
questions raised by this work, it seemed desirable to
supplement the numerical results with an approximate
analytic solution of the integral equations. Such a
solution is reported here. Its most significant conse-
quence bears on the conjectured relation between this
theory' and the Kondo effect, ' in which the character-
istic temperature associated with this effect depends
exponentially on the ratio of the electron repulsion to
the impurity level width. The characteristic tempera-
ture appearing in the present work depends exponen-
tially on the sqlare of this same ratio, and is expo-
nentially smaller than the Rondo temperature. This
leads us to believe that the processes responsible for
the Kondo scattering divergence are not included in
Suhl's RRPA treatment. In the first two papers of the
Suhl series, '' this same opinion was expressed. That
this theory included a mechanism similar to the Rondo

' H, Suhl, Phys. Rev. Letters 19, 442 (1967).' M. Levine and H. Suhl, Phys. Rev. 171, 567 (1968).
3M. Levine, T. V. Ramakrishnan, and R. A, Weiner, Phys.

Rev. Letters 20, 1370 (1968).' P. A. Wolff, Phys. Rev. 124, 1030 (1961).' J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).
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effect was surmised only after the temperature depen-
dence of the resistivity had been calculated. '

In the present work, the dilute alloy model introduced
by Anderson' is studied rather than the very general
model used by Suhl. ' This choice was largely a matter of
taste. After the set of Feynman diagrams to be summed
is chosen, Suhl makes a series of simplifying assump-
tions that reduce his key equations to those which are
obtained directly when one begins with Anderson's
model. The Kondo effect for Anderson's model has
been demonstrated in several ways, ~' and its connection
with the s-d exchange model has been derived, ~ so
expressing our results in terms of the parameters of
this model should facilitate comparison with these
and other studies.

In Sec. II, the coupled equations are derived from
Anderson's model, and the sums over complex energies
that occur are transformed into real-axis integrations.
In Sec. III, the self-energy operator is examined in
detail, and a series of approximations is introduced
which bring Dyson's equation into a soluble form. The
last paragraph of Sec. III presents a summary, and the
remainder can be skipped without loss of continuity.
The solution of this integral equation is given in Sec. IV.
A transcendental equation remains, which is analyzed
in Sec. V. In Sec. VI, the significance of the results is
discussed.

II. GREEN'S-FUNCTION EQUATIONS

The Hamiltonian for Anderson's model is'

II=H p+Ht,
&a=+ ej~a.+Q em~~. +& Z(c~.'&d.+&d'&~.), (&)

II1=Uedtmgg.

We wish to treat this model by standard finite-temper-
ature diagrammatic perturbation theory. " It is cus-

' P. W. Anderson, Phys. Rev. 124, 41 (1961).
7 D. J. Scalapino, Phys. Rev. Letters 16, 937 (1966).' D. R. Hamann, Phys. Rev. 154, 596 (1967);J.A. Appelbaum,

ibid. 165, 632 (1968).' J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).
A. A. Abrikosov, L. P. Gor'kov, and I. E; Dzyaloshinski,

Methods of Quantum Field Theory in Statistical Physics, translated
by R. A. Silverman (Prentice-Hall, Inc. , Englewood Cliffs, N. J.,
1963).
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tomary to diagonalize JIO and work in the representation
of its one-electron eigenstates. Rather than do this, we
shall follow SchrieGer and Mattis, "who showed that by
remaining in the k-d representation, all k sums can be
carried out ab initio, and one need only consider
diagrams with the d propagator,

(o)

We have taken the density of states to be a constant p
and A=s.pVs. The plus sign in Eq. (2) denotes the
retarded propagator, and the minus sign the advanced.
In the following, propagators should be understood
to be retarded unless otherwise noted.

It is especially convenient to make a particular
choice of parameters,

eg ————,'U.

When this is done, the Hamiltonian has complete
particle-hole symmetry. The transformation relating
the s-d exchange model to the Anderson model is
perfectly well behaved at this point in parameter space, '
as is the perturbation expansion. 7 There is a physical
argument indicating that Eq. (3) is the best choice
because the parameter ez represents the impurity
potential ~ In a real metal, components of the Coulomb
interaction neglected in this model will modify the
potential through screening, and adjust it so that an
integral number of extra electrons (or holes) surround
the impurity. For a uniform density of states, the choice
in Eq. (3) can be shown to require

+84 2 )

where E is the original number of conduction electrons.
Thus, exactly one extra electron is added by the
impurity.

Because of (4), the Hartree-Fock contribution to
the self-energy can be calculated immediately, and is
found to just cancel the real energy in (Gq,P) ',

(b)

FiG. 2. The self-energy diagrams used. The sum over all ladder
configurations in (a) and all bubble configurations in (b) is
intended. The solid lines here are renormalized Gd s including
these self-energy diagrams.

the susceptibility diverges for U=mh. When G& is
renormalized by including the simplest self-energy
diagram incorporating this Boson-like mode, Fig. 2,
the sums in Fig. 1 remain finite for all U, but become
large and strongly peaked at low frequency for V&wA.
Once such renormalized G~'s are used, the Fig. 1
diagrams no longer constitute a conserving approxima-
tion for the susceptibility, as discussed by Levine and
Suhl. ' Nevertheless, we shall use the symbol X(pp) for
these diagrams, and hope that they give the most
important contribution to the actual susceptibility.

The susceptibility for U=O is just the erst term in
Flg. 1~

Xp((o) = Tg Gd(ze„)Gg(—a)+se„), (7)

The sum in (7) may be converted into a real-axis
integral by standard methods. "We find

00

Xp(tp) =-
2K

de tanh ImGsg(e)
2T

where e„=(2e+1)rrT The comp. lete Fig. 1 sum is then

X((o)=Xp(co)/L1 UXp((o)].

Gd."F(e)= 1/(e+id) . (6) XLGdg(e+(o)+Gdg(e —pp)], (9)

Following Suhl, ' we shall assume that the most
important Boson-like mode in this system is described
by the sum of diagrams which correspond to the
susceptibility in the Hartree-Pock approximation, Fig.
1.When Eq. (6) is used for Gz in computing these sums,

~ ~ ~ +

Frc. 1.Diagram sum for the susceptibility in the time-dependent
Hartree-Fock or RPA. The solid lines are bare Gq propagators
given by Eq. (6), and the dotted lines are the Coulomb repulsion
in the d state, U.

"J.R. Schrie6er and D. C. Mattis, Phys. Rev. 140, A1412
(196S).

where the subscripts R and 3 denote retarded and
advanced propagators.

The self-energy, Fig. 2, is given by

Z(e) =-s, O'T Q Gd(e i(u„)X(k—o„), (10)

Equations (10) and (11) correspond to Eq. (11) of
Ref. 1 except for the numerical factor ~3. In Ref. 1,

where ar„=2nrrT. Equation (10) does not include the
Hartree-Fock term, which we have already taken into
account. The set of equations which must be solved
self-consistently is completed by Dyson's equation:
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the corresponding factor is 4. In this work, a contribu-
tion 1 comes from the ladder diagrams, Fig. 1(a),
and a contribution ~ from the singular triplet part of the
bubble diagrams, Fig. 1(b). Iteration of the square
interaction vertices used in Ref. 1 generates both
ladders and bubbles. However, only one of the two
possible particle-hole channels defined for square
vertices was used for iteration there, and the additional
ladders and bubbles generated by iterating the other
way were neglected. The correction of this factor does
not change the results qualitatively.

It will also be necessary to have the sum in Eq. (10)
represented by a real-axis integral, and it proves
convenient to divide this into three terms:

Z (p) =Z&(p) +22(p) +Zp(p) )

3U' " f pp)
Zg(p) = da) tanh~ ~ImGda(pp)xg(c —(o),

&2T)

3U'
dpp tanh ~Gda(p —~)Imxz(pp), (12)

2TJ

3 U'o oo

Zp(p) =
2x

(M)
dip csch~ —~Gq~ (p —cu) Imxg (u) .

&Ti

dXO

xp(pp) =xp(0)+&a
dM co 0

(13)

From Eq. (9), we can easily show

1
xp(0) = ——Im

27r
dp tanh t Gda(p))'. (14)

2T

"Such an expression for the local state susceptibility was
introduced for the unrenormalized RPA by P. Lederer and D. L.
Mills, Solid State Commun. 5, 131 (1967).

III. APPROXIMATION SCHEME

Our goal is to solve simultaneously Eqs. (8), (9), (11),
and (12). The 6rst step is to replace x(co) by a simple,
parametrized function. This was done by Levine et al. ,'
for the purpose of analytically continuing Z(p) from the
imaginary axis points where it had been computed
numerically to &=0. They found that their calculation
of Z(0) based on the approximate x agreed very well

with the results of strictly numerical analytic continua-
tion. The agreement they found is our primary argument
for using the approximate X in the broader context of
the present paper. However, for completeness, we will

repeat the arguments on which this approximation is
based.

Equation (8) implies that Rexp(co)(1/U; x can be
large only when the denominator in this equation is
close to zero. Thus x(co) can be a rapidly varying func-
tion of pp while xp(pp) is varying only slowly. We expect
ReXO to be maximum at M:0) and so we expand"

We can also show directly

dp tanh~ ~ImGd&(p) —ImG&&(&)
(2T& d.

d
d pLImGgg (p)]'—tanh

dp 2TJ
(15)

Suppose the minimum energy over which Gz(p) can
vary is T or larger. Then we can replace the tanh in
Eq. (15) by a step function and make at most an error
in the numerical coe%cient, so

dXO z
=—$1mGd (0))'

de (g 0 7l

(16)

Substituting Eq. (13) in Eq. (8) and keeping only
the real part of Xo in the numerator, we find"

x(a)) =ic/(pp+iT, ). (17)

The parameter T, can be interpreted as the width of
the local spin fluctuation spectrum. We will not give
explicit expressions for c and T, until we have solved
for Gg.

The exact x must fall off more rapidly than 1/~ at
large cv. The energy at which the asymptotic behavior
sets in is of the order of the width of ImG~. The expres-
sion in Eq. (17) will always appear in integrals where
something else cuts the integrand off at these energies,
so the error caused by the incorrect asymptotic behavior
of this approximate X should not be large.

Next, let us examine the three terms in the self-
energy given in Eq. (12). We must keep in mind that
ImGq(p) is even and ReGq(&o) is odd about pp=0 as a
result of our choice of pq, Eq. (3), and that x is to be
replaced by the approximate form in Eq. (17).

The key term in 2 is 2&. For small T and T„ it will

be imaginary and logarithmically singular near &=0."
Zp(p) must be slowly varying compared to Z&, since p

appears in the argument of G~ instead of X. From the
relation between G~ and the t matrix for conduction
electron scattering, we can prove that ImG~ is bounded
by 1/A. Therefore, Gz cannot have any isolated polelike
singularities with residue of order unity on its non-
physical sheet closer to the branch cut than —ih, and
since we are supposing T,(&A, our assertion is proved.
From symmetry we can prove

Zg(0)+Zp(0) =0. (18)

Therefore, we will approximate Z2 by a constant chosen
to satisfy the exact Eq. (18).

"The existence of a logarithmic term in an unrenormalized
RPA study of the Anderson model was shown by N. Rivier and
M. J. Zuckermann, Phys. Rev. Letters 21, 904 (1968). The
related rapid variation of the real self-energy at e= 0 was noted in
the unrenormalized RPA by P. Lederer and D. L. Mills, ibid.
20, 1036 (1967).
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Za(e) must be small compared to the logarithmic
terms because the csch(&u/T) in the integrand cuts it
off at co= T. Thus Z3 can only be important at &=0,
where the large term Z2 is canceled by the rapidly
varying term Z&. We will replace it by a constant equal
to its value at &=0. Furthermore, we will neglect the
co dependence of G~ in the integration region, in keeping
with our previously invoked supposition that G~

cannot vary appreciably on a range of order T. The
expression we shall use is then

3 U'c
Gg(0)z3(e) =

2'
do& csch — ——. (19)

T o)'+T,'

X=~'T2/T, (2T,+~T) . (21)

The approximations made up to this point have been
based on the principle of exploiting the general
properties of the functions involved to simplify the
expressions with which we must deal. Our two final

steps seem purely gratuitous in this context since they
do not simplify anything. They are necessary to bring
Dyson's equation into a form which can be solved by
known techniques.

Let us substitute Eq. (17) for X in Eq. (12) for Zq,

3U'c
Zg(e) =i da& tanh ImGgg (cv)

2T

1
(22)

G3+tT~

Z&(e) is the only term we have kept which can give

G~(e) nontrivial structure. It is clear from Eq. (22)
that the singularity of Z&(e) closest to the physical sheet
must lie at least —i T, below the branch cut along the
real axis. Thus the minimum width we expect to find

in the structure of ImGq (on the real axis) is of order
T,. As T, —+0+, the sharpest input structure comes
from tanh(~/2T). Either the tanh or the iT, serves to
cut off the logarithmic divergence of the integral in

Eq. (22) with «=0. It proves to be advantageous to
replace Eq. (22) with a truly singular integral operator,
and cause the tanh to take full responsibility for cutting
oG the logarithmic integral,

3U'c
Z, (e) =i der tanh~

~
ImGqg(~). (23)

&2T) e —~+iS

We have introduced the effective temperature T,
whose purpose is to represent the width due to both T
and T.

The preceding step cannot be accepted as a good
approximation at this point. Using Eq. (23), it is

The integral X in Eq. (19) can be evaluated in terms of
the digamma function f,

X= 2$ (T,/vr T) 2$(T,/2—vr T) mT/T, —21n2. —(20)

By examining the limits of large and small T,/T, we

find that X can be replaced to a good approximation by
the interpolating function

possible that the integral equation for Gz could bypass
the external source of structure, tanh («e/2T), and
bootstrap sharper structure into Z(e). With the original
operator, T, is an absolute lower bound on real-axis
structure. Thus Eq. (23) can be judged acceptable
only if the solution it leads to is consistent with this
property of the original operator. We shall see later that
this is the case.

The choice of T is somewhat arbitrary. A reasonable
basis for this choice is to require Eqs. (22) and (23) to
yield similar results when ImG& is replaced by some
simple function, say a constant between —U and U,
and zero elsewhere. This gives, as the best choice,

lnT= 1nT+P(2+ T,/2n. T)—f(2), (24)

The approximate operator in Eq. (23) is still not
quite in the form we want. We wish to add to Z(e) the
expression

Z'(e) —=— /«0) 1

&2T) e —~pic
ReGg(co). (26)

This integral is zero at &=0, since ReG~ is odd. It is not
expected to have logarithmic singularities at any e,
and should be small compared to the large constant Z~.
Furthermore, the sign of ReZ'(e) will be such that it
cannot introduce any spurious zeros in ReG& '.
Therefore, we will replace Eq. (23) by

Z~(e) =—3U'c
d~ tanh

~

Gq~ («0), (27)
2T) e —M+18

where G~~ is the advanced Green's function.
The rather tedious arguments in this section can be

summarized briefly: We approximated the d-state spin
fluctuation propagator by a function with a single pole,
then identified a logarithmically divergent term in the
d-state self-energy, treated it correctly, and replaced
the more slowly varying terms by constants. The width
of the spin fluctuation spectrum T, and the thermal
smearing of the Fermi surface were lumped into a single
effective temperature T.

IV. SOLUTION OF DYSON'S EQUATION

Substituting the approximated self-eriergy into Eq.
(11), we obtain the following expressions for the
retarded and advanced d-state Green's functions:

G~g(e) = 1/C i+(«),

Ggg (e) =1/C,—(e),

(28)

(29)

where f is the digamma function. From the asymptotic
expansion of Eq. (24), we can hand the simple interpolat-
ing function

T= T+1.13T,.
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4 i («) = «+ZQ Z2+ d«p ](«p)Ggg(«p),
G)~15

(30)
Adding the needed second-order polynomial,

4 i+(«)4 2+(«)=—X+(«)= «'+a'
+ (3U'c/m) LP(-', a «/2m iT)—f (-,')]. (38)

4,+(«) = « —ia —Zp*+ d«p &(«p)G«g (&p) . (31)
6—M& 28

The next step in the solution is to solve Eq. (38) for
4» («) and substitute the result in Eq. (34),

In the above, a includes the constant terms 6 and Z3,
the Z2 term cancels the integral at &=0 as required by
Eq. (18), and

&(~p) = (3U'c/47r) tanh(«p/2T) .

The functions 4 i and 4,+ introduced in Eqs. (30) and
(31) have no physical significance but will be needed in
finding the solution.

Equations (28) and (29) formally resemble another
set of nonlinear singular integral equations derived by
the author from an approximate treatment of the s-d
exchange model. "Those equations were solved exactly
using complex variable techniques. ""Although there
are many important differences, the same methods work
here.

From Eqs. (30) and (31), we see that 4 i and Cp can
be considered functions of a complex variable s (Res= «)

which are analytic in the finite s plane except for branch
cuts along the real axis. Their discontinuities across the
cuts are

4 i+/4 i ——(X++X )/2X
=—a. (40)

Equation (40) now has the form of the thoroughly
studied Riemann-Hilbert boundary problem. "We can
prove that the index" is zero by the method used
previously. " The most general solution of Eq. (40)
which behaves as required by Eq. (30) at infinity is

—1 " inH(co)
4 i+(«) = («+ib)exp d«p . (41)

2' z ~ 6—Q)~zS

The constant b can be determined by requiring that
4»+(«=0)=i@. This is a key step in determining the
properties of the solution, and we will go through it in
detail. The equation for b is

(4'i+ —4'i )(X+/4'i ) = —2~~&= p(X+—X ) (39)

Simple algebra yields

4 i+—4 i ———2m.i(G«~,

4 p+—4 p
———2m.i)G«g,

(32)

(33)

X+(«p)+X—
(«p))

ln
~

. (42)
2X («p)

—1 1
iu=ib exp d~

27ri „«p+i—b

where the argument e is understood everywhere.
Substituting Eqs. (28) and (29) in the above, we find

(4'i+—Ci )4'p = 2ni$, — .

(Cp+—4» )4 i+= —2n.i$.

If we add these equations, the result is

Ci+Cp+ —Ci 4, = —4rit.

(34)

(35)

(36)

Img (pi aiy) =a

ipse.

tanh~y. (37)

' D. R. Hamann, Phys. Rev. 158, 570 (1967)."P. K. Bloomfield and D. R. Hamann, Phys. Rev. 164, 856
(I967)."The theory of the solution of linear singular integral equations
by these techniques is given by ¹ I. Muskhelishvilli, in SinguLar
IntegraL Fguations, translated by J. R. M. Radok (P. Noordho6,
I,td. , Groningen, The Netherlands, 1953).' P. J.Davis, in handbook of 3IIathematical Functions, edited by
M. Abramowitz and I. A. Stegun (Dover Publications, Inc. ,
New York, 1965), p. 259.

The product C»C» must also be analytic as a function
of s except for a real-axis branch cut. That it must
diverge as s' at infinity, and that it cannot contain a
term diverging as s at infinity are easily shown from
Eqs. (30) and (31). Its value at s=0 is known, and
Eq. (36) gives its discontinuity across the branch cut, .
The above properties uniquely specify the function.
We obtain the desired discontinuity using the digamma
function, since'7

Let us consider just the part of the integral in Eq. (42)
involving lnX . Since I is analytic in the lower half
complex plane, we can deform the contour into the
lower half-plane without fear of crossing any singular-
ities unless I has zeros, which would be branch points
of the ln. Examining Eq. (38), we see that X has
exactly one zero on the negative imaginary axis. We
will define this zero as —ibo. The integrand of

1 «p'+bp'
des ln—««+i' X ((o)

(43)

has no singularities in the lower half-plane and converges
at infinity more rapidly than 1/«p, so the integral is zero.

Substituting this result in Eq. (42),

f —1 1
a=b exp] dhp

E27rz ~ —««+zan

X+(rp)+X ((o)
ln . (44)

2((q'+bpP)

The ln in Eq. (44) is real and an even function of ar, so
the principal value part of the integral vanishes and
only the 8 function part contributes,

=b{LX+(0)+X (0)3/2b '&"'
=ba/bp (45)

Therefore, b =bo, and the solution of our integral
equation is completely determined.
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I.2 il-

I.O

0,8

V. SELF-CONSISTENT SOLUTION

The parameters introduced at various points through-
out the preceding portion of the paper can now be
collected. For the susceptibility parameters, we find
from Eqs. (8), (13), (17), (47), and (48)

0.6

c= a'/Ub

T,= (~a'/U) (1—U/~b) .
(49)

(50)

The single-particle hopping ~ and scattering by
thermally excited spin fluctuations give the zero-energy
value of Gq ~ through Eqs. (11), (19), (21), (28), (30),
and (49),

0.2

where
a=6/$1 —7 (3U/2s-f) j,
X=~'T2/T, (2T,+or T) .

(51)

0.5 I.O l.5 2.0 2.5

FQQ. 3. Diagram of the X-r plane. The cross-hatched regions
represent areas in which each branch of Eq. (53) can correspond
to a physically permissible solution. The dashed curves show
the restriction placed on the solution by Eq. (21) for several
temperatures T&&&&&T3. The dotted curve is the trajectory of
an actual solution as a function of temperature.

To complete the solution of the entire problem, we
should now substitute Gz, the inverse of Eq. (41), into
Eqs. (14) and (16) and determine the parameters in the
approximate susceptibility function self-consistently.
A very helpful further simplification is possible, how-
ever. The argument showing that Eq. (43) is zero is
equally valid if the singular factor has some nonzero ~,

and we can use it to rewrite Eq. (41) and hence Gq as

The final equation which is needed is that defining b,
the zero of I . Since b))T for any of the assumptions
to be valid, we can use the asymptotic form of the
digamma function in Eq. (38). Incorporating Eqs.
(24) and (49) yields

X (—ib) = b'/a'+—1+ (3U/sb)Lln(0/2s. T)
f(2+T./—2~T)j

(52)

For given values of 6, U, and T, Eqs. (50), (51),
(21), and (52) must be solved simultan. eously. This is
not as difficult as it may appear. First, we pick a trial
value for T,. After computing X from Eq. (21), Eqs.
(50) and (51) are solved for b algebraically,

Gda(4) =
1 / 1 " Au ReX+((o))

- expl . ln
~

. (46)
E+9 (27I i 4 —M+i8 M +6

where

Uq(1 —3X )~Lt —6rx(1 —3X/2) f12
(53)

~) 2(1—r)

l

2z

= 1/7rb.

d~~ tanh
2T/; ~+is, '

(47)

This step has been checked by numerical calculation,
and we find that the error introduced is of order 6'/U'.

In the notation of this section, the other susceptibility
parameter is

dxo
jrrl-—~ I~ p

4

wQ
(48)

Now aP+b' can be considered a polynomial approxi-
mant to ReX+(&u), so we expect the ln in Eq. (46) to be
small except near co= 0, where X varies rapidly. (As we
will see, b is a large energy, of order U.) In fact, we
expect the entire exponential factor to be relatively
unimportant except at small e. In the integral of Eq.
(14), the factor Im(G~') goes to zero at 4=0, so the
exact value of Gd in the small e region should not be
important. Therefore, we will drop the exponential in
tllls PPPllcatloll) 21ltl use

r = T,U/7''.

The upper sign in Eq. (53) will be denoted branch 1, and
the lower sign branch 2. Obtaining a from Eq. (51),
X(—ib) is computed using Eq. (52) and compared to
zero. Thus we really only solve a transcendental
equation in one variable, T,.

Choosing the proper branch of Eq. (53) requires care.
In Fig. 3, the regions in the 7.-X plane in which each
I 1 ~ i j nch call ' "4"e tel] )'Fi(.". ill'1 1

&e!'l ll l ~s I l lj(', soll 1 t](gnat:l 1e
-.

,ho~~n Ii~ the cro;--[latl. lie(l aI.'ea,"„'Ih~„-,.'U ittiUn! Ilu~l. ,

l~e O.-l a r-,'~. curve c~-»llputed t!.-OIll.L''q. I - ] I. Sucl-. c.. ve-

; r thre temperature=-. & T- 2'', are =h.,'.; u Ill

as dashed lines. The search procedure along each P-z
curve must differ depending on its position in the cross-
hatched areas. Both branches of Eq. (53) must be
examined in the overlap area.

The trajectory of an actual solution is shown by
the dotted line. It starts at low T at the origin. For a
wide temperature range (several decades) it traverses
the branch 1 region, and T', T, since P I4 It cr~.s"--

into the overlap region at a rather high temperature,
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T-6'/U, and approaches the lower boundary, on
which the square root in Eq. (53) is zero and both
branches are identical. As the temperature increases
further, it switches to branch 2 and pulls above the
boundary. At extremely high temperatures, T
it moves out of the overlap region into the branch 2
only region, but this cannot be shown on the scale of
Fig. 2.

Some important results can be extracted without
computation. For very low T, we will assume T«T,«A(V. Then a=/1, b= V/m, and Eq. (52) redures to

3 in(V/s T,p) (U/s. h)' —1,
so

T p~ (V/s. )e
—(t/P) (r//wA) +r/P (56)

This is the most important result of the calculation.
P will remain close to zero and T will be negligible in
Eq. (52) until T= T,p, so the solution is temperature-
independent below T,o. The zero-frequency suscepti-
bility at these temperatures is

100

10

The resistivity R=h/a in unitarity-limit units and is 1
as T~0. For finite T&T„Eqs. (21) and (51) show
that

R=1—(3s'/4) (T/T, p)' (58)

(g 3(1)— ( T —1/2

&U l T)
(61)

For suiliciently high T, T))h'/U, we can neglect the
logarithmic terms in the self-energy, Z& and Z2, and
just keep Z3. Under these conditions, the theory reduces
to that of Ref. 1, except for the fact that we have treated
Zp as a constant rather than a constant times Gq(e).
This changes the broadened square-root function for
Gq(e) found in Ref. 1 into a Lorentzian, but leads to
essentially the same result for the susceptibility,

For T,p( T«LV/U, Eq. (53) indicates that b remains
= U/s. . Equation (51) then requires X(-,', so we infer
from Eq. (21) that T,)T. If we now consider the
strongly magnetic case, U/h))1, the digamma function
and the 1 in Eq. (52) should be negligible, so

(U/s a)'= 3 ln(U/T) . (59)

Substituting the leading term from Eq. (56), the
resistivity in this regime can be written

R= L1—3(sh/U)' ln(T/T, p)]'" (60)

For an initial portion of the temperature range con-
sidered here, the square root can be expanded and the
resistivity will vary logarithmically with a slope
proportional to (6/U)'. In this region, we can work
backwards from a to X to T„and obtain for the
susceptibility

101
I

102 ip4

Fio. 4. Susceptibility times (Uxo)' in reciprocal energy units
versus p=1/T for 6=0.1 and values of U as indicated. These
results may be compared with Fig. 1 of Ref. 2.

The resistivity is again constant in this regime,

R re/V . (63)

The self-consistency equations have been solved
numerically to facilitate comparison with the published
results of the numerical integral equation solution. In
so doing, the factor ss in Eq. (10) was changed back to sp.

In addition, we have plotted X(UXp)s rather than X,
since this is the quantity plotted as X in Ref. 2."We
have chosen values of U which are simple multiples of
the critical U= vrA, but are close to (where not equal to)
the values for v used in Refs. 2 and 3.The resistivity and
"susceptibility" are plotted in Figs. 4 and 5.

The spectral density ImGd(e) is plotted in Fig. 6
for two temperatures. Note that the spectrum is
characterized by just two energies, T, and U. (The
factor was ss for these plots. ) It is clear that our assump-
tions about the width of the structure of Gg are self-
consistently satisfied.

VI. CONCLVSIONS

The qualitative behavior of the resistivity and
susceptibility shown in Figs. 4 and 5 is sufficiently
similar to that found from the numerical solution"
to support the approximation scheme.

The most easily identified error preventing better
quantitative agreement is the neglect of the energy
dependence of Z2 and Z3 at large e. We can reasonably

X 1/T. (62) r' M. Levine (private communication).
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model which t.reat U exactly and expand in ~.' ' These
studies find results which are parallel, within the
Schrieffer-Wolff transformation, ' to those obtained from
the s-d exchange model. With our parameters, the
characteristic energy (Kondo temperature) given by
these calculations is

Z U&
—~U/sb, (66)
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FIG. 5. Resistivity in unitarity-limit units versus p= 1./T for
6=0.1 and U as indicated. These results may be compared to
Figs. 1 and 2 of Ref. 3.

suppose that if this approximation were improved, the
characteristic temperature would continue to be given

by an expression of the type

b'/A'=1+3 in( U/T, )s. (64)

The energy b would still characterize the over-all
width of the Gd spectrum. However, since this spectrum
would no longer be Lorentzian at large e, the numerical
coeKcient n in Xs(0) =rr/b would be something other
than 1/z. . The relation UX(0) = 1 must hold, so

In the large U/6 region where these results are valid,
this energy is greater by an enormous factor than T,o,

the characteristic energy of the RRPA, Eq. (63). We
conclude that the RRPA omits important classes of
diagrams which would produce structure with this
larger characteristic energy.

The most complete treatment of the s-d exchange
model, based on an approximation formulated rather
differently by several authors, ' 2~' leads to fairly
satisfactory results for the resistivity and specific heat. "
(It does not yield satisfactory results for the low-

temperature susceptibility. ") One of the notable char-
acteristics of the solution given by this approximation
is that the properties depend on the logarithm of T all

the way down to T=O, so the point T=O is highly
singular. The obvious cause is that the spin-Rip process
involves exactly zero energy in this treatment. In the
RRPA, the ln functions are cut off by the width of the
spin Quctuation propagator, and the various properties
depend only algebraically on (T/T, s) as T~ 0.

We might speculate that the spin-lifetime and Kondo-
effect processes are complementary, and that a theory
properly including both might possess two distinct
characteristic temperatures. This speculation is con-

1.0

T =10
T 0

—Ug
—(&/3) (& /~) + /3 (65)

0.8—
would replace Eq. (54). Thus we must accept an un-

certainty in the numerical coefficient of the exponential
dependence of the characteristic temperature on (U/A)'
as a consequence of the simplicity of our approximation.
This fact in no way invalidates the elucidation of the
behavior of the coupled integral equations. We believe
that the results are adequate to evaluate the basic
physical approximation —the RRPA.

The RRPA is the only treatment of the Anderson
model which has been carried out for all temperatures
in the strongly interacting case and gives anything
resembling experimentally observed dilute alloy behav-
ior. ' The major failure of the theory in this respect is
the magnitude of the susceptibility. If we attempt to
fit the RRPA result with a Curie-Weiss law at low T,
we see from Eq. (57) that the Curie constant will be
of order (A/U)', while experimentally it is of order one.

A more serious failing of the RRPA is found on
comparison with various studies of the Anderson

'9 M. D. Daybell and W. A. Steyert, Rev. Mod. Phys. 40, 380
(1968).
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FIG. 6. Spectral density versus energy for U/~A =5, at two
temperatures, .T= 10 '6 and T=0.036.

'0 H. Suhl, in Proceedings of the International School of Physics
"Enrico Fermi, " Course 37 (Academic Press Inc. , New York,
1967).

2' Y. Nagaoka, Phys. Rev. 138, A1112 (1965).
"A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 48, 990 (1965)

/English transl. : Soviet Phys. —IETP 21, 660 (1965)j; Physics 2,
5 (1965); 2, 61 (1965).

~ J. Zittartz, Z. Physik. 217, 155 (1968).
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travened by Dworin's analysis of the heirarchy of
equations of motion for Anderson's model. "He derived
an integral equation for G& bearing a resemblance to
the integral equation occurring in the aforementioned
treatment of the s-d exchange model. "However, the
key integral operator is not singular, but broadened by
a finite imaginary term which could correspond to our
T,. Dworin estimates that this term is of the same order
as the Kondo temperature.

The other major criticism which can be leveled
against the RRPA on the basis of equation-of-motion
calculations is its failure to produce a spectral density

"L.Dworin, Phys. Rev. 164, 841 (1967).

with peaks at eq and eq+U. s4" The RRPA simulates
this structure only to the extent that the spectral
density is spread over a range of order U. It is not clear
to what extent the details of the spectrum at large
energy effect the low-energy structure associated with
the Kondo eBect.
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Magnetic Neutron Scattering in Dysprosium Aluminum Garnet. I.
Long-Range Order*
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Magnetic long-range order has been studied in antiferromagnetic dysprosium aluminum garnet (DAG)
using coherent neutron scattering to measure the sublattice magnetization in the vicinity of the critical
temperature. The value of the critical exponent P in the power-law expression for the magnetization M

(AT)& was found to be 0.26+0.02 for the temperature range 0.0010(AT,(0.056. This is significantly
lower than the theoretical estimate of 0.312 for the three-dimensional nearest-neighbor Ising model, with
which DAG is compared.

I. INTRODUCTION

HERE has recently been much interest in the
study of the order-disorder phenomena that

occur in magnetic systems at the critical point T,.''
In antiferromagnetics the long-range order of atomic
spins that appears for T& T, gives rise to a spontaneous
sublattice magnetization M, the appropriate order
parameter for magnetic systems. As the temperature
increases towards T„ the long-range order decreases
and vanishes at T., and thus the spontaneous sublattice
magnetization approaches zero. The temperature de-
pendence is characterized by the critical exponent P,
which is defined' by

M L(T.—T)/T, ]s as T~ T, . (1)

The present paper (I) describes the determination of

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

t Present address: Los Alamos Scientific Laboratory, Los
Alamos, N. M.' See, e.g., C. Bomb, Advan. Phys. 9, 149 (1960);M. E. Fisher,
Rept. Progr. Phys. 30, 615 (1967).' P. Belier, Rept. Progr. Phys. 30, 731 (1966).

p from measurements of the magnetization below the
critical point. The following paper (II) LPhys. Rev. ,
186, 567 (1969)j describes the critical scattering above
T, and the evaluation of the relevant parameters y, v,

and g.
The techniques of neutron di6'raction provide an

excellent tool for the investigation of these magnetic
order-disorder phase transitions. The spontaneous sub-
lattice magnetization gives rise to strong magnetic
Bragg peaks that occur at reciprocal-lattice points,
and thus can be rather easily measured. The scattering
cross section for such a reQection is proportional to
JV' and thus 2p can be determined from a study of the
temperature dependence of the intensity. Diffuse
critical scattering is superimposed on these Bragg
peaks, but this scattering is relatively weak except in
the temperature region very close to the critical point.
At lower temperatures the main difhculty in deter-
mining p is ensuring that extinction does not afFect the
results.

Theoretical estimates of the critical exponent p have
been obtained from numerous statistical-mechanical


