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Magnetoelastic Spin Hamiltonians: Applications to Garnets
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The theory of magnetoelastic spin Hamiltonians and their relation to magnetostriction is reviewed,
clarified, and expanded. We consider terms representing strain modulation of bilinear exchange, of crystal
6eld, and of the g tensor (direct-forced magnetostriction). When the unstrained spin Hamiltonian contains
anisotropic exchange and large crystal-6eld terms, we expect some new effects: Strain modulation of the
Dzyaloshinski-Moriya interaction can be important for most site symmetries; second-degree terms in spin
operators give rise to high-order magnetostriction constants, and high-degree spin terms contribute to
low-order magnetostriction; the temperature and field dependences may deviate from the isotropic theory.
Application is made to the much-studied Yb3 ion in ytterbium iron garnet and also to a model for dys-
prosium iron garnet. For the latter case, we show that the novel behavior of the observed magnetostriction
can be explained by the large crystal fields.

I. INTRODUCTION

'HE original theory of magnetostriction' was
purely a symmetry argument. 2 The gross distor-

tion of a crystal which depends upon the direction and
magnitude of its magnetization was related to a
magnetoelastic free energy. This in turn was expanded
in such combinations of direction cosines of magnetiza-
tion and of strain components as were allowed by the
crystal-point group. The number of allowed coefficients,
that is, the number of magnetostriction constants,
could thus be accounted for, but such a theory did not
address itself to the temperature dependence of the
strain or the origin of the constants.

In the next advance, ' the phenomenology was
directed to the Hamiltonian. Strains were now coupled
to appropriate combinations of spin operators, again
with assumed expansion constants. Statistical mechan-
ics then yielded the temperature and magnetic field-
dependence of those microscopic magnetostriction
constants which had been entirely arbitrary in the
original work.

Concurrent with the statistical theories, and often
intertwined, were the several efforts to derive magneto-
elastic coupling constants from their original quantum-
mechanical sources. These efforts4 consisted of an
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evaluation of the strain dependence of the quantum-
mechanical energy, usually based on a point-charge
model.

The most recent advances in our understanding of
magnetostriction —advances which are the spur for the
present paper —are of an experimental nature. The new
techniques of electron-paramagnetic resonance (EPR)
under pressure, ' ferrimagnetic, ' and optical studies'
under pressure, and of acoustic-paramagnetic res-
onance' (APR) allow direct experimental determination
of some of the strain-dependent terms in the spin
Hamiltonian. It is the purpose of this paper to clarify
the relationship of these terms to magnetostriction.

In Sec. II we discuss some general features of the
magnetoelastic spin Hamiltonian. For the simplest
forms of this Hamiltonian, we display the symmetry
properties for each of the 32 point groups. We show
how strain derivatives of a Dzyaloshinski-type interac-
tion can occur. Next we particularize the theory to the
case of a Kramers doublet, Yb'+ in the iron garnet.
This case has already been treated by Phillips and
White, ' but there are a number of ways in which our
treatment differs from theirs. In Sec. IV we explore
the temperature dependence of the magnetization and
magnetostriction of ytterbium iron garnet (YbIG)
and of dysprosium iron garnet (DyIG). Previous
treatments of the statistical mechanics of magnetostric-
tion minimized crystal-field effects. When anisotropic
exchange or crystal fields are large, we shall see that
possibilities proliferate for the temperature dependence
of the various magnetostriction coeKcients.

~ E. R. Feher, Phys. Rev. 136, A145 (1964); T. G. Phillips and
R. L. White, ibid. 160, 316 (1967).

s A. B. Smith and R. V. Jones, J. Appl. Phys. 34, 1283 (1963l.' R. L. Comstock, R. A. Buchanan, and R. L. White, J. Appl.
Phys. 39, 583 (1968).

'W. I. Dobrov, Phys. Rev. 134, A734 (1964); N. S. Shir, in
Proceedings of the XI Colloque Ampere (North Holland Publishing
Co., Amsterdam, 1963), p. 114.
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H, =MS. (2.2)

We combine X and g and rewrite the second term of
Eq. (2.1) as

x =M.g- S. (2.3)

When the crystal strains, g, g', and D all change.
Expanding to first order in a Taylor series, the magneto-
elastic perturbation becomes

x '=H F S:K+M F' S:s+S G S:e, (2.4)

where F, F'", and G are fourth-rank tensors, with
elements

and e~g are the components of the strain tensor as
defined by Sommerfeld. Later we will introduce the
Voigt notation and employ the t.; strains of Love as
shown by Kittel. '

The three terms in (2.4) may be interpreted as
follows. The F term is a strain-dependent g shift
resulting in a "direct" force magnetostriction. 'b Unlike
the usual forced magnetostriction, which comes about
because of the susceptibility of the spin-expectation

(a) C. Kittel, Introdstction to Solid State Physics (John Wiley
R Sons, Inc. , New York, 1956), p. 85 ff; (b) In common parlance
saturation magnetostriction depends on orientation of applied
6eld, forced magnetostriction upon its magnitude. The usual
mechanism for forced magnetostriction is indirect; by Increasing

II. MAGNETOELASTIC SPIN HAMILTONIAN

A. General Theory

A spin Hamiltonian is a useful shorthand for the
interactions within a subspace of the full Hamiltonian.
It describes the separations in energy of a set of levels in
terms of polynomials in a fictitious spin 5, whose
multiplicity is equal to the number of levels to be
fitted. Levels of arbitrary separation can be fitted by
polynomials up to degree 2S, but often only terms of low
degree su%ce. When the significant level splittings come
from the external field, the exchange interaction, and
the crystal field, it is often adequate to employ the spin
Hamiltonian

x=H g S+ H.„g S+S D S. (2.1)

Here H is the external field (given in energy units),
g is the paramagnetic spectroscopic splitting factor,
and H, is the effective exchange field on the ion
of fictitious spin S, in the molecular field approximation.
The third term in Eq. (2.1) represents the effect of the
crystal field. For a general fictitious spin, there can be
higher-degree terms in Eq. (2.1) in the exchange
interaction, and especially in the crystal-field contribu-
tion, but we limit ourselves to the simple case, noting
that both g and D are often anisotropic tensors. Further-
more, in the molecular-field approximation, the ex-
change field is itself related to the magnetization by
an (often anisotropic) tensor,

value, this effect should be largest at low temperature.
Next, F'* gives rise to magnetostriction as the
crystal trades elastic energy in order to enhance its
energy-reducing exchange interaction. The G term
comes about because the effect of any strain-induced
potential depends on the orientation of the charge
cloud and is thus a function of S.

As to which terms are important, it is clear that G
is absent for Kramers doublets, F requires a large
external field, and F' needs exchange interactions.

Beyond this, the determination of contributions
depends on experiment since nothing more of a general
nature is known. This statement applies to S-state
ions, about which there seems to be some confusion.
For S-state ions all anisotropic effects are small since
the ground state is orbitally symmetric in lowest order;
any effect of strain must come via excited terms and
configurations. The problem of accounting for contribu-
tions is not yet resolved for either transition metals
(Fe'+, Mn +) ' or rare earths (Gd'+, Eu'+) "Thus, for
now, there is mo theoretical reason to believe that
crystal-field-type terms (G) are favored over direct
(F) and exchange (F' ) terms in this case. Experimental
evidence supports this view: For GdIG' the Inagneto-
striction temperature dependence is typical of a
dominant F'" term. As for the transition metals, ' "'
the g shifts, which could be interpreted as giving rise to
F and part of F', are known to be unmeasurably small
in external fields of the order of 10 kOe. for Mn'+
and Fe'+ in diamagnetic MgO. ' However, when we
multiply the upper limit on hg by typical exchange
fields, it turns out that this part of the F'" term could
be much larger than the G contribution in a ferro-
magnet. Thus in S-state ions, all terms are small, but
none are manifestly smaller than others.

Another note concerns terms higher order in the spin
not included in Eq. (2.4). For an isotropic unstrained
Hamiltonian, these will contribute only to high-order
magnetostriction and only be considerable at low
temperature. But in the general case, high-order terms
do contribute even to second-order magnetostriction.
Mindful of this fact, we exclude them to simplify the
discussion.

The number of independent elements in F, F'", and
G is of course much less than the 81 each that one
might imagine from the number of indices. First, since
we are concerned only with strains, not rotations of the
entire crystal, the strain tensor is symmetric, with but
six independent elements, so that F, F'", and G could
have at most 54 elements each. Further reductions are

(S) the applied field raises the contribution due to the F'* and-
G-type terms. On the other hand, the role of IJ in the Ii term is
direct.I J. Kondo, Progr. Theoret. Phys. (Kyoto) 28, 1026 (1962);
H. Watanabe, ibid 18, 405 (195'I)..

"B.C. Wybourne, Phys. Rev. 148, 317 (1966).
"(a) T. G. Phillips and R. I. White, Phys. Rev. 153, 616

(1967); (b) M. Blume, S. Geschwind, and Y. Yafet (to be
published).
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effected by considerations of the meaning of fictitious

spin, and then of crystal symmetry.
A useful attribute of hctitious spin is its fictitiousness.

The axes of quantization of this spin need not bear
any simple relation to the crystal coordinates, but derive

rather from the Hilbert space of the Hamiltonian. "
Being arbitrary up to a unitary transformation, they
can be fixed by imposing conditions on three elements in

g, g'", and D, or, in the strained crystal, on

g+F:s; g' yF'»:e; D+G:s. (2.6)

The choice of quantizs, tion axes of S is made on physical
grounds. Of the three tensors, strained or not, the one
most immediately measurable is g because it is coupled
to the external field. The three Euler angles of the
fictitious-spin coordinates are then conventionally fixed

by the physically attractive speci6cation that [g+F:e7
be symmetric, for then spin and moment will align for
three orthogonal principal directions. Note that this
does not imply that S is quantized along H for all

directions, nor is any physical symmetry implied by a
choice of spin axes.

Having exhausted our three degrees of freedom in

specifying that total g be symmetric, ~we are not at
liberty to impose additional constraints on g'". Thus,
g'" has nine elements, the three antisyrnmetric terms
being the Dzyaloshinskirs interaction, not a Priori
small. On the other hand, because D is a single-ion

term, and antisymmetric combinations of components
of a single spin can be reduced by the commutation
relations, D is perforce symmetric, provided time
reversal invariance has been incorporated in the usual
way. Furthermore, D has been adjusted to describe
the separations of levels of a multiplet, but not the
absolute positions with respect to any other multiplet.

Thus, the trace of D, which determines the center of

gravity of the multiplet and which cannot be ascertained
in an EPR experiment, can be set equal to zero. No
similarly general argument can be made for the trace
of g or g'", although in special cases changes in these
traces may not contribute to angular-dependent
quantities. '4

Sutnming up these arguments, g, g'", and D can have
at most six, nine and five elements; and since a has six,
we expect that F, F'", and G can have at most 36, 54,
and 30 elements.

So far we have said nothing of the effect of local site
of symmetry, which of course will usually greatly
reduce the number of magnetoelastic constants. How
one imposes the restrictions of site symmetry is so
well known that we do not repeat the arguments"
here but present the forms of F, F', and G for the
32 crystal-point groups. Dobrov' has already calculated
G for all these groups. We follow the Voigt notation.
The columns refer to strain components as dered by
Love. The nine rows correspond to

Q»S» ) rryS» ) QgS» )

( „S.+ .S„), (.S.+~&,), ( Z„+~,S.), (2.7)

(n„S, n S„)—, .(rr,S, rrQ, ), and —(nQ» n„S ),—

where n; are direction cosines of the magnetization M
[see Eq. (2.4)7.

For the 32 point groups, F'* is given as follows (we
drop the superscript on the F,,'» for clarity):

Trictinic System; Point Groups 1, /:

(54 distinct, nonzero elements of F'"). (2.8)

Monoctinic System; Point Groups Z, m, Z/m:

F'ex

Fll
F21

(F11+F21)+Pa
0
0

F61
0
0

F91

(P12+P22) +Pe
0
0

F62
0
0

F92

F23
(Prs+Pss)+P, —

0
0

F63
0
0

F93

0 0
0 0
0 0

F44 F45
F54 F55
0 0

F74 F75
F84 F85
0 0

F16
F26

—(~ts+P~s)+Ps
0
0

F66
0
0

F96

(2.9)

Orthorhombic Svstem; ZZZ, mmZ, mmm: F'» is obtained from Eq. (2.9) by setting

F16 F26 F63 F45 F54 F61—F62 Fb F75 F84 F91 F92 F93 (2.10)

"I. E. Dzyaloshinski, Zh. Eksperim i Teor. Fiz. 32, 1547 (1957) (English transl. : Soviet Phys. —JETP 5, 1239 (195/)];
Y. Moriya, Phys. Rev. 120, 91 (1960).' R. J. Harrison and P. L. Sagalyn, Phys. Rev. 128, 1630 (1962)."H. Callen, Am. J. Phps. 36,735 (1968); E. Callen and H. Callen, Phys. Rev. 139, A455 (1965).
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Trigonal; 3, 3:

Fex

F1+F
P2+P

—(F1+F2)+F.
P41
F46
F16
F71

—P76
+F91

F2+F
F1+F

—(F1+F2)+F
P41
F46
P16

—P71
F76
P91

2 (—F6)+F7
2 (—F6)+F7

p5+ p
0
0
0
0
0

F92

F14—P14
0
F44
P45
F25
P74
F75
0

—P25
P25
0
F45
F44
P14
P75
P74

0

P16
P16
0
P46
F41

2(F1—F2)
P76
F71
0

(2.11)

F61 for —P16 in (6, 1),
—F61 for F16 in (6, 2).P16 P25 F45 P46 F75 E76 P91 P92 ——0 ~ (2.12)

Trigonal; 3Z, 3m 3m: F'" is obtained from Eq. and substituting F« for 2(F1—F2) in (6,6),
(2.11) by setting

(2.14b)

Tetragonal; 4ZZ, 4/mmm, 4mm, 4Zm: F' is obtained
from Eq. (2.11) by setting

F14=F16=F25= F41=F45~ F46

F71 F75 F76 F91=F92 0, (2.13a) F14 P25 F41 F46 =P71—P76 0» (2.15)

He26agonat; 6, 6, 6/m: F'" is obtained from Eq. (2.11)
by setting

and substituting

F66 for —,'(F1—F2)
Hexagonal; 6ZZ, 6mm, 6mZ, 6/mmm: F is obtained

(2.13b) froxn Eq. (2.10) by setting

in the (6,6) position only.
2"etragonat; 4, 4, 4/m: F' is obtained from Eq

(2.11) by setting

F14 F25 F41 F46 F71 F76 0
y (2 14a)

F14=P]6 =P25 =F41=P45 =P46
—F71—F75= P76 ——F91——F92

——0 ~ (2.16)

Cubic; Z3, m3:

ex

F1+F
—(F1+F2)+F

P2+P
0
0
0
0
0
0

P2+P
P1+P

—(P1+P )+P
0
0
0
0
0
0

(p +p )+p„
P2+P
F1+F

0
0
0
0
0
0

0 0
0 0
0 0

F44 0
0 F44
0 0
0 0
0 0
0 0

0
0
0
0
0

F44
0
0
0.

(2.1'I)

Cubic; 43Z, 43m, m3m: F'* is obtained from Eq.
(2.17) by substituting

——,'F1 for F2. (2.18)

P'P, &NO, P P,&exWO, 4=1, 6 (2.19)

and, to the extent that (S) is not parallel to 8 or M,
these traces retain physical significance. ln contrast,

Equations (2.8) to (2.18) describe the exchange
magnetoelastic tensor. To obtain F, the strain deriva-
tive of the paramagnetic g matrix, one sets all anti-
symmetric elements, those in rows seven, eight, and
nine, "equal to zero. The„'.;traced'of the matrices g'» and

g are not necessarily strain invariant, that is

D and its strain derivative, G are traceless. To obtain
G for all point groups, set all elements in rows seven,
eight, and nine equal to zero and everywhere set

P —Fp —P —P]—0 (2.20)

The representations of G obtained by these reductions
agree with Dobrov. '

B. Magnetoelastic Energy

Magnetostriction is a gross distortion, adequately
described by the (strain-dependent) expectation value
of BC '. This expectation value is called rnagnetoelastic
energy, since it is linear in the strain and the elastic
energy quadratic, minimum free energy is attained at
some nonzero strain. Taking the expectation value
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involves averaging the spin operators in the density
matrix of the unperturbed spin Hami1tonian. The strain
operators are treated classically.

When crystal-field terms such as S D S are compar-
able to the paramagnetic Zeeman and exchange terms of
Eq. (2.1), the resultant magnetoelastic energy is
somewhat complicated; we defer discussion of this
circumstance to Sec. IV. The more simple and common
case, the one we discuss now, occurs when the Zeeman
terms dominate. We may then define a spin direction
when there is rotation symmetry about the quantization
axis. Denoting by n;, i = 1, 2, 3, the direction cosines of
the spin-quantization axis with respect to the crystal
axes and by (Sr) the quantum-mechanical average of
the fictitious spin along this axis, one finds for the
magnetoelastic energy

In some materials, the paramagnetic and exchange

g factors are isotropic. The spin axis and magnetization
then coincide with the external field. The magneto-
elastic energy then simplifies to

where
XiCXj~ij (2.22)

~'~»=
I
+I (Sr)pv~ +iaaf'i(Sr)F'

+~L3(SP)—S(S+1)]G,,„, (2.23)

and n; is the direction cosine of the applied field. When
either g or g' is anisotropic, Eq. (2.22) for h ' does not
apply, and Eq. (2.21) must be used in its full form.
A case in point is Yb'+ in the iron garnet, to which we
now turn.

III. Yb'+ IN GARNET

A. Magnetization

@me —(~me) —Q {Q.~ (Sr)P,,~i+. ~,~, (Sr)F, ~Px
ijkl

+'i&,&ih3(SP) S(S+—1)]G;;i,t}ei, ( (2.2.1)

&= [H gtM. . g-[,
H g+M, . g-

(3.2)

(3.3)

The garnet unit cell contains 12 rare-earth (c) sites,
six inequivalent ones need be considered. At each site
there is approximate orthorhombic symmetry (222)
with principal axes obtained by rotating about the
x, y or s cubic axis by ~45'. Dillon and Walker"
illustrate the structure. Besides the rare-earth sites,
there are a and d sites occupied by Fe'+ in the ferri-
magnetic garnet. The rare earths align themselves in
the exchange field of the iron (J',~), but their responsive-
ness is largely unrequited for the irons care mostly for
each other, ' J &))J,&))J„.We may envision the iron
sublattices as locked to form a net iron moment,
positioned by the external field with a correction for
anisotropy. The rare earths on each site, however, will
seek their own equilibria.

We will assume that the iron moment is along the
axis of the external field. This is never really true except
for symmetry directions, and even then, near the
compensation temperature (7.6'K) peculiar things may
occur." Specifically in the neighborhood of 7.6'K,
magnetic fields of less than 10 kOe will cause the rare
earth and iron sublattices to cant away from the
external-field direction. At 13'K, the dominant iron
moment lies along the field and the rare earth is
antiparallel, up to a field of 35 kOe, above which field
strength the iron begins to swing away and the rare
earth rotates up toward the field direction. Throughout
the present paper we shall ignore such effects, assuming
that the external-field strength is sufFicient to eliminate
domains, align the net moment along the field direction
but not so strong as to cause canting of sublattice
moments.

The physics of the Hamiltonian, Eq. (3.1), is then
summarized" by a spin-quantization direction s and
an energy splitting 6:

Yb'+ in the garnets is a much studied system and in
many regards a well understood one. ' The crystal field
splits the lowest J=-,' multiplet into Kramers doublets,
the lowest of which is more than 500 cm ' below the
nearest excited state. ' Since an effective spin S=-',
cannot support a crystal-field term, the behavior of the
ground doublet is summarized by a spin Hamiltonian
of the form

where
M =ps(S ) g,

s
(S')=—tanh

2 2kgT

The moment of a rare-earth ion on site o- is then

(3 4)

(3.5)

ac=+8 g S+M,. g- S, (3 1)
The ith component of the total rare earth moment at

with Mi. ,(T) the net temperature-dependent moment of
the two-iron sublattices. Both the paramagnetic
and exchange g tensors have been shown to be very
anisotropic. "

"M. T. Hutchings and W. P. Wolf, J. Chem. Phys. 41, 617
(1964)."R. Pappalardo and D. L. Wood, J. Chem. Phys. 33, 1734
(1960)

'SK. A. Wickersheim, Phys. Rev. 122, 1376 (1961); K. A.

Wickersheim and R. L. White, Phys. Rev. Letters 8, 483 (1962);
A. J. Seivers and M. Tinkham, Phys. Rev. 124, 321 (1961); 129,
1995 (1963); A. B. Harris and H. Meyer, ibid. 127, 101 (1962);
H. Meyer and A. B.Harris, J. Appl. Phys. 31, 49S (1960).' J. F. Dillon, Jr., and L. R. Walker, Phys. Rev. 124, 1401
(1961);126, 2261. (1962).

'0 P. M. Levy, Phys. Rev, 14?, 311 (1966).' A. E. Clark and Earl Callen, J. Appl. Phys. 39, 5972 (1968)."W. P. Wolf, M. Ball, M. T. Hutchings, M. J. M. Leask, and
A. F. G. Wyatt, J. Phys. Soc. Japan Suppl. B-1 1?, 443 (1961).
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temperature T and in the limit of zero 6eld is

6 6 Qtr

MRn, ——Q M, =ttp Q -', tanh
o=l g=1 2k~T

where
gr (&)

—~ [g (&,~
. .ex s)2]1/2 (3.10)

B. Magnetoelastic Energy for Yb'+

Since there are no crystal-field terms in the spin
Hamiltonian of a Kramer's doublet, the magneto-elastic
Hamiltonian, Eq. (2.4), reduces for Yb'+ in the garnet to

x ' '= (H F'S+MF. .F'"'S):e. (3.7)

The two F tensors bear a site index o. because, although
the F tensor looks the same in the local site coordinate
systems, the tensor must be transformed by the unitary
transformation which carries the local orthorhombic
site axes into the macroscopic cubic coordinates. It is
this rotated representation which is implied by F'.
To find the magnetoelastic energy (of site o.) at zero
external field we then need only calculate the expecta-
tion value of the F'" term in Eq. (3.7), using the result
of Eqs. (3.4) and (3.5):

s
h ' '(II =0) =

i
MF. F' ' —tanh: e.

2 2ktt T
(3.8)

This can be expressed more conveniently in terms of the
magnitude MF, and direction cosines tr, of the iron

magnetization MF, by means of Eqs. (3.2) and (3.3):

Henderson and White" carried out this sort of
calculation of the moment along with that of other
properties of Yb'+ in YIG. However, they erroneously
applied a formula meant for a paramagnet in a real,
rather than an exchange, field. The correct result from
Eq. (3.6) at T=O'K is

MR@iiopl =10.22 tttt (six Yb's, field along [100]),
&RE[ill] = 10.07 tt ti (six Yb's, field along [111]),

and the anisotropy in the moment is opposite to that
calculated in Ref. 23. In any event, the small anisot-
ropy has not been measured. '4

The dependence of the exchange splitting of the ath
site on the direction of MF, is emphasized by the
notation 6 (a). The site dependence of the splitting
enters Eq. (3.10) through the representation of the g'*
tensor of site a in the macroscopic coordinate system.
We note that because of the anisotropy of g'", 8 ' is
not second order in o., but involves all orders.

C. Comparison with Phillips and White

Phillips and White (PW) have already given a spin-
Harniltonian analysis of the magnetostriction of rare-
earth ions in garnets and of iron group monoxides, ' ""
so that our analysis must properly be related to theirs.
PW discuss three rare-earth substitutions in YIG'—
Gd'+, Yb'+ and Er'+—the first because it is an S-state
ion, and Vb'+ and Er'+ for which the ground states
were presumed to be Kramer's doublets. PW conjec-
tured the magnetostriction of Gd'+ to be due to the
(single-ion) G term of Eq. (2.4). Later experiments
(Ref. 11) indica, te tha. t the source is the (two-ion)
F' term. As for Er'+, spectroscopic evidence" "
suggests that the exchange splittings are in fact compar-
able to the crystal-field separations. The third-ion
PW consideration is Yb3+.

They relate the magnetostriction constants of the
exchange-coupled YbIG to their measurements of the
strain dependence of the paramagnetic g tensor of
YbGaG.

We recall that [Eqs. (2.1) to (2.3)]

gex g. g (3.11)

Bg'* BX Bg BXF'*= =—g+~ —=—g+X F. (3.12)
F96 &96

where XM defined an exchange field whose effect on the
paramagnetically situated ion would duplicate the field
due to exchange in the iron garnet. Now differentiating,

LV(n)
h~e=g -', M'F. tanh

2kgT

&&&mgm~

x
i j7cl m=1

(3.9)

The bifurcation in Eq. (3.12) is more than formal
emphasizing a distinction between the effect of strain
on the exchange interaction itself (the first term) and
the strain dependence of the responsiveness of the ion
to e6ective fields. The first term is not measured in

"J.W. Henderson and R. L. White, Phys. Rev. 123, 1627
(1961).

'4 F. W. Harrison, J.F. A. Thompson, and K. Tweedale Lin Pro-
ceeChngs of the international Conference on Magnetisnt, 1Vottingham,
1964 (Institute of Physics and The Physical Society, London,
1965l, p. 664), performed the measurements and also point out the
error in Ref. 23.

"R. L. White and T. G. Phillips, J. Appl. Phys. 39, 579 (1968);
Phys. Rev. Letters 16, 650 {1966); J. Appl. Phys. 38, 1222
(1967).

26 S. Hufner, P. Kienle, W. Wiedmann, J. Prey, and W. Zinn,
in Proceedings of the International Conference on Mugnetisnz, Not-
tingha7n, 1965 (Institute of Physics and The Physical Society,
London, 1965), p. 672; S. Hufner and H. Schmidt, Physik Kon-
densierten Materie 4, 262 (1965).
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KPR on paramagnetic garnets, and awaiting results in
the iron garnet, '7 we turn to the second term.

One then Ands

transition in Vboao is

8E=Hbg;, e,e„ (3.17)

8 '=p MF. X'F'(S ). (3.13)

H ex=153.9 kOe,

H, '"= 169.0 kOe.

(3.14)

The change in part of the magnetoelastic energy
with strain, and hence that part of the magnetostriction
which is due to the second term in Eq. (3.12), should

be found from Eq. (3.13) after having determined the
elements of F.

PW report measurements of many of the components
of P but unfortunately the experimental configuration
is such that pressure cannot be applied parallel to the
field direction as the magnet gets in the way. Thus three
of the 12 components of F could not be measured.

To complete the F tensor PW invoke an assumption of
"tracelessness. "

3

P F;;kl ——0, k, t=1, 2, 3 (3.15)

or, in the notation of Eqs. (2.10),

P =rip ——F =0. (3.16)

pW did not intend their argument to be rigorous

(and in a point-charge calculation demonstrate it to be

only approximate). Actually, the errors in the matrix
elements introduced by this assumption can be of the
same size as the elements themselves. Furthermore, we

shall see that changes in Trg do contribute to angular

terms in the magnetoelastic energy. On the other hand,
PW have correctly noted that it is not necessary to
measure all 12 orthorhombic elements of Ii in order to
determine the contribution to the two parameters in

the cubic magnetoelastic energy, when the latter is only
second order in direction cos of the Geld. In fact, PW
apparently used such an abbreviated approach in corn-

puting the magnetostriction constants. '8

There is another matter which deserves note. pK
write that the change of energy of a paramagnetic

Total F'x would be measured by exchange splittings in the
irom garnet under pressure. However, in YbIG, the relevant
absorptions are obscured by a strong iron absorption and only
thin samples, dificult to strain, have been studied. Comstock,
Buchanan, and White (Ref. 7) have measured the combinations
of components of F' which give the cubic magneostriction asso-
ciated with the 'F7 state of Ce'+ in YIG. They scale these and
relate them to magnetostriction in Yb-doped YIG (where 'F7/2
is indeed the ground state).

"T.G. Phillips (private communication).

The effective-exchange field on the rare-earth ion,
H~"~=MF, X~, has been measured by Wickersheim";
its principal values in the local orthorhombic coordinate
system are

H '"=87.2 kOe,

where cubi are the direction cosines of H and bg is the
change of g with strain. The more correct relation, ap-
plicable when g is anisotropic, is obtained by differ-
entiating 6 Lsee Eq. (3.2)):

8g;~gy;n, n,-

5E=H
LZ'(a' ~ )'j"' (3.18)

Al/l is fractional change in length of a strain gauge, n;
give the moment direction of the iron sublattice, p; are
the direction cosines along which the strain gauge is
placed, and the X's are the magnetostriction constants.
A, lpp and Kill are written in the traditional form. '

It is awkward to obtain analytically the coefFicients
in Eq. (3.19) from the magnetoelastic energy, Eq.
(3.9). A far easier task is to obtain LU/l for specific
values of n; and P;. We have, therefore, proceeded with
the calculation by computing d/// for sets of directions
and fitting the results to a truncated form of Eq.
(3.19). For example, if we assume that second-order
terms along suKce, we may write

0.=100 gg
~100

3 l p lpp

3 Qf
~

a=111

~111
P=lli

@=010

n=111

P=}1—1

(3.20)

If we employ the I' elements given by p% ' the g
and H, gq of Wickersheim, ' and the stiffness constants
Clark and Strakna, "then Eq. (3.20) yields the following

'9 A. E. Clark and R. E. Strakna, J.Appl. Phys. 32, 1172 (1961).

There is no distinction between Eqs. (3.17) and (3.18)
for principal directions, but it would seem that these
were not always accessible. For aribtrary directions,
very considerably different values for bg might be ob-
tained, since the principal values of g itself differ by
»%%uo.

D. Magnetostriction of Yb'+ in YIG

For a cubic material such as YbIG, the magneto-
striction may be expanded as

zt
2~100(&1 Pl +&2 P2 +&8 P8 8)

l
+3~111(&l&2plp2+&2&8P2P8+&1&8P1P8)+~ {2L&8

2 &2 &1 7 &3 3 3 3 g &1 O'2

—:("-.')X p'- p'j} +~"{ .("--:)
&&Plp2+121128 (022 7)plp8+—122128 (1212 2)P P8}—

+A '{nl'+u2'++8' 8}+O(—n0-) (3.19).
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contributions to the X's at O'K:

IV. TEMPERATURE DEPENDENCE

A. Introduction

The usual treatment of the statistical mechanics of
magnetostriction originated by Kittel and Van Vied, '
parallels that of magnetic anisotropy and reduces to
the same -', l(i+1) power law at low temperatures,
ignoring the e6ect of crystal fields. Ultimately„~the
justification for the treatment requires (a) that the
thermal probability of an individual spin being in
state i with quantum average component of magnetic
moment (ii,)i be

p,.~ gx(I z&i (4.1)

and (b) that the (p,)i be proportioned to successive
integers

(ii,);=am;. (4 2)

Requirement (a) has been demonstrated to be satisfied
on various statistical models. "b The quantity X, which
is a function of temperature, is entirely arbitrary.

When the individual states are Zeeman states, (b)
follows. As a result, 2 single-ion magnetoelastic terms of

3' P. J. Flanders, R. F. Pearson, and J. L. Page, Brit. J.Appl.
Phys. 17, 839 (1966)."R. L. Comstock and J. J. Raymond, J. Appl. Phys. 38, 3737
{1967)." (a) S. Iida, J. Phys. Soc. Japan 22, 1201 (1967); N. Bertram
and R. V. Jones, J. Appl. Phys. 38, 122S (1967); (b) For a review
of the statistical mechanics of magnetic anisotropy see H. B.
Callen and Earl Callen, J. Phys. Chem. Solids 27, 1271 (1966);
H. B. Callen and S. Shtrikman, Solid State Commun. 3, 5 (1965).

Xioo = 185X10
q Xiii =36.5 X10 ~ (3 21)

However, one recognizes that the anisotropic g and
H, &~ cause not only second-, but also fourth-, sixth-,
and higher-degree magnetostriction terms in Eq. (3.19),
and Al/l must be evaluated accordingly. Truncating
at fourth-degree terms, and evaluating in an appropriate
set of strain and field directions, we compute at O'K

Xioo=199X10 )iiit=44X10 s, (3 22)

so the error in using the simpler Eq. (3.20) is not great
even at T=O'K. P% employ the same data, but con-
clude that these imply

Xmo =82 X10
&

Xiii= 34X 10 . (3.23)

The experimental values for low temperatures are'
~lpp=49X10 Xyyy= —27)&10 and3 X pp=97&(10
X~~~= —31&10 '. There are also other, higher-tempera-
ture measurements. "' Generally, results are extrap-
olated from 10% doped samples, which may explain
some of the experimental scatter. In any event, these
do not corroborate the theory, but then it should be
recalled we (along with PW) have only tried to get one
of the i.wo contributions in Eq. (3.12).The thought here
has been to illustrate the structure of the theory.

degree / produce (for infinite spin) a temperature
dependence I~+.,L2 '(m)], where I~, i is a reduced

hyperbolic Bessel function, and 2 ' is the inverse
I angevin function of the reduced sublattice magnetiza-
tion m. Thus, the contribution of a sublattice to ~]pp

and X~~~, the I=2 magnetostriction coefIicients of
cubic crystals, should vary as I5~2. For finite spin, the
treatment is not greatly different.

This was the case for a single-ion source term such
as G. The two-ion term F' produces t=2 magneto-
striction coefFicients which are sufFiciently approximated

by nz', or rather M&M& if the magnetoelastic term
couples spins on sublattices A and B.

This treatment has been adequate, in fact immod-

erately successful, in describing the magnetostrictive
behavior of metals —nickel, "dysprosium, '4 terbium"—
where electron shielding mostly eliminates the crystal
held, and of 5-state ions in garnets"" and spinels. '8

But for degenerate ground-state ions in nonconductors,
such as most rare earths in garnets, one expects more
complex behavior. These complexities can arise both
from anisotropic exchange and from relatively large
crystal fields. As an example of the effect of anisotropic
exchange in a Kramers ion, we again turn to VbIG,
and elaborate on the implications of Eqs. (2.21) and

(3.9). To display the crystal-field effect in a non-
K.ramers ion, we study a model related to DyIG.

B. Kramers Ion: Yb'+ in YIG

As we have mentioned in Sec. III, since only F and
F' terms can contribute to the magnetostriction of
Vb'+ in YbIG, the simplest statistical theory' would

suggest that the strains vary as Mitz(T) in the former
case and MRE(T)MF, (T) in the latter. Of these two
terms, the direct forced magnetostriction term (F term)
has not been studied, although suf6ciently high 6elds
are now available.

Iet us confine attention to the intrinsic magneto-
striction (F term), and compare the implications of
Eq. (3.9) with the conventional result. Rigorous
analysis is complicated by the occurrence in Eq. (3.19)
of polynomials of high order in the direction cosines of
the magnetization, particularly at low temperatures
)see Eqs. (3.21) and (3.22) j.

The result of the more simple Eq. (3.20), of which

(3.21) is the T=O K limit, is obtainable in closed

"G. K. Benninger and A. S. Pavlovic, J. Appl. Phys. 38, 1325
(1967).

'4A. E. Clark, B. F. DeSavage, and R. Bozorth, Phys. Rev.
138, A216 (1965}."J.J. Rhyne and S. Legvold, Phys. Rev. 138, 507 (1965)."E.R. Callen, A. E. Clark, B.F. DeSavage, W. Coleman, and
H. B. Callen, Phys. Rev. 130, 1735 (1963).

"A. E. Clark, J. J. Rhyne, and E. R. Callen, J. Appl. Phys.
39, 5/3 (1968).

3 G. A. Petrakovskii and E. M. Smokatin, Zh. Eksperim. i
Teor. sFis. [Pis'ma). v', iRedaktsiyu)5, '233 (1967)i LEnglish transl. '.

Soviet Phys. —JETP Letters 5, 186 (1967)j.



530 CAL LE NR. A LIEN AN D

-6
xIO

&86

20. Po

-6
xlO

20, 8% 40'

30'
th

200I, —

D- lSO—

O0
1,00' 20

10,

I I I

l00
I I

60 80

ToK

(b)

su+at tices,fPr averag
ed excePt at t e

ra ing pver
Iieis cpns at ncy is maintaine

I I

20 40

II I

120 140

I I II

60 800

)oK

galere

(a)

actpr term i
As it

he strain-
'

n wpu
dependent g'- ac

)d be cpnstantx/
lp

20

form:
40.1

106Ãioo =188 tanh

6.4 31.7—37.6 tanh
T

36.4 31.7
aditi = h +4.95 tanhM„,(T) =5.12 t

erature fpr t '
tp niagnetizatip )

versu
der inagnetpst

agnetostric

F~G' ' '
f secpnd-Pr er

nd- egree m

~ (the ratH& 0

at mpst to secon —

o ic exchange,

est temperatures

.71 .
35 tanh

cients o a
~ '

etween mag

t e
f ]] even degrees.

etostrictipn anelationship be
f the anisotropic

conce»s t
& &biG, because o

T) sho„ld
a netization. n

~ 0(T) nor»"

3
magn

tion neit er io

the same time,

.1 tanh
exch ang terac I

T . tortional to lI'fR@ '
~

T) than

]06K,].ll

tors are associate
yioo(T) a

hty which Corns o
'

deed the

o~ The tempera«r
(lppj and

hiceI5~~, an in q
t the two-ion term

where T i
hen the fj.eld is .

&]. f«
lo to argue "

pstrictio»n

he splittings w
~

elv Speci~ca y~ emp y
~b3+ magn "

f the magneto-'ust part o
sou

of course, for ~

averaging pver

two sites wit '

hree of each Our result »~ o
the role o

Lapp) there are "
lI g$ there a« t40 1 K. Forfpui sp i

ind.
Icu].ate the mo '

p rincipal;s y is not st

Next let us ca
' atipns" in thetwop '

d to deviate muc .
'

s to Xyoo and

ove the magnetiza io

'der the contributions

data as a ove, iza io

.7 t we consi er
h local F' . w'

directions are

2.85 tanh3Eyoo
T

strictions.;.t „.p

con-z aloshinski-typep phas the same em

F rather t an

t p
e tco tri uio

P
h

hould
F

g

the weightings inill . 4.3 is i
ion are i us r( its of this calculation

do not expect Eq.

YbIG """'h
elements in the

p o zoo

ultimate y

sde endon e
'

eem

thf oints whic
-de iee lllagilmajor distinction etwe

'
otropic exchange

at with iso ro
sidered, in q. - ee s enin the Hamiltonian whic w



MAGNETOELASTIC SPIN HAM ILTON IANS: GARNETS

C. Magnetostriction with Large Crystal Fields:
Model of DyIG

The eGect of strong-crystal 6eMs on the behavior of
magnetostriction is something about which it is dificult
to theorize with generality. The magnetoelastic free
energy at temperature T is to be found by taking the
thermal expectation value of the perturbative terms of
Eq. (2.4) over the crystal-field eigenstates. Whereas,
the exchange-field eigenstates were Zeeman-like, and
equally spaced, the crystal-field eigenstates are generally
complex mixtures of Zeeman states, and are irregularly
separated in energy. Still, if the unperturbed Hamil-
tonian and the tensors in Eq. (2.4) are known, the
averaging can be carried out. Unfortunately F'" and
G for the Dy'+ ion, and every other, are almost entirely
unknown. Consequently, barred both from a general
orderly analysis and a particularized calculation, we
have chosen to perform several model calculations whose
purpose is to display some of the eGect which can be
expected.

The model in some sense relates to Dy'+ in the iron
garnet. For this ion some data are available for the
exchange field and for the crystal field, which is of
comparable size. Although there is every reason to
expect an exchange to be as anisotropic for the Dy'+ ion
as for the Yb'+ ion in the garnet, ' " we employ a
scalar exchange, as only this number is available. This
scalar exchange applies to the unperturbed J multiplet.
Since crystal fields have very confusing e6ects on the
response of an ion to exchange, it does not seem that
any richness of effects is lost in this application. ""
The value for H'" is 327 koe" $2 (gs —1) =-', ].

As for crystal-field parameters, we use the A' s
calculated from ytterbium gallium garnet (YboaG)
data. "In the most naive theory these parzmetrize the
c-site potential and do not depend on the ion occupying
the site."Hetter values for Dy may come from consider-
ing spectroscopic data"" but would add little to our
model. We have an unperturbed Hamiltonian including
crystal fields of D2 symmetry with an exchange 6eld,
and the magnitudes are reasonable for Dy'+ in garnets.

The effective spin for the lowest J multiplet in Dy'+
is 15/2. The symmetry of the D y'+ site is orthorhombic.
The most general form for 3'. ' contains terms involving
many spin operators related to the strains through
tensor which themselves have many independent
elements. We content ourselves with an examination of
the following four models incorporating only symmetric

"(a) J. H. Van Vleck, J. Phys. Soc. Japan 1?, 352 (1962);
(b) The analogous approximation for Yb would be to take g'
exactly proportional to the anisotropic g tensor.

M. K. Caspari, A. Koicki, S. Koicki, and G. T. Wood, Phys.
Letters ll, 195 (1964l.

4' R. A. Buchanan, K. A. Wickersheim, J. J. Pearson, and G. F.
Herrmann, Phys. Rev. 159, 251 (1967); Ref. 6, p. 255.

4s J. H. Van Vleck, Interaction of Radiation with Solids (Plenum
Press, Inc., New York, 1967).

~ P. Grunberg, S. Hufner, E. Orlich, and J. Schmidt, J. Appl.
Phys. 40, 1501 (1969).

terms of the form given in Eq. (2.4):

Z ion -A model: X~' '=Mp, .F J r. ,

0 0 02 2

1
2

0 0

0 0 0

1 C 0 0
Xoooo

0 0 0 0 0 0

0 00000'

1
2

1
2

0 0

000
1 0 0 0

X
0 0 0 0 J(J——')

0 0 0 0 0 0

0 0 0 0 0 0

Again, the normalization is such that b ' is of order 1
cm '/atom. This is 1-ion, since only the Dy is involved.

Z ion 8 model: X ' =MF, F J:e,

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
X000100

0 0 0 0 1 0

-0 0 0 0 0 1.

I ion B.model: 3C ' '= J -G.J:e

0 0 0 0 0 Oi

0 0 0 0 0 0

0 0 0 0 0 0
X

0 0 0 1 0 0 J(J——,')

0 0 0 0 1 0

.0 0 0 0 0 1.

where Mg, stands for the magnetization of the iron
sublattice (taken as temperature independent), the
units of F are in cm '/strain, and the normalization is
chosen so that the maximum contribution to h ' is
of order 1 cm '/site (J'=15/2). F is referred to the
orthorhombic axes of the site o.. P is referred to the
orthorhombic axes of the site o.. The model is 2-ion
because the strain-dependent interaction involves both
a Dy and an Fe.

f. ionAmodel:X-' =J G J:e,
1 ——' ——' 0 0 02 2
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45

30

0
'0 15

TABLE I. I cvcls of a rcpl csclltatlvc Dy loIl lIl crystal and
exchange fields illustrating the extent of departure from Zeeman
levels. The energy spacings are not uniform, the projection of J,
and the squared projection, depart considerably from the m and
iao (ioo= —",, —", , ~o', .) rules. Nonetheless, the magnetostriction
is often well given by the Z limit when plotted against (J).

Energy, cm

00

45

30

ill

15

I I I

50 100 150 200
Temp ('K )

(a)

114.1
64.8
40.4
34.8
34,6
29.9
25.1
14,4—2.3—17.6—35.2—35.3—52.5—54.8—79.1—81.2

7.32
5.83
4.67
3.64
3.68
3.43
1.55—0.05—0.92—2.91—4.43—2.18—3.80—3.90—5.85—6.17

54.03
35.73
24.37
15.84
15.87
15.88
5.64
1.52
3.54

15.15
31.15
9.85

19.85
17.90
34.84
38.83

0
0

I I I

50 100 150 200

For each model we compute the cubic magneto-
striction constants, ~ypp and X»& as defined by Eq.
(3.20). This involves (numerically) getting the thermal
expectation value of 3C ' in the crystal and molecular-
field eigenstates for each site 0. and for selected directions
of the iron magnetization. The eGect of crystal fields on
the expectation values may be "turned off" by super-
imposing a large magnetic Geld on the exchange Geld,
We have done this explicitly for fields of 100 and 500
kOe. The limit as the external field becomes infinite
(called hereafter the Zeeman limit or Z limit) is just
the standard theory (see Sec. IV A) and is easily
calculated analytically.

The reader may have noticed that our models are
simply the four traceless terms which would be allowed
in cubic symmetry. These should be regarded as 4 of
the 24 (15+9) allowed orthorhombic terms for Fo"
and G, we have chosen to investigate as a matter of

x)0
~8,

6 Z- limit

O
O

2

Temp ( ' K)

(b)

Fio. 2. (J) versus temperature for the DyIG model; (a) field
along L100j, (b) field along $111].The iron lattices are taken as
insensitive to temperature. Note the considerable anisotropy in
(J) at low temperature: (J)nq is 10'%%uo larger than (J),oo.

taste. We emphasize that the crystal fields in the
unstrained Hamiltonian were nine-parameter ortho-
rhombic ones.

The extent to which the levels of 0y depart from
Zeeman levels is illustrated in Table I. Here we give
energies and quantum mechanical expectation values
for J, and J.' for each of the 16 levels for a typical site.
(Here the exchange field is along L0017.) In the Z
limit the levels are equally spaced and the expectation
values go as m and nz', respectively, where no = —15(2,
13/2, . It is clear that one effect of the crystal Geld
is to reduce the quantum-mechanical expectation values
of both J, and J,' in the ground state and thus the size
of 8 ' and the magnetostriction at low temperature.
The effect of temperature in reducing thermal expecta-
tion values is qualitatively the same and to the extent
that this is so we may make the results for the actual
case and the Z limit agree by plotting P against the
thermal expectation value of J along the field, (J),
rather than against temperature. In the Z limit 2-ion
) 's are linear in (J), and 1-ion ),'s go as Is~s.

(J)(T) as computed from our molecular-field model
summing over the six sites is given in Figs. 2(a) and
2(b) for the L1007 and L1117 directions, relevant to
happ and P»&, respectively. Note that even with averag-
ing over sites and isotropic exchange, the crystal field
makes the moment quite anisotropic at low tempera-

x1 0
.6

.4-Z

45 50 15 0 45 30 l 5
'~'ioo

45 30 I5 0 45 30 15
Fro 3 4oo versus (J) for A model. Solid line is for zero applied

field, dashed line (labeled Z limit) is Zeeman (H —~ ) limit.
The third line represents an intermediate case, H = 100 kOC. FIG. 4. Rill versus (J) for A model, Z is Zeeman limit.
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Oo .4-
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1-10 .6—

0
45 0 45 50 15

~"
lOO

Fro. 5. X&00 versus (j) for 8 model. Solid line is H =0; dashes are
H = 100 kOe, H= 500 kOe, and Z limit. The 1-ion model displays
the most dramatic departure from the Z limit of the four models
considered.

0
45 30 15 0 45 30 15

tures, L1007 being 10% lower than L1117 which in
turn is about 10% below the Z limit of 45(=6&&15/2).

In Figs. 3—6 we give X~pp and X~~~ for each of the four
models. The values are plotted against (J) and thus the
lines do not extend to the ordinate except in the Z
limit. Note that near (J)=45, the Z limit results
reflect the isotropic theory being proportional to (J)
for the 2-ion models and to (J)' for 1-ion.

The effect of crystal fields on the temperature
dependence of the 'A's varies for each model. At higher
temperatures (low (J)) when many levels are contribut-

ing, crystal fields average out, but the Z limit is not
approached particularly rapidly. The 1-ion 8-model
results for happ are interesting since here a fortuitous
cancellation occurs a,t T=O K which is lifted with
rising temperature faster than the over-all decrease in
the competing terms. Thus here is a case where P

actually rises as (J) falls (temperature increasing), a
striking departure from the ls~&, Z limit theory.

There is a great deal of averaging over sites, levels,
a,nd expectation values implicit in this model and it is
not surprising that by and large the crystal fields do
not produce striking departures when plotted against
(J). It is clear, however, that the low-temperature

s Ll(1+1)7 power law does not survive the introduction
of substantial crystal fields.

FIG. 6. Xgrr versus (J) for 8 model. Unlike X~,o, here the 2-ion model
is rather close to the Z limit.

The observed magnetostriction in DyIG" is peculiar
in that ) tii follows an Is~s (1-ion) temperature depen-
dence rather nicely while ~&pp is considerably below I5~2

at low temperature. The question then arises as to
whether this is evidence that 2-ion terms are important
for X~pp. The answer, from our model calculation, is no.
The 1-ion 8 model has one X follow Is~s closely (Fig. 6)
while the other X does not (Fig. 4). Thus crystal field

could explain the observed deviation from "usual" &-ion

behavior without recourse to 2-ion interactions. 4

In conclusion, we have shown that when anisotropy,
either in form of anisotropic exchange or crystal fields,
is large, the relation of the underlying magnetoelastic
spin Hamiltonian to magnetostriction becomes quite
complex. Departure from the isotropic theory are to be
expected; particularly at low temperatures.
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44 Incidentally, the forced magnetostriction of DyIG (Ref. 37)
shows no evidence of a contribution from a direct (F) term in
fields up to 100 kOe.


