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Ultrasonic Propagation in RbMnF, . II. Magnetoelastic Properties
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A study of the propagation of rf ultrasonic waves in the antiferromagnetically ordered state of RbMnF3
is presented. Consideration of the effect of the sublattice magnetization orientation on the coupling between
elastic and magnetic modes of the system results in the prediction of a strong magnetic Geld dependence
of the measured elastic constants. Quantitative comparison with experiment is given, and the results are
used to obtain values of the magnetoelastic coupling constants bj and b2 and the anisotropy constant E'

at 4.2 K. The temperature dependence of the measured elastic constants, which show sharp anomalies at
T~60 K, is readily explained with the present model.

I. INTRODUCTION

' 'N a previous paper' (to be referred to as I), we pre-
~ - sented the results of a study of the elastic properties
of RbMnF3 from 4.2 to 300K. One of the results of
this study was the observation of a. very strong depend-
ence of the "effective" or measured elastic constants
C,,* on the orientation and magnitude of an applied
magnetic field. This effect was observed only in the
antiferromagnetically ordered state (T(Tsr =83 K)
and was strongly temperature-dependent. ' ' The origin
of this field dependence was discussed briefly (in I) in
terms of a model in which the effective coupling of the
elastic waves to the antiferromagnetic resonance modes
is determined by the orientation in space of the sub-
lattice magnetization vectors M,s(i =1, 2); the orienta-
tion of these is dependent on the applied magnetic
field Hs. In the low-frequency limit (well satisfied in
the present study) the measured "effective" elastic
constants are independent of frequency, but depend
on the applied magnetic field. The effect is a result of
the field dependence of the effective coupling between
the elastic and magnetic modes, and not a result of
the field "tuning" the magnetic modes with respect
to the elastic modes.

In this paper we first present a model describing the
effect of magnetoelastic coupling on the propagation of
rf ultrasonic waves in RbMnF3. The predictions of the
model are then compared with data obtained in a num-

ber of experimental cases. Quantitative as well as
qualitative agreement is found for those cases in which
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unambiguous theoretical results can be obtained. For
other cases, the consequences of the model cannot be
directly compared with experiment, owing to our lack
of su%.cient knowledge concerning the orientation of
the sublattice magnetization.

Cole and Ince' have given an account of the static
equilibrium theory and the antiferromagnetic reson-
ance (AFMR) modes of RbMnF, at 4.2 K. Several of
their results will be used in the present study. Measure-
ment of the shift in the AFMR frequency on applica-
tion of a static uniaxial stress enabled Eastman' to
obtain the values of the two independent magneto-
elastic coupling constants (MECC) fit and bs. Quantita-
tive comparison of our results to his will be made.

In Sec. II the theory of rf ultrasonic propagation in
RbMnF3 is outlined. Those experimental details which

are different from those in I are discussed in Sec. III.
Section IV is devoted to the presentation of the experi-
mental data and comparison with theory. A brief
summary is given in Sec. V.

II. THEORY

Coup,'ed magnetic and elastic modes in antiferro-
magnetic insulators have been the subject of several
recent theoretical studies. ' "These studies have dealt

' P. H. Cole and W. J. Ince, Phys. Rev. 150, 377 (1966).
4 D. E. Eastman, Phys. Rev. 156, 645 (1967).
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Fiz. Nauk 71, 533 (1960) /English transl. : Soviet Phys. —Usp. 3,
567 (1961)1.' A. I. Mitsek, Fiz. Metal. i Metalloved. 16, 168 (1963).

M. A. Savchenko, Fiz. Tverd. Tela 6, 864 (1964) t English
transl. :Soviet Phys. —Solid State 6, 666 (1964)g.
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primarily with uniaxial magnetic systems and have
assumed elastic isotropy; as such they are dificult to
apply directly to the case of cubic RbMnF3, which in
many respects is quite different from a uniaxial system.
For this reason we present here a detailed calculation
applicable specifically to RbMnF3. In Sec. II A a brief
review of the static and AFMR results is presented.
In Sec. II 8 the effective elastic constants C,,* for
several types of e.astic modes are derived using linear
magnetoelastic theory.

A. Review of Equilibrium and AFMR Theory

Assuming (a) a single-domain sample describable in
terms of a two-sublattice molecular-field model and (b)
that the equilibrium orientation of each of the sublattice
magnetization vectors MP (i= 1, 2) lies in the (110)
plane, the magnetic free energy of the system can be
written in terms of the angle 0 between the $001j axis
and the vector -', (M1P —M2') =M in the (110)plane, the
angle t between M and M1P, and the angle P between
(001] and Hp, also in the (110) plane. This energy ex-

pression is then minimized with respect to t and 0, re-
spectively. The result, ' expressing 0 in a transcendental
equation as a function of Hp and P, shows that 8 is
strongly dependent upon both H p and P for values of Hp

of the order of H, (2HzH~)'". Here Hz=8. 9)&10'
Oe and Hg=4 Oe are the respective exchange and
anisotropy fields in RbMnF3. "Thus II, is the order of
a few kOe.

The AFMR modes in RbMnF& were calculated by
Cole and Ince' by considering the torques exerted on
each component of sublattice magnetization as a result
of the various magnetic interactions. The agreement
with experimentally obtained AFMR spectra was
found to be excellent for the case of Hp~~L001j although
some aspects of the theory were not verified for cases
in which Hp was aligned along the L110j or L111]direc-
tions. These minor discrepancies were attributed to
part of the sample having a different orientation than
the main part, incoherent rotation of the magnetization
vectors from positions of local-energy minima to posi-
tions of absolute-energy minima, or the overlap of
stronger resonances obscuring weaker resonances. The
effect. of antiferromagnetic domains on the AFMR
spectra in RbMnF3 has also been recently studied. "

The approach taken in this paper to the coupling of
magnetic and elastic modes is similar to that taken in
calculating the AFMR modes. The difference is that we
include explicitly the elastic degrees of freedom and
magnetoelastic coupling and consider solutions only in
the low-frequency limit.

B. Magnetoelastic Coupling in RbMnF3

In this section conventional small-strain magneto-
elastic (MK) theory will be applied to the case of a cubic

"D.T. Teaney, M. J. Freiser, and R. W. H. Stevenson, Phys.
Rev. Letters 9, 212 (1962)."W. J. Ince and A. Platzker, Phys. Rev. 175, 65O (1968).

antiferromagnet in which the sublat tice magnetiza-
tion orientation is determined by the magnitude and
orientation of an applied magnetic field. Attention will
be focused on solutions for frequencies much lower than
the AFMR modes and also much lower than the Mn"
nuclear Larmor frequency (v 680 MHz at 4.2 K).14

The latter condition enables us to exclude effects
arising from the nuclear hyperfine term in the free
energy, since at these low frequencies the nuclei remain
parallel to and exert no torque on the electronic mag-
netization. The approximations involved in the low-
frequency approximation should be valid at all tem-
peratures except in the immediate vicinity of the Neel
temperature, i.e., T~—T&2 K. At the low frequencies
under consideration (i.e., long wavelengths) the effect
of spacial nonuniformities in the magnetization is
negligible and is ignored. Note, however, that at fre-
quencies approaching the AFMR modes (not considered
here) such effects become quite important.

The free-energy density for the coupled ME system
of cubic symmetry is written

~zx+~z+~x+~z+~Mz ~ (1)

The exchange (Ezx), Zeeman (Ez), anisotropy (E+),
elastic (Ez), and magnetoelastic (EMz) free-energy
terms have, respectively, the forms

Ezx= —XM1 M2,

Ez —Hp. (Mi——+M,),
E

Eg ——— P (M'; 2M;„2+c.p.),
Mp4 ~=&,2

(2)

(3)

84
+ L(~1~2+~1~2)~.„+c.P.j. (6)

3fp'

In these expressions c.p. denotes cyclic permutation of
x, y, s; M,, isthe jthcomponent(j=x, y, s) of theith
sublattice magnetization (i= 1, 2); Mp ——

( Mi( =
~
M2~;

Hp is the applied dc field, C», C~2, and C44 are the
adiabatic elastic constants, and 8, (i=1—4) are the
magnetoelastic constants. The strains e;; are defined in
terms of the elastic displacements I, (r,t):

'"i';=(1-!';) +
ax; ax)

'4 A. J. Heeger and D. T. Teaney, J. Appl. Phys. 35, 846 I'1964).

Ez=2C11 P e;,'+2C44(e, „'+c.p).
2=&202'

+C12(e.,e„„+c.p.) (5)

Bg 83
~Mz= Q ~P'1i+

p2 ~p2 g=x, g, z

J =X,Q,S

82
+ Q (M;,M,2e,„+c.P.)
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82Q 82If 828 82If

p +
~y~ cry ~~~exz

8Ht&'&
+Ms.

Hp ———A.Mp,

H~ ——-'s X/M P.
BHs&'&

In Eq. (6) the magnetoelastic coupling arising from cry-
stalline field effects (single ion) and magnetic dipolar
forces (two ions) are included. The volume magneto-
striction (strain dependence of the exchange interac-
tion) is not included since in the linear approximation
used below it contributes only to higher-order terms in
the equations of motion.

Denoting the equilibrium orientation of the two sub-
lattices with respect to the crystal coordinate system
by the angles (8i, yi) and (8s, &ps), where 8i and 8s are
measured with respect to L001j and &pi and qs are
measured with respect to L100j in the (001) plane, the
respective free-energy terms are written as shown in
Appendix A.

The equations of motion for the "1"magnetic sub-
lattice have the form

(11)
8$

with c.p. of x, y, s to obtain the equations for N„and u, .
The first three terms on the right-hand side of Eq. (11)
are the forces resulting both from elastic and from
magnetoelastic stresses and the last two terms represent
magnetic body forces. In Eqs. (9) and (11) we have
omitted any dissipative terms.

Linearizing the Eqs. (9a) and (11) with respect to the
variables 3f;; and NA, and assuming harmonic behavior
of the form

(12)NA, e'&"'—~ '
A; )

with i =1, 2, j=x, y, and k=x, y, s we obtain a set of
seven simultaneous, linear, homogeneous, algebraic
equations in the four magnetic and three elastic
variables.

Up to this point our treatment has been quite general
in that arbitrary orientations of the dc field Hs and the
equilibrium sublattice vectors Mrs and Mso have been
allowed. A considerable simplihcation results if the
field Hs is restricted to lie in the (110) crystallographic
plane and M1' and M2' are assumed to lie in this
plane. These are the same restrictions used in deriving
the equilibrium orientation results. Thus, setting

and defining 8 to be the angle that
M= —,'(Mrs —M,') makes with respect to (001) we have
8i=8 t and 8s=—8+t+s., where t is the tilt angle of
Mrs with respect to M. The angle which Hs makes
with L001$ is denoted by P and the angle p is defined
by (@=8

With this notation the seven simultaneous equations
take the form"

dM1;
=p(M&XHi'&), ; i=x, y, (9a)

dt

deaf 1,
=0; M1, ——Mp. (9b)

Equation (9b) is a consequence of the linear approxima-
tion. " y is the electronic gyromagnetic ratio (p(0).
The effective field 81(') acting on the "1"sublattice
is given by

H (')= ——
BMt

The equations corresponding to the "2" sublattice are
obtained through the substitution 1-+ 2 in Eqs. (9)
and (10).

The equations of motion for the elastic displacements

The exchange constant X and anisotropy constant E have the form
are related to their respective effective fields by

(4i+S, )
Mp

z
t11

Mp
(tst+S,+)

Mp
t]1 Q~

Mp

(4,+S„-)
Mp

Z

tl2
~o

Z

(4s+S„+)
3fp

t12 I„
gap

(4s+S, )
~p

z
t13

Mp
(f„+S,+)

Mp
t13 I, =0.

~o
(13)

Zgt21

Zgt12

Zvt22

Zgt12

&&t13

iVt23

iVt13

0 M1„

f Ms,

.Zyt21 Zyt22 Zyt23 e 0 u . M2„.
"Note that in Eqs. (9) and (10) and henceforth in this paper, unless otherwise specifLed, the magnetic variables are expressed in

th.e equilibrium coordinate systems defined in Appendix A.
's R. L. Melcher, Ph.D. thesis, Washington University, St. Louis, Mo. , 1968 (unpublished).
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TA&IE I. Solutions for several elastic modes in the weak-coupling limit with Hp in the (110) plane.

Elastic mode

4. ,II Cool]

Solution'

y~@ b1' Sin'2g 3E Hp Hp3f p Sin2p
Cll = C» —4b1 cos'g+4—— —1——(1—$ sin'g)—

Mp Q7+ b1 4H~ b1 sin2g

ki„,ll C 100]

ktruas II Cool ]

QG)E
C11*=C» —2b1 sin'g+4 bp

Mp

pQ)@ b22 cos2g
(i) C44* =C44+4

~p

yor@ bg cos 2g
(ii) C44~ =C44+ 4

M p co+

sin'g 1 sin'2g 6' Hp MpHp sin2q
+— 1+—(1——', sin2g) +

Gg 4 Q)y b1 2Hlb b1 sin 2g

k~-, IIC110]
Peg~ (b1+b2)'

CL,*=CL, —2 (b1+b2) sin'g+ - sin22g
M p Go.+

Hp MpHp sin2y
1+ (1—sa sin~8)+

bq+ bs 2H@ (by+ bq) sin2g

6''

7b

kg„,ll C110]

k.~IIC101]

k~.~IICiol]

kg„ IIC110]

8IIC001]

ktrsaellL110]

8IICool]

kq„~llC110] or C110]

8IICliO] or C11O]

ktrsnsllC101] ol' C101]

gllC101] or C101]

7(og (b1—bm)' 6X Hp 3fpHp sin2y
Cr,*=Cr. 2(bi —bs) sin—'8+ — sin228 1+— (1—s3 sinsg) +

~p b1 —b2 2Hz (bq —b2) sin28

2pcoE 1 b1 sing 1 b~ sin28 )2
Cr,* Cr,+ —— +b2 cosg

I
+— — bs cos28—

i

M0 (g ' K2 j ~~' 2'
pcs 1 b1 sing ~ 1 b1 sin2g

Cr,* Cr, +2 ——— bs cosg +——— +bs cos28
~

3fp co ' V2 cg+ 242 )
yarE b2 cos 2g

C44*=C44+4
31p Q7~

pcs b2 cos g
C44*= C44+4—-—

3fp co '

yu~ b12 sin2g
C'*=C'+4——

35p co

pro@ b1' sin'g
C'*=C'+ — — 1+9—cos'g

Mp CV
'

CO+.
'

a Og+~ =2a2uOZ+COO~( 2Sin~y —1),CO 11 = - (2alSOE+400~ COS2pj.
b The magnetic-body force terms have been omitted for simplicity in rows 6 and 7.

The quantities F;;, t&&, S +, (i, j =x, y, s, k=1, 2,
/=1, 2, 3, and tis=x, y, s) and a—

g are all defined in
Appendix B." There result only two independent
MECC b~ and b2 dined by

bg ——Bg—2B3)
b2=B2—B4.

Our primary interest is in the quasielastic solutions
to Eqs. (13). The upper left-hand 3&&3 matrix F;, is

' Equations (13) can be equivalently derived in the following
manner. In the crystal coordinate system write the nine equations
of motion corresponding to the six magnetic and three elastic
degrees of freedom. Apply the transformation which transforms
to the equilibrium coordinate systems to these nine equations and
delete the resulting equations for M~, and M~, Ccorresponding to
Eq. (9b)].The result is then exactly Eqs. (13).This approach was
taken in Ref. 16 and is quite analogous to that used in Ref. 3 to
calculate the AFMR modes.

(with the addition of part of the magnetic-body force
terms) the matrix of elastic constants obtained for an
elastic medium of cubic symmetry. The lower right-
hand 4&(4 matrix is that used to calculate the AFMR
modes (because we are considering the low-frequency
limit, the terms involving the hyperfine interaction
with the Mns' nuclear spins have been omitted). The
coupling terms in tI, ~ correspond to magnetoelastic
stresses and torques, while those in 5 + are derived
from the magnetic-body forces.

Solutions exist for Eqs. (13) only if the 7X7 deter-
minant of coe%cients is zero. The general secular equa-
tion is quite complex and we restrict ourselves to pro-
pagation along the I 100j and L110j (or equivalent)
axes. In addition, the solutions'will be obtained in the
weak coupling approximation; the eGect of magneto-
elastic coupling is considered to be a small perturbation
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TABLE II. Solutions for Hpj~ [001].'

495

Elastic mode

k&. ,ii [001]

2 k),~(~[100]

Solutions

20 Hp' 4 b12

Cl1 = Cll bl+ bl p Hp & (-,'H~Hg)
3 9 HyHg 3 E

Cll*= Cll, Hp& (-,'HEHg)'"
4 10 IIp' 4 b12

Cl1 —Cl1 bl bl 1 IXp & (2 HEFIg) '"
3 9 IIpHg 3 E

b 2

Cll*= Cll —2bl ——,' IIp& (2FIp II~)1/2
E
1 bP [1——'., (IIp'/HzHg)]

C44*= C44 ——— Hp& (pPHzH&)'IP
2 I [1+-,'(HpP/HzH&)]

C.,*=C,.; H, & ()HEH~)

3 kp„p~~~ [001] 1 bP 8 Hp' 16 Hpp
C44*= Cpp ———— 1+ +

6 K 3 HzH~ 9 Hp'FIeP j
1 Hp' 2 Hp4

1— —— —;FIp& (pHzHz)'IP
3 H~H~ 9 H~2H~2

4 k&„pli[11o]

5 k&.~)~ [110]

6 ki. i([101]

7 k).~~~[101]

k„. ~~[110]

e~([001]

22 2 Hp'
C44* = C44+2— 1 —— —

7 Hp& (2 H~H~)
E 3 HEHg

10 Hp' 1
CL = CL (b1+b2) (b1+b2)

3 9 HEFIg 3

CL,*=CI,—2(bl+b2); Hp& (-,'H~Hg)'"
10 FIp' 1

CL = CL (bi ba) —(b —b—pp)

3 9 HEFIg 3

CJ.*=CL, —2(bl —b2); IXp& (—'H~Hg)'"
1

CI.*~CI,——(b12+b"+blb2); Hp =0
3E

(bl+b2)'
FIp& ( HzPpHg)'"

(bl —b2)'
H& p(~2HpHg) '

E

1
CI,*~CJ.——b12—4b22

4E
1

CI,* CI,——(bl'+b2' —blb2); FIp ——0
3E

f 2 Hps
1 ——— —

i Hp&(pPHzHA)'"
3 FIzH~

b 2 2 Hp'
C44*=C44+2— 1—— Hp) ( Pp HzHg)'IP-

E 3 H@Hg

1 2 Hp'
Cre Cr, bP —4bp' —1———— ; Hp& (pHzHz)'"

4E 3 H~Hg
1 bpP [1+(8/3) (Hps/HzHe. )+(16/9) (Hpp/Hz'Hge)]

C44 = C44 ——— Hp&(-,'H H )'"
6 I [1 ,'(Hpe/HzHg) —(2—/-9) (HpP/HzPH~P)]

10

~~[1io]

ed[[001]

k„, (([110]or [110]

e([[110]or [110]

kp«~~~[101] or [101]

e(([101]or [101]

1 bP (1 pHpP/HzHz)— —

C44*= C44—— Hp & ($H@Hg)'"
2 E (1+3Hp /H@Hg)

C44*= C44, Hp& (2HEHg)
b12

C =C ——; allH,
E;
b12

FIp & (2H@FIg)
E

1 b12

II,& (-;H~H&)»
4E

& The initial condition that M10~~ L111$for II0 =0 is assumed for each case.
b The magnetic-body force terms have been omitted for simplicity in rows 6 and 7.
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TABLE III. Solutions for Hell f 111$.'b

Elastic mode

kg, ,fff 001$

kg, ,[ff 100j

Solution

4 4b12
C»*——C11——b1——,.

3 3E
Ho=0

Cn* ~ Cti —(8/3)bi; Hp&&(2H@HA)'"

4 4b12
C11*=C11——b1———,Ho ——0

3 3 E
C11*~ 0 j Hp)) (2H@H~)

1bP
C44*= C44 ———,.

2E
Ho ——0

6c

70

10

kp„.ff[001j

k(, ff[ 110j

k...pl[[ lion

kg, ff f 101j

k), ff f ipij

k„. [f[110j

ef[L001j

k„...fff.lipj

effL001$

kt„„fff iipj or f 110]

efff 110j or[ 110]

k„, fff 101j or [101$

efff 101j or [101]

1 b22

C44* ——C44——.
2E

Hp ——0

C44* —+ 0) Hp»(2H~Hg)' '

b 2

C/g Cf
E

Hp ——0

C'* ~ 0; Hp&&(2HBHA)'"

b'
C'*=C'——.

E
Hp ——0

C'* —+ 0; H p)& (2HzH&)'

C44* —& 0; Hp&& (2HEHg)'"

1bP
C44* ——C44 ———— H p =0

6E
(ii)

C44* ~ C44, Hp&)(2' Hg)'"

1 (b1+b2)'
CL,*=CL,——(b1+b2) ——— —;Hp =0

3 3 E
CL,*—+ Cl, ——', (b1+b2); Hp» (2H~Hg)'"

1 (b, —b2)2

Cl.*=cl.——g» —b2) —— Hp ——0
3 3 E

CL,*—+ Cz, —3 (b1—b2); Hp» (2HgHz)'"

1
CI,*~CL,— (b1'lb~' —b1b2); Hp =0

3E
Cl,*~ 0; Hp&&(2H&H&)»~

1
CI,*~CI.——(b1'+b2' —b1b2); Hp ——0

3E
Cz.*—+ 0; Ho» (2HzHz)'"

1b'
C44 = C44 ————,' Hp= 0

6E
C44* ~ C44& Hp&) (2HIIHg)

Csg -+ 0, Hp&& (2HzH&)»2 means that the measured elastic constant is predicted to decrease monotonically with increasing H 0 for large H p.
h For Hp =0, MIp)) t 111)and for Hp & 0, M is assumed to remain in the (110) plane.
& The magnetic-body force terms have been omitted for simplicity in rows 6 and 7,

on the quasielastic modes and it is assumed that no

significant mixing of the elastic modes occurs.
The solutions to Eqs. (13) in this approximation for

longitudinal and transverse modes propagating along
cubic axes and face diagonals are given in Table I for

H p in the (110) plane. The solutions take the form of an
effective elastic constant C;,*:

pv'=C;;*= C;,+ f;, (bp, Hp, H, K,HB,M,), (15)

where s=ee/k is the ultrasonic phase velocity and p is
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4 Hp'
= 1+3 cos28, Ho( (poHsH~)'~'

3 HQHg

0=-'x,2 Ho& (-,'HsHg)'". (16)

Because of the symmetry of the t 001) axis with re-
spect to the four equivalent t 111) axes (i.e., the four
possible antiferromagnetic domains) and to the (110)
and (110) planes, it is immaterial whether the mag-
netization lies in the (110) or the (110) plane or is
distributed in domains between these two planes. The
results of the magnetoelastic theory are independent
of the initial conditions placed on M~' and M2'. The
results for this case are given by row 1 of Table II. As
we demonstrate in Sec. IV, the experimental data are in
excellent agreement with theory in this case.

(ii) We now consider the case of Hp~~L111). The
equilibrium theory is not easily expressed analytically
for arbitrary Hp and we restrict ourselves to the limit-
ing cases of Hp 0, and Hp))(2HsH~)'"——. For Ho ——0,
Ml

~~ L1117; for Ho)) (2HsH~)'", M lies in the (110)
plane perpendicular to Hp. The results of the calcula-
tion for longitudinal waves propagating along 1 001)
and $100) are given in rows 1 and 2 of Table III. Ex-
perimentally, these two cases are identical. The theory
gives different results because the (110)plane is not sym-
metrical with respect to the L001) and $100) axes and
the assumption of the equilibrium theory is that M lies
always in the (110) plane. Experimentally, at 4.2'K all

the density. The terms linear in the MECC b& and b&,

which arise from the magnetic-body forces, are seen to
contribute as expected only to the quasilongitudinal
elastic modes. The results of the static equilibrium
theory' must be used to express 0 as a function of Hp.
For a given orientation of Hp, the term f;; is thus
dependent only on the magnitude of Hp and on the
temperature-dependent constants bq(T), Mo(T), &P'),
and H~, characteristic of the material. The lack of
frequency dependence of f,; is a consequence of our
low-frequency approximation.

We now discuss, as examples, three experimental
situations, and defer discussion of the others until
Sec. IV. In Table II are shown the theoretical results
for Hp L001) and in Table III are shown the results
for Hp $1117.In Table III, because of the complexity
of the equations for arbitrary magnitudes of Hp, only
the limiting cases for Ho=0 and Ho))(2HzH~)'~' are
presented. These indicate simply whether the measured
elastic constant is expected to increase or decrease with
increasing Hp.

(i) Consider longitudinal waves propagating along
the L001) axis with Hp~~k)~$001). According to the
equilibrium theory, o if we assume that Mro~~(111) for
Hp=0, then for HpQO the vector M will rotate in the
(110) plane; the angle 8= g (M,$001)) is related to H,
by

of the measured elastic constants show a decrease on
increasing H p when Hp

~~
)111).

(iii) When Ho~~ t 110) the equilibrium results are
even more difflcult to express analytically since M is
known to rotate or flip out of the (110) plane for Hp be-
tween 0 and (3HsH~)"'. ' Although we will not be con-
cerned in any detail with this case it is interesting to
note that antiferromagnetic domains" behave quite
differently for this field orientation depending upon
whether M for a given domain lies initially (i.e., for
Hp 0) in t——he (110) plane or in the (110) plane. Ap-
parent discontinuities in the data for Hp~~(110) and
Hp=-1 koe are attributed below to such domain effects.

III. EXPERIMENTAL

The two single-crystal specimens of RbMnFo (S3A
and S38) used in the present study and their prepara-
tion were described in I.'

The cw transmission technique described in I was
used to obtain the elastic constant data taken at ~30
MHz. The data taken at 10 MHz were obtained
through use of the cw Q-meter technique. ""The data
are presented as the relative change in the effective
elastic constant C;,* as a function of magnetic field—
both magnitude and orientation. The relationship be-
tween the change in frequency of the eth mechanical
resonance Av and the change in the elastic constant
AC, ,=C;,*—C;; is given by

DC;,/C;; =2(hvfvo), (17)

IV. EXPERIMENTAL RESULTS
AND DISCUSSION

The presentation of the data is divided into four sub-
sections. Section IV A deals with the dependence of the
effective elastic constants on the magnitude of magnetic
fields applied along symmetry axes of the crystal at
4.2 K. In Sec. IV 8, elastic constant and attenuation
measurements are presented as functions of the orienta-
tion of the applied field at both 4.2 and 77.4 K. The
temperature dependence is discussed in Sec. IV C, and
Sec. IV D magnetostrictive effects are discussed.

"D. I. Bolef and M. Menes, J. Appl. Phys, 31, 1010 (1960).
"D.I. Solef and J. de Klerk, Trans. IREE UE-10, 1.9 (1963).

where magnetostrictive sample length changes are
neglected (see Sec. IVD) and vp is the mechanical
resonance frequency corresponding to the "pure"
elastic constant C;;.

The effective resistance presented to the Q meter by
the composite resonator consisting of the specimen-plus-
quartz transducer can be shown to be proportional to
the ultrasonic attenuation. "The attenuation measure-
ments taken at 10 MHz were obtained with this
method and are given in arbitrary units.
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A. Magnetic Field Dependence of Elastic
Constants at 4.2 K

In the following we summarize the experimental
data and present a comparison with the theory given
in Sec. II. The simplification that the magnetic-body
force terms are negligible is made throughout. Con-
sideration of the relative magnitudes of bj, b2, E, H~,
Ho, and 350 show that this is a very good approximation.

V

V
I

~

V

1 'I I I I I
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~ H II [001]~o-40— o H II[111]
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t
-60—

4lup+ us Nun ~ i g
-70— op

oo
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op oo
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-140 i 1 I I I 1

MAGNETIC FIELD (kOe)

FIG. 1. Relative change in the elastic constant CII* versus
magnetic field for H0 applied along three symmetry directions in
the (110) plane; 2 =4.2 K.

1. Longitudina/ Waves, k Parallel to Cubic Axis

In Fig. 1 are presented the data obtained at v=10.6
MHz for k ~$001) with Hp aligned along the $001),
[1117, and f 110) axes. When k[[$100) and Hp((L}00),
L001), and L101), the data for i =30.0 MHz are as
shown in Fig. 2.

For both cases in which Hp~~k, theory yields the
results shown in row 1 of Table II; the prediction of a
discontinuous change in Cii* by DCii*—— 4bi'/3E at—
Hp=H. = (-,'HeH~)'" agrees quite well with the data
shown on Figs. 1 and 2. Quantitative comparison with
theory is made in rows 1 and 2 of Table IU, where the
assumption is made that H, corresponds to that mag-
netic field at which C;,*(Hp) has a maximum slope. The
agreement between rows 1 and 2 of Table IU confirms
also the lack of frequency dependence of C~1* in the
frequency range of the present experiments.

When Ho is aligned along a different cubic axis at
right angles to the propagation direction (Fig. 2) the
appropriate expression is given in row 2 of Table II.
The comparison with experimental results is given by
row 3 of Table IU. The values shown in parenthesis
are those obtained using the same value of H, as in the
above two cases. The quantitative agreement with
theory is striking for these three cases. Because of
symmetry no domain effects are expected in these
cases and none are observed.

=T ~ T

opoop 0 0 o o o o o p
d

0
0
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O
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8

8

&ONG'TUDINAL WAVES
k II [100]; M = 30.0 MHz
T 4.2 K

Ho II 901]
0 Ho II [100]

Hp II [101]

When the magnetic field is applied along the "easy"
L1117 direction the experimental situation is indepen-
dent of along which equivalent L100) axis k is aligned.
However, the theoretical results for k~jL001) (row 1
Table III) and for k ~~L100) or t 010) (row 2 of Table
III) are quite diferent as discussed in Sec. II. For
Hp))(2HsH~)'" the orientation of MiP with respect to
k is different for k

~
L001) than for k

~~
L100) or (010),

thus leading to the discrepancy between rows 1 and 2 of
Table III. Experimentally, the data (Fig. 1) show that
C~~* decreases with increasing Ho.

When Hp
~ ~

L110)i k~
~
L001), the measured elastic

constant is independent of Hp (Fig. 1). However, if
Hp~~ I 101) and k~~L100), then Cii* increases monotonic-
ally with increasing Hp (Fig. 2).

Z. Transverse Waves, k[)$001), e][L110]or $100]

Rows 3(i)»d 3(ii) of Table I show that t}le
degeneracy of the pure elastic mode is lifted by the
inclusion of magnetoelastic coupling. However, any
small perturbation (i.e., a slight misorientation of the
crystalline axes) will also break the symmetry which
causes the degeneracy; quantitative measurements are
thus dificult to make with this mode. Since the two
nondegenerate modes given in row 3 Table I are char-
acterized by the coupling constant b2, some qualitative
estimate of b2 can be made. To within the experimental
error of &0.004%%uo, C44* (not shown here) was found to
be independent of Ho regardless of the orientation of
Hp with respect to k, with the exception of Hp~~(111].
In the latter case (Hp~~)111)), a monotonic decrease
in C44* of magnitude t1C44 ——0.008'%%uo was found on in-
creasing Ho from zero to 8 kOe. The weak magnetic
field dependence for the C44 mode indicates that
b2&(bg.

I I I I I I

MAGNETIC FIELD (kOe)

IzG. 2. Relative change in the elastic constant CII* versus
magnetic Geld for Hp applied along three symmetry directions in
the (010) plane; 7=4.2 K..
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TABLE IV. Comparison of theory with experiment. '

Elastic mode;
field orientation

FX,
Frequency (koe)

(MHz) (expt)

C

C;;
(expt)

c;;
(theoret) (expt)

(".':)
(expt)

7I

kg„, I f [001]

H p[f [001]

k&„pff I 100]

H, fff 100]

kg, „pf I I 100]

Hpff I 001 j

k...pf[L110] or I 1iO]

Hpff I 001]

kg„,fff 101] or [101]

H, [ [[001]

k„, [[[ 101]
ellf f01]
Hpff I 001]

Eastman-AFMR
under static uniaxial
stress

10.6

30.0

30.0

11.5

11.5

10.2

1.85

1.85

2.00

(1.85)

2.00

1.90

2.00

6.49X10 '

6.80X10-3

1.55X10-3

1.74X 10-3

0.292X10 g

11.5X10-3

4 b1'

3 CIIK

4 bP

3 CIIE

1 b12

3 CIIE

1 ibg+b2)'

3 CgE

1 (bi+2b2)

12 CzE

3 b12

4 O'E'

0.586

0.586

0.685

{0.586)

0.685

0.620

0.685

0.866

b1 ——1.90

bi ——1.95

bi ——2.02

(b =187)

bi~b2 ——2.05

b1~2b2 ——1.66

bi ——2.11

b1 ——1.5&0.15

b2 ——0.16~0.02

b1 ——1.8~0.15

b2 ——0.175~0.02

a T =4.2 K.
b K =M0He2/2HE, where Mo =305 G, HE =8.9 )(105 Oe.' Cll = 1.275 &(10'~ ergs/cm3, C' =0.4266 &(10'2 ergs/cm3, and Cr. = 1.175 )&10» ergs/cm3.

3. Loegitudiea/ Waves, k[[L110],Hp i+ (110)P/ave

The dependence on magnetic field of

CL p (+11++12+2C44)

for Hp[[L001], L111],and j110]is given in Fig. 3. Rows
4—7 of Table I give the theoretical results for CL,* as
determined by propagation along the four equivalent
L110]axes.

For Hp[[$001] and k[[L110]or I 110] (equivalent ex-
perimental situations) rows 4 and 5 of Table II apply.
The difference in these two results is due to the as-
sumption that M remains in the (110) plane. However,
since b2«b1, the two expressions are qualitatively the
same and agree with the data of Fig. 3. They are
compared to the data in row 4 of Table IV. Comparison
of row 4 with rows 1, 2, and 3 of Table IV confirms our
conclusion from the previous paragraph that b~(&b1.

When k[[L101]or L101] and Hp is again parallel to
L001], rows 6 and 7 of Table II apply. Again equivalent
experimental conditions yield different but similar
theoretical results. The comparison with experimental
data (not shown here) is given in row 5 of Table IV.

Application of Hp along the I 111]axis with propaga-
tion along the L110] or L101] axes results in a smooth

~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

LONGITUDINAL WAVES
k II [110]; 9=11.5 MHz
T =42 K

0
I

U

O

~g9gl&$$ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~6o

Oo
0 0

-30— 0
~ Ho II t001j
O Ho II [111]
~ Ho II [110]

-4O—

I I I I I I I I

MAGNETIC FIELD ik08)

Fic. 3. Relative change in the elastic constant CL,*=—,
'

(C11+C12+2C44)* versus magnetic field for nfl applied along
three symmetry directions in the (110) plane; T=4,2 E.

decrease in Cg* with increasing Ho. Rows 4 and 6 of
Table III cover this case and give qualitatively dif-
ferent results for the reasons discussed above.

When the field is aligned parallel to the propagation
direction (i.e., Hp [[k[[L110])there is little difference be-
tween the low- and high-6eld values of Cg*,' however, at
H~~1 kOe there is an apparent discontinuous jump in
CL,*. This is a result of the mechanical resonance
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FIG. 4. Relative change in the elastic constant C44* versus
magnetic field for 80 applied along three symmetry directions
in the (110) plane; T=4.2 K.
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splitting into two peaks at this value of IIp' one peak
dominates at low fields and the other at high fields.
This effect is most probably due to the existence of
domains.

-15O I I I I I I

MAGNETIC FIELD (k08)

Fzc. 6. Relative change in the elastic constant C'*=
~

(C11—C12)* versus magnetic Geld for HII applied along three
symmetry directions in the (010) plane; T=4,2 K.
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Fzo. 5. Relative change in the elastic constant C'*=
~

(C11—C12)* versus magnetic 6eld for Ho applied along three
symmetry directions in the {110)plane; T=4.2 K.

4. Transverse Waves, k[I(1107, e[I(0017,
Hp t'rI, the (110) Ptarje

The coupling constant for this case is again bp (see
rows 8 and 9 of Table I7, thus indicating that the
dependence on magnetic field is weak. This is demon-
strated by the data of Fig. 4. Again, the initial condi-
tions determine the result of the calculation, as shown

by comparison of rows 8 and 9 of Table II which
correspond to identical experimental conditions, i.e.,
k III 1107 or (1107 and H pl[ L0017.

The splitting of the mechanical resonance when

Hp[I(1107[[k and Hp 1 kOe as seen in the top panel of
Fig. 4 is similar to that discussed in the previous
paragraph and is again attributed to domains. The
bottom panel shows that C44* decreases slightly with
inc«»ing H, for H, II(1117.

5. Transverse Waves, k[I(1107, e[I(1107

Figures 5 and 6 show the magnetic field dependence of
C'*=

2 (Crt —Ctp)* for several orientations of Hp. Rows
10 and 11 of Table I cover the four possible orientations
of the directions of propagation with respect to the
(110) plane.

When Hp[I(0017 and k[[(1107or (1107, C'* is seen
(Fig. 5) to be independent of the magnitude of Hp. Such
behavior is predicted by row 10 of Table II, which, for
no obvious reason based on symmetry, yields identical
results regardless of whether k[I(1107 or k[I(1107

If the propagation direction is along the (1017 or
(1017axes and Hp II(0017 the expected behavior is given
by rows 11 of Table II. Again the two theoretical results
are identical and the good agreement with the experi-
mental data (see Fig. 6) is shown in row 6 of Table IV.

Application of Hp along the (1117axis results in the
expressions presented in rows 10 and 11 of Table III.
These two expressions (for identical experimental
situations) agree qualitatively (again because of our
initial conditions on Mtp and Mpp, the exact expressions
differ somewhat). Qualitative agreement with theory
is shown by the data of Fig. 5.

&n Fig. 6 it is shown that, for k [[(1017and Hp[((1017[[k
or Hp[I[ 1017J k, the experimental results are identical.
By considering row 10 of Table I one sees that this
must be the case.

B. Angular Dependence of Elastic Constants and
Ultrasonic Attenuation at 4.2 and 7'7.4 K

%e present here several representative sets of data
for the relative change in the elastic constants and at-
tenuation when a 7.5-kOe applied 6eld is rotated with
respect to the propagation vector k in specific crystallo-
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graphic planes. The data show a remarkable difference
between the behavior at 4.2 and 77.4 K.

1. Longitudinal Waves, kii[ 0017, Hs in (110) Plane

Shown in Figs. 7(a) and 7(b), respectively, are the
relative attenuation and relative elastic constant Ci~
for 10.6-MHz ultrasonic waves at 4.2 K. The data show
a sharp minimum in ACtr/Crt and a maximum in n as
Hs is rotated through the t'111j direction. This be-
havior may not be explainable unambiguously on the
basis of an equilibrium analysis. Considering the equili-
brium orientation of the magnetization in high fields, "
the magnetization remains in the (110) plane for Hs
between the L001) and [ 111j axes, i.e. , ll (54.7'. For
f)54.7' the magnetization abruptly flips out of the
(110) plane. The instability associated with this abrupt
and irreversible behavior might be expected to lead to
increased absorption and a "softening" of the lattice as
observed.

The data for the identical experimental situation at
77.4 K is presented in Figs. 8(a) and 8(b). The gross
difference in behavior at the two temperatures is dif-
6cult to understand since the same qlalitative behavior
is predicted at all temperatures by the theory outlined
in Sec. II. It is perhaps worthwhile noting that the
anisotropy constant E, which plays such an important
role in these effects, is extremely small at 7= 77.4 K.

Z. Longitudinal Waves, kiiL001$, Hs in (010) Plane

The relative elastic constants at 77.4 and 4.2 K for
this case are given, respectively, in Figs. 9(a) and 9(b).
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Several points of interest should be noted. The qualita-
tive behavior at the two temperatures for Hs in the
(010) plane is the same. The behavior at 4.2 K for Hs
in the (010) and (110) planes Lsee Figs. 9(b) and 7(b)g
is qualitatively quite different. At 77.4 K the behavior is
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Fro. 8. Relative change in the attenuation (a) and the elastic
constant Cii* (b) versus orientation of the magnetic Geld (Hp ——7.5
kOe) in the (110)plane for k|,~ii [001);v = 12.2 MHz; T=77.4 K;
k= 4 (Ho, [001))
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FIG. P. Relative change in the attenuation (a) and the elastic
constant C11* (b) versus orientation of the magnetic field (Hp ——7.5
kOe) in the (110) plane for ki, )i[001);v=10.6 MHz; T=4.2 K;
|I=4 (Ho [001)l
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FIG. 9. Relative change in the elastic constant C11* versus
orientation of the magnetic field (Hp ——7.5 kOe) in the (010)
plane |t =g(HO, [001)). (a) T=77.4 K, v=12.2 MHz; (b)
T=4.2 K, v=11.7 MHz.
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qualitatively and quantitatively the same Lsee Figs.
9(a) and 8(b)) regardless of in which of the two planes
Hp is rotated. This appears to indicate that the higher-
temperature magnetic anisotropy effects are different
than at the lower temperature.

3. Longitudinal Waves, Ir IIL110), Hp in (110)Ptane

The behavior of this mode at 4.2 K with Hp in the
(110) plane is qualitatively similar to that shown in
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Fro. 10. Relative change in the attenuation and the elastic
constant Cr. =-', (CII+CII+2C44)* versus orientation of the
magnetic field (EIo=7.5 kOe) in the (110) plane; T=4.2 K,
Is=21.5 MHz; st = g (Ho, L0013).
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Fzo. 12. Relative difference between the measured (CII") and
the pure elastic constant C11 versus temperature. The solid dots
represent the quantity (C»*(T)—CII (2') /(CII*(4.2) —Cu (4 2)]);
the data are taken from Fig. 6 of I. The open circles represent the
quantity (b&'/E)z/(b12/E)4. & K, the values of b&(T) and E'(T) are
obtained from Refs. 4 and 21, respectively.

&. Transverse Waves lrIIL110) elIL110),
Hp sn (110) Plane

Figs. 7(a) and 7(b) for k
II f001).A detail of the relative

behavior of the elastic constant and attenuation is the
angular region near the

I 111) axis is given in Fig. 10.
These data illustrate the interesting fact that the at-
tenuation is a maximum for the magnetic 6eld oriented
about 1—,

' deg from the position at which the elastic
constant is a minimum. This behavior is observed with
each elastic mode for which the dependence on angle is

sharp enough to allow the required angular resolution.
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In order to illustrate the qualitative difference be-
tween this transverse mode and the two longitudinal
modes considered in Secs. IV 8 1 and IV 3 3 above,
the behavior of the attenuation and C'* versus orienta-
tion of Hp in the (110) plane is shown in Fig. 11.Again,
the minimum in the elastic constant is observed; data
were not obtained in the angular region 53'(tI~65'
because of the extremely high attenuation. Note that
for HpIIL111) a difference in. C'* of more than 3% from
that for HpIII 110) is measured.

-320—
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FIG. 11. Relative change in attenuation (a) and the elastic
constant C'*=2 (C11—C12) (b) versus orientation of magnetic
field (Ho ——7.5 kOe) in the (110) plane. T=4.2 K, v=10.2 MHz,
It = g (Ho, (001]). Data for 55'&It &65' could not be obtained
because of the high attenuation.

C. Temperature Dependence

The temperature dependence of the diff erence,
DC;, =C;;~—C,;, between the measured and the pure
elastic constant for a given elastic mode is given by the
quantity b'( )T/ K( )T, where b(T) is the appropriate
linear combination of the MECC bt and bs, and K(T)
is the magnetocrystalline anisotropy constant.
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Fig. 12 the experimental values of ACqt(T)/
gCq, (4.2 K) are plotted as a function of temperature
(solid dots)."Using the experimental values of bt(T)e
and E(T)" the ratio (bts/Ejr/(bP/E)4. 2K has also
been plotted in Fig. 12 (open circles). The errors for
bt2(T)/E(T) were estimated from the scatter in the
experimental data; they become rather large for
T)50 K, since bt (T) and E(T) become quite small as T
approaches T~. As discussed in I, there is also con-
siderable uncertainty in the value of AC&&(T) for T
near 60 K because of the strong magnetoelastic coupling
in this temperature region. Although there exists some
systematic diGerence between the two sets of data, the
agreement has to be considered satisfactory when the
respective error bars are taken into consideration.

The eGective elastic constants C11*, CL,*, and C'*

(whose ME component is dominated by the MECC bt)
all show qualitatively the same behavior near T=60 K.
The "anomaly" in Ce4* (whose ME component is
dominated by the MECC b2) is so small that it can

barely be observed experimentally. Since b1 is an order
of magnitude larger than b2, the anomaly in C44~ is

expected to be two orders of magnitude smaller than
for the other modes as observed (see Figs. 6 and 7

of I).
The sensitivity of EC,,=C,s*(T)—C,;(T) to E(T)

demonstrates the important role played by the mag-
netic anisotropy in antiferromagnetic phenomena. In
contrast, when treating rf ultrasonic propagation in a
typical ferrimagnet, the anisotropy can be neglected. "

D. Magnetostriction in RbMnF3

Minimizing the free energy [Eq. (1)j with respect
to the strains e;,, the following expressions are obtained
for the static strains:

tion tha, t. Mt = —M,". The relative change in length of
the specimen due to the spontaneous magnetic order in
a direction de6ned by the direction cosines P; is
given by

al 2b'
Z v*'P'' —b*v.P*P,+c p ). .

0 C11—C12 ~=~.u. ~ C44 .

2~1C12
(20)

(C11 C12) (Cl1+2C12)

The length changes resulting from the reorientation of
the sublattices due to the applied 6eld He can be cal-
culated from Eq. (20). It is found that our use of Eq.
(17) is justi6ed because typically, hl/E. 5&&10 e. Since
b(T)/C, ;(T) is a smooth monotonic function of tempera-
ture no anomaly in the magnetostriction is expected
near T 60 K corresponding to the "anomaly" in the
measured elastic contants C;;*(T).

V. SUMMARY AND CONCLUSIONS

In this paper we have presented an experimental and
theoretical study of the propagation of ultrasonic waves
in the antiferromagnetic state of RbMnF3. It is found
that the magnetic field dependence of the eGective
elastic constants can be understood on the basis of a
model in which the eGective magnetoelastic coupling is
determined by the equilibrium orientation of the sub-
lattice magnetization; the orientation is determined by
the applied magnetic field.

For all cases considered in which the theoretical
results are unique, they are in agreement with the ex-
perimental results, both quantitatively and qualita-
tively. The magnetoelastic coupling constants obtained
in this way at T=4.2 K are

and

2bgLCt. ,—(Cgt+2Cg2) yt'j
e;;=

(Cl1 C12) (Cll+2C12)
4= 1.95a0.15X 10' ergs/cm',

b2(0.2~0.1X10e ergs/cms
2b2

e;;=— y'y; zing
C44

(19)

where the &, are the direction cosines of the equilibrium

sublattice magnetization with respect to the crystal
coordinate system, and we have made the approxima-

"The values of C11*(T)—CII(T) are obtained from Fig. 6 of I.
2' M. J. Freiser, R. J. Joenk, P. E. Seiden, and D. T. Teaney, jn

Proceedings of the International Conference on Magnetism, Rotting
hum, l964 (The Institute of Physics and The Physical Society,
London, 1965), p. 432.

» D. E. Eastman, Phys. Rev. 148, 530 (1966).

The anisotropy constant is found to be K= 0.62
~0.06X10' ergs/cm'. Eastman's values of E, bt, and
b~ are given in row 7 of Table IV. In row 7' are given
the values of b1 and b2 obtained from Eastman's
data using our I values of the elastic constants at
42 K

The "anomalies" in the measured elastic constants
C;~+ observed previously' are readily explained on the
basis of the present model.

In those experimental cases for which the orientation
of the sublattice magnetization is not uniquely known



R, L. MELCHER AND D. I. BOLEF 186

the theory gives ambiguous results. A better knowledge
of the state of the magnetization should enable one to
obtain agreement with experiment in these instances.
In addition, domain sects greatly complicate the
analysis in some cases and are believed to cause the
apparent discontinuous behavior shown in Figs. 3
and 4.

The gross qualitative diGerences in the magnetic
6eM orientation dependence of the elastic constants at
4.2 and 77.4 K do not appear to be explainable on
the basis of the present theory.

The peaks and absorption edges in the ultrasonic
attenuation observed by Shapira and Zak" in the
uniaxial antiferromagnet MnF2 in the neighborhood
of the spin-flop transition apparently result from a pro-
cess fundamentally different from that considered in
the present paper for RbMnF3. Tani'4 has proposed
that at least some of the MnF2 results are caused by
volume magnetostrictive coupling to the spin-wave
instabilities which exist at the spin-flop transition.
This mechanism need not be considered in the present
experiments on RbMnF3 when Ho~~[001]. For this field

orientation no instabilities exist, i.e., the magnetiza-
tion is at equilibrium for all values of Bo, and there is no
transition analogous to the spin-flop transition. For
Ho~~[111] in RbMnF& spin Hopping and attendant in-

stabilities may exist. '
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APPENDIX A: EQUILIBRIUM
COORDINATE SYSTEMS

We define the equilibrium coordinate systems
(i',g', z') in which MI'~~z', and (i",g",z") in which
Mio~~z", where MIO, and M20 represent the equilibrium
sublattice magnetizations. The magnetization com-
ponents M;; in the crystal coordinate system (i,g,z)
are expressed in terms of the components 3f;; or M,;"
in the equilibrium systems g'g, z') and (l",g",z"):

3fj =SI~, cos0~ cosy~ —iV~„sinpj
+Mi, sin01 cospi,

Mly Mlg~ cos81 sin&pl+Mly' cos'pl

+M I S11101Sln pi,
MI~= —Mi ~ sin0i+Mi. cos01.

(A1)

The equations for M2 are obtained by setting 1 —+ 2
and (2',g', z') ~ (x",P",z").

By substituting [Eq. (A1)] into Eqs. (2)—(6), the
free-energy terms are written.

Dr. R. W. H. Stevenson of the University of Aberdeen
supplied the single-crystal specimens of RbMnFS used

, in this study.

Egx ———X{MI,Mg, [cos01COS0g cos((pi —&pg)+sin01 sin02]+MI„M2„[cos(q I—y2)]

+Ml M2 [s11101sln02 cos((pl p2)+cos01 cos02]+Ml M2~[cos01 sin(pi +2)] MI~M2~[cos0g sin(pi —(p2)]

+M'i M2.[cos81 sin0~ cos(pi —ya) —sin0i cos02]+M i M2 [sin01 cos02 cos(pl +2) cos81 s1110 ]
—MI„M~,[sin02 sin(q 1—y2)]+MI,M2„[sin01 sin(yi —q»)]}, (A2)

Ez= —{Hp [MI cos0I cos pi+My cos02 cospi Mly sinai —Mu„sing 2+Mi, sin01 cos+I+M2N siI102 cosy2]

+Ho„[MI, cos01 sing I+M~, cos0~ sing 2+Mi„cosy I+M2„cos&p2+MI, sin01 sin@ijM2, sin02 sin y2]

+Hp [ MI~ s11101 M2 sln02+Mi, cos01+M&, cos02]}, (A3)

(It)M,4){(M,.2M„2+M»'M»') [1——,
' sin'201(1 —,' sin'2q»)]+ (Mi 'Mi '+M2 'M ')

)&[1—
2 sin'0, sin'2 pi]+4 (Mi,'+M2, ') [sin'201+sin'01 sin'2 pi]+4 (MI,M1 Mi, '—M~,M~„Mi,')

)& [sin01 sin201 sin4pi]+ 2 (M I~MI, '+M2, M2, ') [sin401+sim'01 sin20i sin'2 yi]

+z (M'i„M'1,'—M2„Mi,') [sin'81 sin4yi]} (A4)

Ez —Cii P e,, +—&44(e,„'+c.p.)+Ciq(e„evv+c.p.) (A5)

~ Y. Shapira and J.Zak, Phys. Rev. 1?0, 503 (1968).
~ K. Tani, Phys. Letters 26A, 419 (1968).
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EME=Mp ([81(Mlg +M2g )—83M lgM2g] SIII 81 COS (pl+[81(MlgMlg+M2gM2g) 283(MlgM2g+MlgM2g)]

XSII1281COS pgl [BI(MIgMIg M2gM2g) 283(MlgM2 +MlgM2g)] singl sin24pl}e,

+Mp ([81(M1*+M2 ) 83MI M2.]» n'8» In' pl+[81(M1*M1 +M2*M2 ) 283(M1 M2 +Ml M2 )]
Xsin281 sin'221+[81(3III„MIg —M'2„M2, ) 28—3(MI„M2g MI—,M2„)7 singl sin2p11}e»

+Mp {[81(Mlg jM2g ) 83MlgM2g] COS 81 [81(MlgMlg+M2gM2g) 283( Ml gM2 g+Ml gM2 g) ]
Xsin281}e„+Mp '{[—',82(MI,'+M2, ') 8M4—IMg2]gsin'81 sin2221+[282(MlgM1, +M2,M2, )

284(—MI,M2, +MI,M2,)] sin281 sin2q 1+[82(MI„MI,—M2„M2,)—84(MI„M2, —MI,M2„)]

Xsingl cos2 221}e,„+Mp '([282(MIg'+M2g') 84M Ig—M2g] sin281 cos apl

+[82(MlgMlg+M2gM2g) 84(MlgM2g+MlgM2g)] COS281 Cosppl

[82(MlgM1 M22M2 ) 84(MlgM2 Ml Mpg)] co 81 SInp21}e +Mp ([282(M1 +M2 ) 84MI M2 7

Xsin281 sin ful+[82(MIgMIg+M2, M2g) 84(MI,M—2,+MI,M2 )]cos281 sin pl

+[82(M1 Ml M2 M2 ) 84(M1 M2 Ml M2 )]COS81 Cosppl}e ~ (A6)

The primes denoting the equilibrium coordinate systems have been deleted for simplicity. Note that components
Hp; (i=x, y, s) of the dc Geld and the strains e;, (i, j=x, y, s) are still expressed with respect to the crystal co-
ordinate system (lpga). Third- and higher-order terms in the small quantities M,; (i= 1, 2; j=x, y) and e;;have been
neglected (this is consistent with the linear approximation used in solving the equations of motion). In the ex-
pressions for Eg and ZME the additional approximation that y2= q 1 and 82 ——81+2r(MIP= —M2') has been made.

APPENDIX B: DEFINITION OF THE COEFFICIENTS IN EQS. (13)

The coeKcients in Eqs. (13) are defined in terms of the material constants of the system, the propagation vector
lr, and frequency 4p of the magnetoelastic modes and the magnetic field Hp.

vrhere

I'„=—p4p'+ (Cll —2bl sin'g)k, '+C44(k '+k, ') —2b2[sin'g k + (sin28/V2)k, ]k„
I"„„=—p4p2+ (Cll —2bl sin'8)k„2+C44(k, 2+k,2) —2b2[sin'8 k,+ (sin28/v2)k. ]k„,
I'„=—ppp'+ (Cll —4bl cos'8)k '+C44(k '+k ') —2b2(sin28/v2) (k,+k„)k, ,

I',„=(Cl,+C„—2b1 sin'8) k,k„—2b2[sin'8k, + (sin28/v2) k,]k, ,

I'„=(C12+C44—4bl cos'8)k, k,—2b2(sin28/K2) (k,+k„)k„
I'» = (C12+C44—2b1 sin'8) k,k„—2b2[sin28k„+ (sin28/42) k,]k„,
I'»= (C12+C44 4bl cos'8)k„k,——2b2(sln28/V2) (kg+k„)k»
I'„=(Cl,+C44 2b, sin'8)k, k—,—2b2[sinpgk„+ (sin28/v2)k, ]k, ,

I'g„= (C12+C44 —2bl sin'8) k„k,—2b2[sin'8k, + (sin28/42) k.]k. ,

8= ZQ7 )

b= cqq —cog —oro cosy )

c=a21+4p@+4pp cospp,

COg )

e= —4pe cos2t —4pz+ —', (4pp2/cps) sin222,

f= a12+40@—
4pp cos4p,

g — a21 @+40pcoCPs p2 g

(81)

(82)

anc1

a12= 24pg (1—
2 sin'8+''; sin48), a21————324p~ (1——", sin'8+6 sin48) (83)

+0= —pHp, tug= —yH@, ~ ~ -, etc.



R. L. MELCHER AND D. I. BOLEF

Finally, the rnagnetoelastic torques and stresses are given in terms of the components

~13=

~21

f22=

~23=

bi sin8 k +be(Qs) cos8 k„
bi—sin8k„—bs(Qs) cos8 k„

bs(+sr) cos8(k, —k„),
brXs sin28k, +bsXs sin28k„+br(Qs) cos28k„
brX s sin28 k„+bs(Q ', ) cos-8 k,+bsX-', sin28 k„

bi s—in28 k,+bs(Q-,') cos28(k, +k„).

(B5)

The S + of Eqs. (13) are defined by

S +=L3E sin28 (1—
s sin'8)&&earls sinpjk, m=x, y,s. (B6)
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Lorenz Number for Metals with Magnetic Impurities*
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A simple formula for the electronic thermal and dc electrical conductivities has been obtained by expand-
ing the t matrix. The result is applied to get the I-orenz number. Ke found that the Lorenz number for
metals with magnetic impurities has a maximum at a certain temperature.

' "N this paper we show that one can calculate alge-
~ - braically the electronic thermal and dc electrical
conductivities for metals by expanding the t matrix in

terms of the frequency variable.
In general, the thermal (E) and dc electrical (o-)

conductivities for metals may be written as' X=ATI2
and o.=BIO, where

n+1 oo

I = dto to"4'(to, T) secll
2T 2T

The function C is given in the usual way by the average
value of the product of the square of the group velocity
and the relaxation time over the equal-energy surface
with an appropriate density of states. In most cases,
the group velocity and the appropriate density of states
are almost constant. The main variation in 4 comes
from the relaxation time which in turn is given by the
imaginary part of the t matrix:

(2r)—'= Imt.

formly. We may expand 4 in terms of ro/2T= x

~(~,T) = 2 8(R +,-x)8(x-R„)
m, n=o

&= p Ltt(2N, m, T)S(2tt+2,m)R +is
md%

+b(2rt, m, T) U(2n —2,m)R s), (3)

o=Z t tt(2rt m, T)S(2tt,m)+b(2rt, m, T) U(2n, m)j, (4)
min

where
&m+1

x /R„
X«tt(&,m, T) +b(n, m, T)

~

m+1 kx

where 8(x)=1 for x)0, 8(x)=0 for x(0, and R are
the radii of convergence of the expansion. In practice,
only even-power terms contribute in Eq. (2), since
Imt(ro) =1m'( —ro). Inserting Eq. (2) into Eq. (1), we
obtain X and a.

By inspecting the integrand in Eq. (1), we see that the R~r"S(rt,m) =
factor sech'(to/2T) makes the integral converge uni- &rn

x" sechsx dx=R "U(—rt,m). (5)

*Work supported in part by the U. S. Air Force under contract
No. AFSOR-1138-66 and the Center for Advanced Studies under
NSF Grant No. NSFGU-1581.

' N. H. Mott and H. Jones, The Theory of the Properties of
3IIetals and A/loys (Dover Publications, Inc. , New York, 1958),
p. 306; S.B.Nam, Phys. Rev. 156, 470 (1967),Eq. (5.5), Ref. 40.
t I'(m) is proportional to the inverse of the relaxation time. ]

I'or metals with magnetic impurities described by the
s-d interaction, the imaginary part of the t matrix may
he written

(2r)—'= (Imt)g s+('(Init)~,

where J is the coupling constant of the s-d interaction,


