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A general expression for the current voltage relation in a metal-oxide-metal tunnel junction is derived
on the assumption of many-body interactions in the metals as well as the oxide. In the absence of many-
body sects in the barrier, the expression for the conductance we derive is similar to that obtained from the
tunneling-Hamiltonian approach in that it depends on the convolution of the product of the two spectral
functions of the metals with a quantity analogous to the tunneling coupling constant. The coupling or
transfer matrix element here is frequency-dependent as well as momentum-dependent, and does not suffer
from the high-energy divergences characteristic of the tunneling Hamiltonian. The effect of the local varia-
tion of the self-energy on the tunneling conductance is examined, and is shown to be capable of producing
structure in the conductance proportional to both the real and imaginary parts of the frequency-dependent
self-energy. Finally, the method is shown to be capable of describing the usual barrier-excitation-assisted
tunneling current.

I. INTRODUCTION
' 'N the past, many-body effects in metal-insulator-
s ~ metal junctions have been almost exclusively
derived using the tunneling Hamiltonian approach pro-
posed by Cohen, Falicov, and Phillips. ' In this approach
it is assumed that the electron tunneling can be de-
scribed by introducing into the Hamiltonian for the two
metals a term which transfers bare electrons from one
metal to the other. Until recently, it was adequate to
treat these matrix elements as constants.

Refinement of experimental techniques during the
past few years has led to the observation of one struc-
ture whose understanding requires more detailed
knowledge of these matrix elements. Several authors'
have derived expressions for the transfer matrix ele-
ments, but as has been pointed out by Appelbaum and
Brinkman' and independently by Davis and Duke, 4

these expressions lead to unphysical behavior. This
unphysical behavior results from calculating the Inatrix
element assuming the electron energy in the barrier is
the bare energy eA, . When many-body interactions mix
the one-particle states the use of this matrix element
greatly overestimates tunneling via high-energy bare
states.

It is the purpose of this paper to derive an expression
for the tunneling current which does not suffer this
defect and which we believe to be exact when the
coupling between the two metal electrodes is weak. Our
derivation of the tunneling current is based on a similar
calculation due to Bardeen. ' We adopt from this work
the following points: (1) The electron current is deter-
mined by the rate of transfer of electrons from ap-
propriately chosen states of one electrode to those of
the other. (2) These states are defined by suitably ex-

' M. H. Cohen, L. M. Falicov, and J. C. Phillips, Phys. Rev.
Letters 8, 31 (1962).' R. K. Prange, Phys. Rev. 131, 1083 (1963);H. Hermann and
A. Schmid, Z. Physik 211, 313 (1968).

3 J. A. Appelbaum and W. F. Brinkman, Phys. Rev. 183, 553
(1969).

4I.. C. Davis and C. B. Duke, Phys. Rev. (to be published).' J. Bardeen, Phys. Rev. Letters 6, 57 (1961).

tending the oxide barrier thickness to infinity. (3) The
transfer matrix elements between the two electrodes,
determined from a solution to the time-dependent
Schrodinger equation, is related to the expectation
value of the current operator between left and right
states. Our calculation differs, however, from Bardeen's
in two significant ways: (a) We do not speak in terms of
quasiparticles but rather of electrons being transferred
between exact many-body states of the two electrodes;
and (b) we have included explicitly the possibility of
assisted tunneling via barrier excitations.

Using this transfer matrix element procedure, we
derive an expression for the current in terms of the
spectral functions of the two metals evaluated in the
barrier region. By calculating these spectral functions
using the WEB approximation the current is related to
the bulk spectral functions. In this expression the
quantity analogous to the transfer matrix element of
the tunneling Hamiltonian approach is frequency-depen-
dent and does not suffer from nonphysical divergences. '
The tunneling Hamiltonian is thus more correctly
regarded as a pseudo-Hamiltonian whose matrix
elements are energy-dependent.

As an electron approaches the barrier, its self-energy
changes from one characteristic of the metal electrode
to that characteristic of the barrier region. This change
in the self-energy which we will call local self-energy
effects can lead to corrections to the tunneling con-
ductance which are proportional to the frequency-
dependent part of the self-energy. Within the WEB
approximation only a small correction due to the
dissipative or imaginary part of the self-energy appears.
The local self-energy effects can, however, give rise to a
contribution to the current which depends on both the
real and imaginary parts of the self-energy. The
magnitude of this current depends on the detailed
variation of the self-energy near the barrier.

For convenience, the paper is divided into three
sections. In Sec. II the form of the transfer matrix
element is derived for the electron-phonon coupled
system using a heuristic approach. In this connection
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the many-body wave functions are obtained by a
variational technique. A more general formal derivation
of the tunneling current is given in Sec. III. Included
here will be a discussion of local self-energy effects and
barrier excitations and a comparison of this work with
previous tunneling theories.

II. HEURISTIC APPROACH

In this section we wish to present a derivation of an
expression for the electron current in a tunnel junction
making clear the physical content of the approach. The
spirit of the section will therefore be intuitive and
physical rather than formal. The formal justification
and extension of the ideas to be presented now is
reserved for Sec. III.

Essential to all previous tunneling theories and to the
approach we take in this paper is the view that the
electron tunnels between essentially independent many
particle systems, i.e., the two electrodes. The small size
of the electron current in the junction is a manifestation
of the weak coupling between the two systems. This
coupling depends crucially on the nature of the electron
wave function in the barrier region.

An important prerequisite, therefore, for any correct
theory of tunneling is that it must treat properly the
behavior of the electronic wave functions in the barrier
region. The fulfillment of this requirement is made
difFicult by the fact that even weak interactions in the
bulk have a nonpertubative inhuence on the electron
wave functions in the barrier. This means that the
coupling between the two systems must be calculated
in a representation which diagonalizes the Hamiltonians
of both electrodes from the outset.

A convenient method of calculating the electron
tunnel current is due to Sardeen. ' He showed that if one
has a set of states in which the electrons of each elec-
trode are assumed to be distinguishable from those of
the other electrode the matrix element for the transfer
of an electron from one electrode to the other can be
calculated by tiIne-dependent perturbation theory.
Sardeen's expression for this transfer matrix element is
written in terms of the expectation value of the one
electron current through a surface in the barrier region.
The expectation value was assumed by Bardeen to be
taken between two quasiparticle states, namely

transfer of hare electrons between exact niany-body
states. Bardeen's expression can be retained, however,
provided the quasiparticle wave functions are replaced
by the probability amplitude of finding a many particle
excitation in its bare electron configuration. As an
example of this point of view we calculate the many-
body wave functions for a junction in which the
electrons interact with phonons in the left electrode
only. In order to do this we divide the problem into
left- and right-hand side problems by suitably extending
the barrier to the left- or right-hand side so that the
wave functions are localized in one or the other of the
electrodes. The states of the right-hand-side electrode
are taken to be independent particle states, while the
left-hand states are eigenfunctions of the Hamiltonian

1/2

Hi 4&(r)~~ — +=V(r))4(r)d'r
2tw

+2 g(q)e"'(b "+b-)0'( )r4( )r0( s)d"—
+2 ~o(b.tbo+s) (2 2)

Here V(r) is the self-consistent static potential which we
take to be a step function V(r) = Vo8(s). Pt(r) creates
an electron at r while b,~ creates a phonon of momentum

q and energy o)o. The electron-phonon coupling is g(q).
For convenience, we assume a translationally invariant
phonon system with the coupling to the electrons con-
fined to the metal electrode. We approach the calcula-
tion of the wave functions from a variational principle'
by adopting for the (%+1) particle excited states
the form

d'r y (r)gt(r)+P d'rL&p„'(q,rg t(r)b, t

+~-'(qr)4t(r)b-. h lo)=—A-'lo), (23)

where
~
0) is the ground state of the X-particle system.

The idea here is that the function e) (r) is the one to be
used in calculating the transfer matrix element. The
choice of the above wave function is equivalent to the
Migdal Approximation in the usual diagrammatic ex-
pansion. The most convenient variational scheme for
obtaining the energies and wave functions is to vary

t)P Q

X (f o)*
Bs

~(4-')*
8(s—so)d'r. (2.1)

(0
f
LA„,[II,A„tjj+)0)

subject to the normalization condition

&OIP- A-'j+IO) = 8

Here m and n label the quasiparticle states f& of the
left- and right-hand side metals, respectively. It is our
view that tunneling cannot be considered in terms of
quasiparticles but rather must be thought of as the

The variation of the anticommutator assures us that
A t creates an excited (cV+1) particle state and A

crea, tes an excited (1V—1) particle state and at the
' L. Roth, Phys. Rev. Letters 20, 1431 (1968).



466 J. A. APPELBAUM AND W. F. BRINKMAN

same time builds in particle-hole symmetry. V'trying &k(j(s, =. E )=2 2 lg(q)l"'*'j('i-.*(")
q Iez

(0~ L~„,La,~„t]],~0 &

with respect to y„*(r),y '(q, r)*, and p„'(q,r)*, we
obtain

V2 1
+V(r) p (r)+—g g(q)e 'qi(' cos(t,s

2m Uq

XA.(")e-"*" f(k—q) j(4

(Em (eq &(k—q) j jk~)

(k—q) l )I(:z

(2.10)
(Em+(dq &(k—q) j(k~)

&& d'r'p '(q, r')L()(r —r') —(It t(r')f(r))]

1
+—P g(q)e 'qti' cosq, s

U q

Likewise, the normalization condition reduces to

dsds' ((„*(s)8(s —s')

Zkjj(s, s', E ) (( (s') =1. (2.11)
8E

V2

+V(r) {„'(q,r)
2m

In the bulk of the electrode the self-energy becomes
translationally invariant and can be written as

P eik ~ (r—r')g (E )
k

V2

E +cvq —— +V(r) p '(q, r)
2m

A J, (2/L)' ' sin(kgs —)() . (2.12)

=+g(q)e' 'qp '(r), (2.5) so that except near the surface the amplitude (( (s) is a
sine wave of the form

'(q r) =e '(kjl qll)' {( '(q s)

The solutions for the p '(q, s) can be obtained using the
Green's function for the noninteracting system

A.*(s)~tk.(s')
Gkjj(s,s', (o) = Q

&z» 07 —6k

(2.7)

where we have adopted box normalization so that the
poles of the Green's function can be considered discrete.
With the help of (2.7), (2.5) and (2.6) become

4..*(s)f«'4..(")'""~-(")
q '(q,s)=P ( 1(, 2).

&z LEm+( 1) (dq E(k q) (jk~]
(2.8)

Putting these expressions into the equation for p (s),
we obtain

1 8
E —

ekj(
— — —U(s) {(' (s)2' Bz

= -g(q)e"'~-'(r) (2.6)

Using the translational invariance of the system parallel
to the surface we write

p (r) =e—'kii'q (s)

Here x is the phase shift determined by the boundary
conditions and AI,," is a normalization constant deter-
mined from (2.11). Using (2.12) this normalization
condition reduces to

igk, "i'=$1—( Z()(kE)/ (ICE ] ". (2.13)

where the index m has been replaced by two indices, k
indicating the total momentum of the excitation and n
indicating the various solutions of the above equation
for given k.

While these results hold in the bulk of the electrode
the expression for the matrix element involves the
pk„(s)in the barrier region. The simplest way to deter-
mine the wave function in this region is to assume that
one can take into account the variation of the potential
and that of the self-energy using the WEB approxima-
tion. In this case whenever z is in the barrier region

{()k„(s)= $(lr, ,/E) (2/L)]'('Ak"e ' (2.15)

In order to determine the secular equation for the
allowed values of the energy E we insert (2.12) into
(2.9) obtaining the equation

(1—f.-q) fk—qE."—"—Z lg(q) I' +
q Ek —qk q

—k)q Ek —qk q+k)

=LEk —ek —Zk(Ek")]=0, (2.14)

Zkj((s s E ) q& (s )ds =0
where E= {2rNLV{)—(E —qkjj)]}'".We will discuss the

(2 9) effect of the variation of the self-energy near the barrier
on the preexponential factor in (2.15) further in Sec. III.
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XLf(~) —f(~')31T»(~) I
'B(~—~'+eU)

)&trb(ot' —et)tri[(ot —Ek.) IAk. I'. (2.18)

The T»(&0) is 7&k,„»with Ek„replaced by &u. The sum
over n can be performed

( )
Q rrB(ot Ek„)IAk„—I'=Q

n L1—BZk(E)/BE I Ek.)

Here
~ 2i

8 (ot —ot') Gki(ot') . (2.19)

Gk (ttt )= LCO ek Zk(ltd )j (2.20)

and the contour c is one which~encloses the poles of G~
on the real axis. Thus

g trB(c0 —Ek ) IAk„I'=ImGk~(ot ib). (2—.21)

Since
trb(ot' —et) = ImGP(ot' —ib), (2.22)

the final expression for the current is

1=4~e2 hk[[, t[[
kl

de de
I Tkt(~) I'I f(~) —f(~')]

XB(ot—td'+eU) ImGk~(ot —iB) ImGttt(ot' —ib) . (2.23)

In this expression, T depends on co as well as the
momentum k. In particular, E={2mI Vs —(M ek[[)g}

'"'
and the unphysical weighting of high-energy states is
not present. Formula (2.23) is similar to that obtained
from the tunneling Hamiltonian approach. However,
T is energy-dependent so that the tunneling Hamil-
tonian must be viewed as a pseudo-Hamiltonian similar
to the pseudopotential of band theory.

The fact that the many particle effects enter formula
(2.23) through the spectral functions can be traced back

Using (2.15) for the form of yk„in the barrier, the
transfer matrix element for taking an electron from a
single particle state &i on the right-hand side to the
many-body state (k,n) is

Iti'fok, ~»l =8k[[,t[[e ' 4k, l, IA»I'

= Bkl [t[[ I T(k, -) t I

'
I
A k- I

' (2 16)

The barrier thickness is denoted by a. The current can
be obtained summing on k, n, and I, taking into account
the Pauli exclusion principle and energy conservation

4tre p I
7 (k, n)1I Bk[[,1[[I f(Ek")—f(et)j

)&B(Ek"—et+eV) IAk„I' (2.17)

dM dG0

=4vre Q 8k[[,t[[
k1

to the assumption that the electron only tunnels when in
the bare electron conlguration. This is essentially the
view that the tunneling Hamiltonian takes and therefore
it is not surprising that both approaches lead to similar
results. However, it must be borne in mind that the
local self-energy effects to be considered in Sec. III are
not contained in the tunneling Hamiltonian, and an
explicit expression for T has been obtained which may
lead to qualitatively different behavior for the con-
ductance than forms previously used. ~

III. FORMAL DERIVATION

In this section we give a more detailed and rigorous
justification of our heuristic approach to tunneling. ' We
will try to make our arguments independent of the
interactions present in the junction except to assume
they are short ranged. Consider a junction with a
voltage V applied to the left-hand-side electrode at a
given time (I=O) at which there are E~' electrons in
the right-hand-side electrode (metal E) and 1Vr,' in the
left (metal I).The current is to be calculated by deter-
mining the rate of transfer of a single electron from right
to left. We assume that all the states of the electrons in
the two electrodes in this nonequilibrium condguration
are obtained by solving so-called left- and right-hand-
side problems. These two problems are defined by ex-
tending the barrier potential so that the wave functions
of a given metal drop off exponentially outside that
metal. The total wave function is taken to be an anti-
symmetrized product of the left- and right-hand-side
functions. Sy using wave functions of this type the
electrons are definitely assigned to one or the other of
the electrodes. The unsymmetrized product wave
functions have the advantage that for a given choice of
the number of electrons in each metal, say (1Vrt,1''z,),
they are eigenfunctions of the total Hamiltonian when-
ever the EI, electron coordinates are restricted to the
region to the left of metal E. and the remaining Eg
coordinates are restricted to the right-hand side of
metal L. This statement is valid provided the inter-
actions are sufficiently short ranged so that there are no
interactions across the barrier.

We assume at t =0 that the state of the total junction
4'0 is a symmetrized product of the ground states of the
two electrodes. At time t the wave function has the form

4(/) =c(I)+se iwot+. pe—
(I)@ e

—iw~„t (3 1)

where 8'
„

is a symmetrized product wave function with
a single electron transferred from the right- to the left-
hand-side electrode. Ws (8' „)is the expectation value
of the total Hamiltonian K in state 4's (4 „).The rate
at which an electron tunnels from the ground state in

7 See Refs. 3 and 4 for a detailed discussion of these points.' The technique used here is quite similar to that discussed by
C. Herring for the calculation of exchange between well-separated
atoms. C. Herring, in 3Eugnetism, edited by G. T. Rado and H.
Suhl (Acadennc Press Inc. , New York, 1966), VoL IIB.
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metal E to a state m in metal L leaving R in the excited along with all kinetic energy operators except the
state n is r;th. The x and y terms vanish and the s term can

be written as the expectation value of the current

where

3f „=+ „*H —8'~ +~d7- (3.3)
2m

4m'*(rq, ry„r ))If„'*(r)'. ry, ' —1)

and dv refers to the total number of electrons in the
junction as well as any external coordinates, such as
phonons, and the domain of integration is over the
entire junction. Consider a particular term in the above
integral in which an electron labeled r has been trans-
ferred across the barrier

8
X +o"(r)' r~„')I)o '(r) rN.,)

Bs'

gQ

(ri) )rz„r )+„*(ri'' rzr, x')—
Bz'

*(r) r~))r )4 "*(r) r~„))(FI 1)Vp)+o—

X(rq ry, )%p"(rg' ry„')dr, (3.4)

dr%'p (rz rzr, )+p (rx' .rx„')(H Wm~)+m'*—
X(rq r~„r )4"*(rq', , r~„' 1') (3.5)—

vanishes to 6rst order so it may be substracted from
(3.4). Then since W „=Wp we are'„left with

zsCzO

l
%' '*(rq r~„r )4~"*(rq' r~„' 1)—

—4p (ri, ',r~)) 0 o"(r) r~, )FF4

X(r~. - rg„r )0 „'*(r)'.. rg„' 1)]dr . (3—.6).
The potential energy terms cancel out of this expression

where the coordinate r; in 0'0" is contained in the set
~ ~ 0 f~

First consider a situation where the coordinates

fr~ r~,}, (r~' . r~„'}are restricted to the left- and
right-hand-side electrodes, respectively. Because of the
choice of wave functions the integrand vanishes

identically in this region. Now consider relaxing this
restriction for one coordinate at a time. In particular,
startwithanycoordinater, (j/i'). Then l4" "'( .r,)l'
in the integrand is at most second order, i.e., is pro-
portional to

l
Tl', the magnitude squared of the ex-

ponential tail of a wave function at the far end of the
barrier. For the ith primed coordinate, however, the
integration over the region to the left-hand side of the
barrier will give a erst-order contribution, i.e., pro-
portional to

l
T l, the magnitude of the exponential tail

and not its square. Thus to first order we can take the
r variable to range from some surface in the barrier

(s =so) to infinity on the left-hand side. Allowing the
other variables to be unrestricted introduces errors of
order

l
Tl'. Over this restricted region of integration

the expression

X+o"(rx'' ' 'r~, '))I)o'(rq rw) 8(s, so)dr ~ (3—.7)

Taking the symrnetrized sum of this expression and
using the fact that

g d'r, + '*(r) r~„r;)I)o'(rs r~, )

we obtain

(m l))t t(r;)
l 0)z, , (3.8)

(A ()'I'

2m
d'r 8(s —zp)

x &~lgt(r) I» —&alp( )rlo&,
8s

A number of points must now be made concerning
the role interactions in the barrier play in the above
derivation. We have assumed that both the left- and
right-hand states have been diagonalized with respect to
interactions in the barrier. Because of our use of product
wave function this may lead to an overcounting of the
degrees of freedom in the barrier. In practice, this
overcounting does not appear to be a problem. As an
example, consider a single ion (localized phonon mode)
in the barrier region at Ro. First let Ro be near metal L
so that its interaction wi th the electrons in this electrode
need not be negligible. It is then natural not to consider
the dynamic interaction with this ion for the metal R
states since these effects should lead to corrections of
order the coupling constant squared times something
like

l Tl
'. In the above derivation of the expression for

the matrix element the only requirement was that the
right and left wave functions be eigenfunctions of H
up to the surface at which the expectation value of
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the current is taken. If we take the surface so to the
right-hand side of Rp the above expression is correct. If
sp were chosen to be to the left-hand side of Rp then in
expression (3.5) it would be necessary to omit the term
describing the interaction between the electrons and
this localized mode. The electron ion interaction does
not drop out of (3.6) and

of (3.12) for E near E p requires that

( +«r) I
&(r-")—&(r" E-o)

&«~ly&(") I0&.=0. (3»)
For r in the barrier Z(r, r'; E)= 0 and

Mmn =Jmm+ +™MHey%'pdr ~ (3.10)
& I~t()lo).

=C exp( —12m(V —E p+p~~~) j'"s}e'"il', (3.14)

tnr

« lf'(") I
~'&~&~'

l 4 (r) 10&~
(3.11)

E—E o

The equation satisfied by Gz(r, r'; E) is

v„
E—

I

— +V(r) I
S(r—r")—Z(r,"';E)

2m

The extra term when analyzed is the expression usually
given for assisted tunneling. As must be the case a
detailed calculation shows that these two expressions
for M „areidentical. The usual assisted tunneling is
contained in the expression for the current whenever
the surface is to the right-hand side of Rp. Both expres-
sions are capable of including corrections due to the
fact. that Rp is near metal L If these corrections are
not important one need not diagonalize either side with
respect to this interaction and 3II „hasthe form (3.10)
independent of the location of sp. The independence of
the assisted term on the method of calculation enhances
our con6dence in the procedure's ability to handle
barrier excitations. Returning now to Eq. (3.9) and
assuming that the interactions are confined to the
electrodes, we 6rst [need to analyze the behavior of
the spectral amplitude (m I

gt(r)10&z in the barrier
region. To do this we introduce the left-hand Green's
function

where we have assumed a plane wave solution parallel
to the junction interface with wave vector kfi which has
energy &~t~

The value of C depends on the over-alln ormalization
of &mlitt(r)10&r, determined in the bulk as well as the
detailed matching of this solution on to that in""the
bulk. The normalization of &mlitt(r)10&z can be ob-
tained by looking for the residue at E=Eo of the
integral

d'r G(r, r; E) . (3.15)

This integral is determined by the value of G in the bulk
of the electrode. In the bulk G(r, r; E) is independentof r:

1 1
G(r, r; E)=—P

V ~ LE—.,—Z, (E)$
(3.16)

Since the &ml itt(r)10) must be characterized by a k
vector in the bulk Ep must be one of the zeros of
LE—p&

—Z&(E)j=0 say Ei,„.The residue is then
(1—BZ~'e'/BEI s~„)—'. From this we see that the
functions &m I gt(r)10) are exactly identical to the q»(r)
used in Sec. II and the expression for the current is
exactly that obtained there. This expression is therefore
independent of the form of the interactions considered
within the validity of the WKS approximation.

Instead of relating the current to the bulk spectral
functions as we have done one can go on from the
expression (3.9) for 3II

„
to write an expression for the

current in terms of the Green's functions of the two
metals evalmated in the barrier. Defining

)&Gz(r",r', E)d'r" = 5(r —r'), (3.12)
1

ImG(r, r', pi) =—LG(r, r', pi+i8) —G(r, r', pi —i8)g
2iwhere Z(r, r",E) is the usual self-energy operator, and

V(r) includes the static barrier potential. For finite
volume, the sums on m are discrete sums so consistency one finds without difhculty

, Qco
'

dG0 1I= —2se —8(cp) I 1 —8(pi') jh(pp —pi'+e V) d'rd'r' B(s—sp) 8(s' —sp)
7r

.
7r (2m)'

8
ImG" (r', r,pp)

888s
ImGz(r, r'&pp')+ ImGs(r'&r&pi) ImGz(r, r',pi')

BsBs

——ImGs(r', r; cp) ImGz(r, r',pi') — ImG~(r', r;pp) —ImGz(r, r', cp') . (3.1/)
Bs Bs 8s 8$
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An expression like (3.17) was derived previously by
Zawadowski' by a different method. However, Zawa-
dowski then assumed that the Green's function of the
metal in the presence of the barrier could be written in
a diagonal form by a suitable choice of one-electron
wave functions. This incorrect assumption introduces
all the difhculties associated with the tunneling
Hamiltonian.

In concluding this section we want to consider
further the eRect of the local variation of the self-energy
near the barrier. Up until now we have treated these
eRects within the WEB approximation which is valid
provided their spatial variation is characterized by a
wavelength long compared with the Fermi wavelength
and the self-energy is zero inside the barrier. This ap-
proximation leads to a small decrease in the conductance
proportional to the imaginary part of the self-energy.

' A. Zawadowski, Phys. Rev. 163, 341 (1967).

This decrease is due to dissipation caused by back
scattering in the electrode. For normal metal tunneling
the use of the WK.B approximation may not be correct.
For example, the self-energy may exhibit Friedel-like
oscillations due to the presence of the barrier. One must
then go beyond the WEB approximation and the con-
ductance will depend on both the real and imaginary
parts of the self-energy. The magnitude and even the
sign of these contributions depend on the behavior of
the self-energy near the barrier. Such eRects although
small may have been seen in a number of cases' "and
are currently under further investigation.
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An expression for the frequency- and wave-vector —dependent paramagnetic susceptibility of the electron
gas at metallic densities is derived, using a previously given generalization of the random-phase approxima-
tion which takes short-range correlations between the electrons into account. The enhancement factor for
the susceptibility is given as a functional of the difference between the correlation functions for pairs of
electrons with parallel and antiparallel spins, which are determined in a self-consistent manner by means
of the Quctuation-dissipation theorem. Explicit numerical calculations of these correlation functions are
presented and compared with the results of previous theories. The present expression of the dynamic
susceptibility for the paramagnetic case is a generalization of the expression given earlier by Izuyama,
Kim, and Kubo, where the internal Geld is now a function of the wave vector.

I. INTRODUCTION

''N an earlier paper, ' hereafter referred to as I, a
- generalization of the random-phase approximation'
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(RPA) for the electron gas on a uniform positive
background was given, which takes the short-range
correlations between the electrons into account. In
this formulation, the dielectric function is a functional
of the pair correlation function, and the latter is
evaluated in a self-consistent manner using the fiuc-
tuation-dissipation theorem. The calculated pair corre-
lation function was found to satisfy the requirement of
positive-definiteness for all values of r,&4, and to


