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The relation between the systematics of superconductivity in the transition metals and the Periodic
Table suggests that the transition temperature is chiefly a short-range or ‘“chemical” property. When a
local representation of phonons and an angular momentum decomposition of electron wave functions are
used, the conventional description of electron-phonon interactions contains chiefly scatterings which change
the angular momentum of the electron. This selection rule makes possible the writing of the electron-phonon
coupling constant X as the quotient of two parameters, each of which is of a chemical nature. This simplifi-
cation is possible for materials having a high density of d states at the Fermi energy. FFor such materials,
A is little affected by the density of states. The theory is compared with the superconducting transition

temperatures of transition metals and their alloys.

I. INTRODUCTION

HE BCS theory of superconductivity! with its

strong coupling extension has unified many
experimental data in terms of a few basic interaction
parameters. In simple (S-P) metals, theory has ad-
vanced to the point that estimates of the parameters
entering the BCS Hamiltonian can be obtained from
detailed calculations of energy-band structures, phonon
energies, and the electron-phonon coupling. Calculation
of the BCS parameters has so far been possible only in
materials where the potential due to the ion cores is
effectively weak.

While the general theory of superconductivity is
generally believed to hold also for transition metals,
formidable theoretical barriers prevent the calculation
of BCS parameters. The behavior of electrons in
transition-metal d bands is not completely understood.
The atomic potential is strong. Even a good calculation
of the cohesive energy of transition-metal materials has
not been possible. The theoretical approach to calcu-
lating BCS parameters contains such conceptual and
computational difficulties that it has never been
attempted, though its formulation is being pursued.?
Were such a calculation performed, it would contain as
intermediate steps infinite details of wave functions,
electron-phonon interactions, phonon modes, and
Fermi-surface shape. Such details are not only necessary
for such a calculation, but are also, unfortunately,
sensitive to the suppositions on which such a calculation
would be based.

One of the most striking features of superconductivity
in transition elements and their compounds is that
alchemists have developed feeling for what situations
are and are not favorable from looking at the Periodic
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17. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
106, 162 (1957), referred to as BCS. A good account of most of the
relevant theory is given in J. R. Schrieffer, Theory of Super-
conductivity (W. A. Benjamin, Inc., New York, 1964).

2 J. W. Garland, Phys. Rev. 153,460 (1967); D. C. Golibersuch,
ibid. 157, 532 (1967); S. K. Sinha, zbid. 169, 477 (1968).
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Table.? There have been many theoretical and
“theoretical” attempts to understand this order.*
Apparently, correlations based on a chemical descrip-
tion of the nature of a solid have at least a qualitative
ability to predict the superconducting behavior of such
materials. The implication is strong that there should
be a veiwpoint on superconductivity theory which
reflects the dominance of atoms and their local environ-
ments in determining superconductivity parameters.
The existence of such a viewpoint would not mean that
the details of the hypothetical calculation discussed
above are wrong, but only that they are unnecessary to
understanding the general systematics of supercon-
ductivity parameters in the transition metals. While
such a chemical view cannot be universally correct—in
particular cases, special detail will matter—it can be
hoped to give a correct over-all view of superconduc-
tivity in the transition metals.

In Sec. II, we examine an angular momentum de-
composition of the electron-phonon interaction in
transition metals. Utilizing such a decomposition, one
finds that the superconducting transition temperature
depends chiefly on two parameters, each of which is of
a chemical (or short-range) nature. (The density of
states at the Fermi energy is #of one of the parameters.)
While we are at present unable to calculate either of
these parameters ab imitio, the interpolations and
extrapolations possible based on these parameters
provide a quantitative systemization of the behavior
of T, in transition-metal alloys and compounds. A
numerical study of the variation of the parameters over
the Periodic Table and the predictions of transition

3 B. T. Matthias, in Proceedings of the Tenth International Con-
ference on Low-Temperature Physics, edited by M. P. Malkov
(Proizvodstrenno-Izdatel’skii Kombinat, VINITI, Moscow,
1967), Vol. ITA, p. 77; Phys. Rev. 97, 74 (1955); Science 144, 378
(19643; J. J. Engelhardt, G. W. Webb, and B. T. Matthias, 7b:d.
155, 191 (1967).

4 See, for example, D. Pines, Phys. Rev. 109, 280 (1958); J. W.
Garland, Phys. Rev. Letters 11, 107 (1963); 11, 111 (1963);
B. R. Coles, Rev. Mod. Phys. 36, 139 (1964); E. Bucher, F
Heiniger, J. Muller, and J. L. Olsen, in Low Temperature Physics;
LT9, edited by J. G. Daunt et al. (Plenum Press, Inc., New York,
1963), part A, p. 616; L. Pauling, Proc. Natl. Acad. Sci. U. S. 60,
59 (1968).
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temperature of alloys is given in Sec. ITI. A few con-
cluding remarks are given in Sec. IV.

II. THEORY

A major problem of the calculation of the super-
conducting transition metal is the evaluation of the
mean electron-phonon interaction parameter . This
parameter can be defined as®

dw, N(0) (92)

A=2 / ° )= )

where wo is the maximum frequency of the phonon
spectrum, and M is the ion mass. The function o?(w,) is
an average electron-phonon interaction, the average
being taken over all phonons having frequency w, and
all pairs of electron-hole states near the Fermi surface
connected by such phonons. The mean phonon fre-
quency {(w?) is given by

o*(w)

()= /0 "t w0(@)F (@) / /0 " o -

where F(w) is the phonon frequency distribution. If the
change in potential due to moving an ion by an amount
¢ is written as e- VU (7), the average interaction parame-
ter (92) is given by

dw, (2)

<sz>=§ [ [asiase e vuoriwn /

/ / ASdSy  (3)

for cubic crystals, where the integrations are carried out
over the Fermi surface, and ¢; is a Bloch wave function.

In conventional theory the phonon renormalization
of the electronic density of states can be written®

N(O)renorm = N(O)bare(1+ )\) ) (4)

and the superconducting transition temperature (in the
absence of Coulomb interactions) can also be expressed
in terms of A. To make either of these calculations,
mathematical approximations have been made which
are generally viewed as unimportant. These approxi-
mations have to do with the neglect of correlation
between wave vectors and frequencies to reduce an
integral equation which should have depended on q
and w to a solvable one depending only on w by first
averaging on ¢. It is generally believed that these
approximations are reasonable and adequate. The only
major systematic error is the overemphasis in this
approximation of small-¢ phonons. Since, for small g,

5 W. L. McMillan, Phys. Rev. 167, 331 (1968).
5G. M. Ehashberg, Zh. Eksperim. '{ Teor. Fiz. 43, 1005 (1962)
[English transl.: Soviet Phys.—JETP 16, 780 (1963)]
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phonon frequencies scale with wave vector, this error
can be compensated for by a compensating correction
in F(w). This approximation also omits any effect of
energy-gap anisotropy on the transition temperature.
There exists a physical model to which the form (1)
is the precise answer to the calculation of A\. Consider a
solid having all but one atom fixed, and that one having
a (renormalized) vibrational frequency @. The correc-
tion to the electronic density of states due to this one
ion is
AN(0)=1/NM&*(92)N*(0)=None iocd N (0),  (5)

where N (0) is the density of states of one spin per atom
and &V is the number of atoms in the crystal. This answer
is elementary if the phonon frequencies are not re-
normalized, but continues to hold with renormalization.
The factor of % in the definition of (492) cancels the 3
coming from the three degenerate modes. For a crystal
of N movable atoms, the results from each of the
different atoms is additive, a conclusion which follows
from the fact that the mathematical model with N
independently moving atoms is identically a special case
of the theory of Egs. (1)—(3), in which there is only a
single frequency and no wave-vector approximations
are needed. Finally, the change in the density of states
per ion if there is a distribution of frequencies F(w) can
be obtained by averaging (5) over frequency. The
average involved is

wg 1
f () / [ Flw)do. ©)

Since a(w) contains in its explicit w dependence only
the factor 1/w, this averaging is the same as was done
in (2). Thus a model in which each atom is regarded as
independently vibrating and interacting with the elec-
trons is equivalent to the usual superconductivity
model. The omission of the correlation between w and g
in the phonon spectrum produces only a minor quantita-
tive effect.

An understanding of the mean-square matrix element
(92) is possible through working in an angular momen-
tum representation. We will first examine the density
of states in this representation and expand every Bloch
function around one particular atom, writing

Y= ZZ YVin(0,0) gime(r) . (7

Let the functions ¢, be normalized to unity in the
crystal volume, and let ¥;,,(6,¢) be normalized to unity.
Define the density of states of angular momentum / per
atom (evaluated at the Fermi energy) by

1 WS
N,(0)= Z Zﬁ: > / | gimi(r) | 272y, (8)

limA —0 Er <Er <Er+A

where rws is the radius of a Wigner-Seitz sphere. The
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total density of states in the crystal is

1
N(O)tot = - Z 1
A k
limA -0 Er <Er<Er+A

1
= - 2 / || 2%
A k

limA -0 Er <Ex <Er+A

number of cells
= X / ly|2d%, (9)
A k one cell
limA -0 Er <Ex<Er+A

so the density of states per atom, weighting each state
according to its normalization in the cell of that atom, is

1
NO= - % / a2y, (10)
A k one cell

limA —0 Er <Ex <Er-+A

If the difference between a Wigner-Seitz cell and an
atomic polyhedron is ignored, we have

W

/I¢k12d3r=2 slgzmk(r)lzﬂdr, (11)
cell Lm Jo

and the total density of states per atom is then the sum
of its component parts:

N(0) =3 N:0). (12)

The total density of states per atom is thus decom-
posable into partial-wave contributions, each being
weighted by its normalization within an atomic volume.

In the simple case of a monovalent metal with no
band structure (free electrons), the basic density of
states decomposes as

N(0)=0.750/Ep=Ng+Np+Np+---

=0.36/Ep+0.24/Ep+0.13/Ep+- -+, (13)
where the S, P, and D terms contribute virtually
everything.

If the band structure of transition metals were
crudely represented by an S-P free-electron band plus
a tight-binding “D” band, because the D-band wave
function on a particular site comes almost entirely
from D atomic orbitals, the tight binding D band will
contribute almost solely to Np(E). The high densities
of states of many transition metals are to be charac-
terized as large N p(0) without alteration of Ngand Np
in this model. If one free S-P electron is assigned to
niobium, then the measured N(0) of 0.91 states/eV
atom would be made up of 0.07, 0.04, and 0.80 for the
S, P, and D contributions, with other contributions
negligible.
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445

Hybridization between the free electron and D bands
will somewhat alter this simple picture. The effect of
hybridization will to some extent be kept small by a
cancellation visible in the following simple model.
Suppose a flat “D” band is crossed by an S-P band with
a constant interband matrix element V. Then the
Hamiltonian matrix, with the origin of wave vector and
energy taken as the crossing point, is

G a
v oAk
The two eigenstates of wave vector & have energies
given by

(14)

E=1Ak£[GAR)4 V]2,

i )

The total density of states as a function of energy is
now

(15)

N(E)=Ny

dE|™1 | &
= A<1+—) .

k E?
From (15), the fraction of free-electron state belonging
to a mixed state of energy E is [14+(V/E)?]}'. When
this is multiplied by N(E) to obtain the new density
of S-P states per unit energy, the net answer is 4, the
unhybridized answer. In this simple model, hybridiza-
tion changes the energy bands, the electron mass, and
the total density of states, but not the S-P partial
density of states. In reality the hybridization matrix
element will not be constant, and the D bands will not
be flat. S-P band structure effects are also enhanced by
hybridization. It would be desirable to have a reliable
absolute measure of Np(0) to eliminate the necessity
for supposing N p(0) to be constant. One can only hope
that the “noise” generated by the nonconstancy of
Np(0) will not obscure the attempt at an over-all
understanding.

The perturbation potential VU for a site of cubic
symmetry transforms like x, v, z (I in Bethe notation).
Parity considerations then eliminate all contributions
to (x| VU |¢w) from angular momentum components
belonging to the same ! for & and %’. The dominant part
of U comes from a shifted, screened atomic potential.
This potential for transition ions is strong near the core.
As the distance from the atom center is increased, the
bare potential decreases, and is partially screened by
the d-wave functions, which, near the center of the cell,
tend to move with the core. The screening is completed
at a distance comparable to the size of the unit cell. The
physics of the nature of VU might be described as a
gradient of a spherical potential whose nature is chiefly
determined by the number of “d” electrons on an atom,
with modifications in the outer regions of the potential

(16)
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depending somewhat on bonding. When, as within the
transition elements and their alloys, the nature of the
bonding and the volume per atom does not change, VU
could be chiefly a property of the atomic species
involved.

The simplest method of examining the nature of the
average involved in evaluating A in terms of VU is to
sketch the calculation of the electronic specific heat.
(With slightly more work, an equivalent identification
can be made via superconductivity.) The change in free
energy AF of the crystal at temperature 7" due to the
lowest electron-phonon interaction diagram (in which
one virtual phonon and electron-hole pair are excited) is

#
resl )
2Mw
kEIVU|R )| H(ED)[1— f(Ex
oy SOOI E -]
kK Ey—Ep _ﬁwphonon

f(E) is the Fermi function. In the low-temperature
limit, AF is a constant plus a 72 correction. This 7%
term produces a specific-heat contribution linear in
temperature, so A can be evaluated from the coefficient
of this term.

It is necessary to do the sum in (17) only well enough
to identify functional dependences. The 7 term arises
only from states k for which | Ex—Er|~KT, and it is

proportional to
1 2
<k k’>| , (18)

daU
dx

2Mw?  k g
|Ex—EF|, |Ex' —Er| <KT

or equivalently

1
KD — % 2

’

Ex+A E <rEw <Ep +A

X |(k|e.- vU[E)]2.

Mw? k
limA —»0 Er <Eg

(19)

Write the double sum on k2 and %’ in an angular
momentum representation about the atom in equation
as

PIDIDY > [(glkaZmlsz'VU]gz'm'k'Kz'm'H2- (20)

kE kK lml m

This matrix element vanishes unless /=1'24-1, because
VU transforms like Pi(cosf) as the gradient of a
spherical potential. Since U has appreciable value only
within the unit cell, the radial integrations can be ended
at the boundary rws of the Wigner-Seitz cell. For
transition metals, the dominant wave functions in a
unit cell are the D functions. These dominant functions
couple only to P and F partial waves, of which in most
transition metals (with possible exceptions of lanthanum
and uranium) the angular momentum barrier will make
the F-wave part small compared to the P-wave part.

HOPFIELD

186

The integrals over angles and sums on the three
polarizations and m and ' yield an uninteresting multi-
plicative factor. The jintegrals and sums remaining

yield B

1 WS
_ Z Z fzgzmc*
A? k % 0

imA -0 EF <Ep<Ep+A Er <Ep <Er-+A

2

X (e VU)growdr (21)

The angular and radial form of g are determined by the
energy and the atomic potential. The normalization of
the gumk is k-dependent and more complicated. Multiply
and divide (21) by

WS WS

/ 7*| gaoi | 2d7/ 7*| guow | 2.
0 0

/

WS WS
/ 1’2| gQOkl 2d1’/ 7’2]g10k’ l 2dy (22)
0 0

is the absolute square of a matrix element of the deriva-
tive of an atomic potential between two states which
are normalized in an atomic volume. The form of the
normalized wave functions is controlled by the atomic
potential. This matrix element (22) should, like VU, be
a property of the atomic species within the transition
elements and their alloys, and is independent of % for
wave vectors near the Fermi surface. Thus the sum (21)

can be written
dU\? 1 WS

<—> < lim — > / 72| g1ox| 2dr>
dz/ \a—0A k 0

Er <Er<Er+A

1 WS
X( lim — > / 7%| gaok | 2dr>
k 0

A—0A
Er <Erp<Er+A

=<%Z->2NP(O)ND(O)- (23)

The factor

()
dz B

WS
f 72g20k™ (.- VU) growdr
0

The total free energy at temperature 7" can now be
written

P(I)—F(0) = —3xN(0)(KT)>?
B(KT)? (dU

—)2Np<o>zvp<o>, (24)
Mw? dz

where B is a dimensionless numerical constant involving
neither phonon frequencies, nor band structure, nor the
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form of VU. The coefficient of the 7% term defines \
from the relation

F(T)—F(0)= —3rN(O)(KT)*(14)). (25)

For convenience, the factor (3B/x) will be absorbed
into the definition of U.

For a single ion, the expression for the change in free
energy is correct to order (m/M)!/2, or more precisely,
to the square root o1 a typical phonon frequency
divided by the energy width of characteristic energy-
band structure. The single-ion perturbation expansion
will usually converge rapidly. The Green’s-function
theory® of strong electron-phonon interactions for our
model is a theorem to the effect that the changes in free
energy due to the vibrations of different atoms are
additive.

The structure of this result is identical to the struc-
ture of the conventional result. A comparison of (5)
and (25) leads to the immediate identification

1 /ﬁ)z N#(0)N5(0) '

NN g N(0)

(26)

This is identical in form with the usual result. In terms
of the present parameters, the usual (9?) is given by

dz

o (AUNEN (0N (0)
@) ’< > N2(0)

@7

The importance of (26) or (27) is twofold. First, i is
(dU/d=)?, not (9%), which can reasonably be expected to
be a property of a single atom. Second, in the transition
metals Vp is much larger than Np. Np is the quantity
which shows the enormous variation with Fermi energy
and atomic number, while Np should be much more
nearly constant. Using these two facts, we have

@y

dz
dU\? Np dU\?
=<~) e C I L
dZ NS+NP+N1)' . dz

Therefore, the contribution to A of a particular ion in
(26) is a product of two factors, the first of which in-
volves only a mean phonon stiffness and the second of
which is chiefly a property of a single atom. The density
of states V(0) essentially disappears from the theory in
the case of the transition metals.

If D-F scattering is also important, the theory will
maintain the same structure. To the extent that the F
density of states is a property of the atom, A will still
factor into a stiffness factor and an atomic term.

III. NUMEROLOGY

The results of the previous section can be summarized
by writing the electron-phonon coupling parameter for

ANGULAR MOMENTUM AND SUPERCONDUCTIVITY
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transition metals [combining (26) and (28)] as

A=1/4(0?). (29)

A is the atomic number, and (©2) is an average squared
phonon frequency expressed in temperature units.
(©?) should be understandable in short-range chemical
terms once the bonding of the transition metals is
understood. The parameter 7 is given in terms of more
fundamental parameters by

1 % 2rdUN\?
() ) o
proton KBoltzm:mn dZ

and should be predominantly a property of an atom.
While it is undoubtedly true that the environment
surrounding an atom in a crystal will somewhat effect
7, the major dependence of 4 will be on the volume of
the atom, which tends to remain constant if the nature
of the binding is unchanged.

The first question to examine is whether » has a
reasonably systematic behavior in the transition metals.
Being interested primarily in high-temperature super-
conductors, we will follow McMillan’s treatment® of
the Coulomb pseudopotential, and thus use his
expression

7= exp

(30,

1.04(14))
)\—u*(1+0.62>\)> 1)

for the transition temperature. The systematic results
are not particularly sensitive to the Coulomb term u*,
but the approximation limits consideration to transition
metals which are not too magnetic.

For V, Nb, Mo, Ta, and W, McMillan’s values of
(®?) will be used. These substances also have known
specific heats as a function of temperature’ from which
an average phonon frequency ©® was determined by
using the point at which the specific heat achieves half
its classical value to define a © such that a Debye
specific heat had the measured values. This value of © is
approximately 1.25 times (©2)'/2 and this factor 1.25
was used to generate (®2)1/2 in the transition elements
not examined by McMillan. The values of A calculated
from (31) (@2)1/2, the Debye temperature ®p, and 4 are
given in Table I, along with the conventional (9?). The
variation of 7 in the Periodic Table is indeed simple,
and does not show the erratic behavior of (92). The
systematics of 7 and (9?) can be compared at a glance
in Table II. That 7, not (92), was relatively simple was
empirically noted by McMillan® for the five body-
centered elements (V, Nb, Mo, Ta, W), for he pointed
out that (92)N(0) was approximately constant for these
five, and 7 is proportional to (92)N(0). Table II shows

7 The specific heats of all the transition metals except niobium
were taken from Landolt-Bornstein, Za/i te und Funktionen
(Springer-Verlag, Berlin, 1961), part 4, pp. 476-479. The values
for niobium were taken from J. E. Kunzler (unpublished). When

corrections for the electronic specific heat were appreciable (e.g.,
in vanadium) only half the phonon enhancement was included.
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TaBLE I. Values of the various parameters of relevance to the
transition temperatures of the elements. Values of ©® are from
Ref. 5.

(g2)1/2 Op 7(1079) (9%)
Element (°K)  (K) A (K] [(eV/A)?]

Ti 284 425 0.380 1.468 5.1
v 290 399 0.591 2,530 34
Zr 202 290 0.412 1.533 6.5
Nb 230 277 0.761 3.740 7.3
Mo 310 460 0.418 3.852 24.6
Hf 156 252 0.346 1.503 7.9
Ta 170 258 0.657 3.435 7.9
W 250 390 0.291 3.345 40.0
Re 218 415 0.489 4.327 233

that the behavior of 7 in the Periodic Table follows the
same kind of smooth systematics that other physical
parameters follow.

The next question of interest is whether 7 is approxi-
mately environment-independent in simple alloys. In
most alloys, full specific-heat curves have not been
measured, but instead only low-temperature Debye
temperatures have been determined. For the elements,
the ratio between ®p and (62)'/2 is known. This ratio
changes relatively little, with the exception of rhenium,
and this ratio is linearly interpolated in alloys to
generate (62)}/2 from the measured ®p for alloys. The
mass M used is the average mass, chosen because the
low-temperature Debye specific heat measures the
average mass density. It has occasionally been necessary
to make systematic small shifts of alloy Debye tem-
peratures when the experimenter found alloy data
smooth and consistent with his own values of the
elemental endpoints, but his endpoint values were not
consistent with present best values. This is a correction
for experimental systematic error. With these supposi-
tions, 7. can be calculated for alloys from the data for
elements (Table I), and the measured low-temperature
Debye temperature of these alloys. (An understanding
of bonding in transition metals would yield values of
Op for alloys and eliminate the necessity of any alloy
measurements for the prediction of 7%.) As long as the
fraction of D electrons at the Fermi surface on each
alloy atom is the same, 5 can be linearly interpolated
between the alloy endpoints. Table III shows a com-
parison between the computed transition temperatures

TABLE II. Variation of (107%) and (92) arranged according to the
Periodic Table. The values are from Table I. The upper values
are 7, the lower values (in parentheses) are for (92).

Ti A% Cr My
1.47 2.53
(5.1) (3.4 ... ..
Zr Nb Mo Tc
1.53 3.74 3.85 cee
6.5) (7.3) (24.6) e
Hf Ta, w Re
1.50 3.44 3.35 4.33
(7.9) (7.9) (40.0) (23.3)
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TasLE III. Comparison of the calculated and observed transition
temperatures of Ti-Zr alloys.

©®p T, calculated 7', observed
(OK) ()

Alloy 9% Ti 9, Zr (°K) (°K)
100 0 425 (0.40) 0.40

75 25 327 2.27 1.18

50 50 301 2.04 1.50

25 75 295 1.10 1.20

0 100 290 (0.55) 0.55

in Ti-Zr alloys and the measured transition tempera-
tures.® The only alloy measurements which go into this
prediction of 7' for the alloys are the Debye tempera-
tures. Agreement is far from perfect, but for a theoretical
estimate of the behavior of the transition temperature, it
is not bad. (The experimental measurements and
metallurgy are also not necessarily perfect.) The end
points of this alloy sequence agree by definition, for
they were used to establish # for the elements.

Some results for Zr-Nb alloys are shown in Table IV.
Agreement here is rather good,? particularly in view of
the fact that the alloys are bec, while the evaluation of 7
for Zr was for the hexagonal structure of the element.
Zr-Rh alloys are not capable of simple theoretical inter-
pretation, for the Fermi-surface D electrons in an alloy
having such different atoms will not be equally shared
between the atoms. One can, however, plot the apparent
n determined from the measured T. to observe its
dependence on concentration. The numbers relevant to
such a calculation'® in Zr-Rh are given in Table V, and
the plot of 5 versus alloy concentration for Zr-Nb and
Zr-Rh is given in Fig. 1. That the Zr-Nb alloys fall on
a straight line connecting Zr and Nb was evident
already from the agreement between the observed and
calculated T,. The striking feature of this graph is the
difference between Nb and Rh. In spite of the fact that
the addition of a little rhodium to zirconium raises
the transition temperature immensely (Table V), as
does the addition of niobium, Fig. 1 clearly suggests
that pure Rh is a poor candidate for superconductivity.
Indeed, Rh is not a superconductor. The absence of
superconductivity in Rh is caused by the large Coulomb

TaBLE IV. Comparison of calculated and observed transition
temperatures for Zr-Nb alloys.

®p T, ca,lcula.ted T observed

Alloy  %Zr %Nb  (°K) (°K) (°K)
100 0 290 (0.55) 0.55

50 50 238 9.9 9.3

25 75 246 11.6 10.8
0 100 277 9.22) 9.22

8 E. Bucher, F. Heiniger, J. Muheim, and J. Muller, Rev. Mod.
Phys. 36, 146 (1964). The values of @p necessary to compute 7'
were also taken from this paper.

? Experimental numbers for this alloy system are from F.
Heiniger, E. Bucher, and J. Muller, Physik Kondensierten
Materie 5, 243 (1966).

10 G. Dummer, Z. Physik 186, 249 (1965).
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TABLE V. Transition temperatures and ®p for Zr-Rh alloys.

Alloy %Rh 0 3 4 5 6 7
T, (°K) 055 31 38 48 57 59
Op (K) 200 244 226 210 196 192

interactions.! Since we have not allowed each atom to
have its own Coulomb interaction, the plot of Fig. 1
represents the large Coulomb interactions in Rh as
negative 5 for that element. This plot, however, sug-
gests the failure of a rigid-band picture, and indicates
that Rh is already showing large Coulomb interactions
when present in small concentrations in bee Zr alloys.
The fact that Zr is hexagonal and all the other alloys
shown bcc causes no obvious systematic error.

Calculated and measured!® transition temperatures
for Nb-Mo alloys are shown in Table VI. Agreement is
not ideal, but quite tolerable for the larger 7'.. Of
particular relevance to the lack of complete agreement
are the facts that (a) very low transition temperatures
are a delicate enough balance between Coulomb and
electron-phonon effects that they are harder to predict
and (b) the density of states in this alloy sequence
plunges to such a low value in the 60-909, Mo range
that the justification for regarding Np as large com-
pared to N p is lacking.

The systematics of the 5d transition-metal alloys!®
between hafnium, tantalum, and tungsten shown in
Table VII are in reasonable accord with theory. The
behavior is very similar to that of the analogous 4d
alloys, with a shift of minimum transition temperature
from the interior of the sequence to the terminal mem-
ber tungsten. It would be interesting to see whether the
monotonic trend predicted by theory exists in
experiment.

Insufficient data exists to analyze the behavior of
the 3d elements. The Debye temperatures are not known

TasLE VI. Comparison of calculated and observed transition
temperatures in the Nb-Mo system.

®p T, calculated T, observed

Alloy % Nb % Mo (°K) (°K) (°K)
100 0 2771 9.22) 9.22

85 15 312 5.9 5.85

60 40 371 24 0.60

40 60 429 0.7 0.05

30 70 442 0.6 0.02

20 80 461 0.4 0.09

10 90 487 0.3 0.03

0 100 460 0.92) 0.92

11 J. R. Schrieffer and N. F. Berk, Phys. Rev. Letters 17, 433
(1966); and in Proceedings of the Tenth International Conference
on  Low-Temperature Physics, edited by M. P. Malkov
(Proizvodstrenno-Izdatel’skii Kombinat, VINITI, Moscow,
1967), Vol. IIA, p. 150.

12 Values of © and 7 from B. W. Veal and J. K. Hulm, Ann.
Acad. Sci. Fennicae A210, 108 (1966).

13 Values of ® and 7, from E. F. Bucher, F. Heiniger, and J.
Muller, in Proceedings of the Ninth Iniernational Conference on
Low-Temperature Physics, Columbus, Ohio, edited by J. G. Daunt
et al. (Plenum Press, Inc., New York, 1965), p. 1095.
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N

* pure elements
x Zr-Nb alloys
° Zr~-Rh alloys

(K°)?

107 m,
T

| | |
[9) 25 Zr-Nb: % Nb 50 75 100
P} 5 Zr-Rh: %Rh {0

FiG. 1. Values of 5 for Zr-Nb and Zr-Rh alloys. The theory
interpolates the values for Zr-Nb alloys on the straight line drawn
connecting the elements at the end points.

for the Vi-V alloys. Since T, follows!4 the same pattern
as Zr-Nb, the expected similarity in trends in ®p be-
tween 3d and 4d elements suggests that Ti-V alloys will
indeed be easily described by present theory. In the
V-Cr alloys,'® the parameter n is not known for Cr
because chromium is magnetic rather than super-
conducting. A small systematic calibration error in ®p
also seems likely here, since the very systematic alloy
data behavior of ©p given by one author does not
extrapolate to the “best value” for pure vanadium
given by others. If # for Cr is about the same as 5 for V,
expected on the basis of the 44 and 5d elements, the
rapid drop in 7'. as Cr is added to V will be under-
standable in terms of the rapid rise in ®p, just as in
the 4-d and 5-d sequences.

The behavior of rhenjum and its alloys with tungsten
and molybdenum is difficult to evaluate. Rhenium (hcp)
has a rather different lattice vibration spectrum from
that of the other elements discussed so far. Its low-
temperature Debye temperature is about 309, higher
than would be expected from its high-temperature
Debye temperature, as compared to other transition
metals. A major question which this large difference
introduces is how the low-temperature ®p for alloys
(particularly those with crystal structures other than
hep), should be scaled to obtain (©2). Seeing no resolu-

TasLE VII. Comparison of calculated and observed transition
temperatures in the Hf-Ta-W system.

®p T calculated T'. observed

Alloy (°K) (°K) (°K)
1009, Hf 252 (0.09) 0.09
30-70 Hf-Ta 209 4.2 6.8
1009, Ta 258 (4.48) 4.48
84-16 Ta-W 265 3.8 1.8
60-40 Ta-W 291 2.0
40-60 Ta-W 317 0.85 Not investigated
20-80 Ta-W 354 0.16 below 1.2°K
1009, W 390 (0.012) 0.012

1 C. H. Cheng, K. P. Gupta, E. C. van Reuth, and P. A. Beck,
Phys. Rev. 127, 2030 (1962).

13 Data on T, and @p are given in Ref. 5, quoting K. Andres
and E. Bucher (private communication).
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tion to this problem, we have presented n for the
Mo-Re1® and W-Re 317 systems using a universal
factor (6%)*/2=0.6750p in Fig. 2. Data on technicium
(whose Debye temperature is only approximately
known'®) and on!® Mog.50Tco.50 are also shown. The
difference between the pure Tc and pure Re points
would be completely explained if Re alone, and not Tk,
has an anomalously high low-temperature Debye tem-
perature. The three points Mo: Mog.50T'co.50: T'c lie on
a straight line as expected, though with the sparseness
of data little weight should be attached to this fact. The
values for n in Mo-Re and Tc-Re agree with each other
within experimental error in the bcc phase region
(below 309, Re). Such agreement is easy to understand
if Re carries both its own 7 and its unique bonding
effect on lattice frequencies into the two hosts. With
the change in crystal structure, this sytem drops back
to the straight-line interpolation between the end
points. Further high-temperature specific-heat measure-
ments will be necessary to determine whether this
system follows or contains exceptions to the proposed
interpolation.

Finally, let us examine the systematics of some 8-
tungsten compounds of vanadium and niobium. In the
B-tungsten structure of V3;Si and NbzSn, both the
volume per transition-metal ion and the nearest-
neighbor transition-metal distance have decreased by
about 159, from the values of the bcc pure metals. A
change of 7 from the pure metals is therefore to be
expected. While the theory of Sec. IT was not designed
for compounds, its application to systems such as VX
can be justified if it can be argued that almost all of the
Fermi-surface density of states is associated with the V
atom. Such an association might be possible when the
material has a very high electronic density of states,
but the atom X has no D levels near the Fermi energy.

I | !
I P
X l
6 I e |
x | ° |
5- ' 1
H | |
b he
< gk ° s'ru%%ure ; } sirucrure
° o
=} | complicated structures - |
samples often not
3 single phase
° Mo - Re alloys
& 2F x W -Re alloys
-
P o Mo - Tc alloys
| -
0 1 1 1
25 50 75 100

% Re or Tc

F16. 2. Values of 4 for W-Re, Mo-Re, and Mo-Tc alloys. These
values were all calculated using (92)1/2=0.0750@p (see text) and
should not be directly compared with values quoted in other
tables.

16 F. J. Morin and J. P. Maita, Phys. Rev. 129, 115 (1963).

17 Values of 7' from Ref. 5, E. Bucher (private communication).

18 The Debye temperature of 375°K for technicium was supplied
by B. T. Matthias (private communication).
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Tapre VIII. Parameters for V3X compounds and calculated
transition temperatures obtained from these parameters.

Com- Op (o2)112 A calculated observed

pound (°K) (°K) calculated (°K) (°K) N(0)
VsSi 330 343 0.845 17.6 17.1 2.09
V3Ge 405 421 0.451 2.1 6.0 1.06
V3Ga 310 322 0.776 13.5 16.5 2.84
V3Au 350 364 0.390 0.7 0.7 1.40

The general character of the lattice vibration spectrum
will also be changed. As long as the distribution of
lattice frequencies was approximately fixed, any
measure of the lattice vibration frequencies was
adequate. With two atoms per unit cell of different
masses and chemical natures, different measures of
lattice frequencies will not scale together, a point which
we must simply ignore at our present state of knowledge.

To make intercomparisons of various B-tungsten
materials, it has been necessary to characterize the
phonon spectrum by the one commonly measured
experimental quantity ®p. The full specific-heat curves
have been measured!® for Nb3;Sn and V;Si. For Nb;Sn,
the low-temperature Debye temperature?® is 228°K and
the high-temperature @ (obtained from the measured
specific heat by subtracting an extrapolated electronic
contribution) is 304°K. For V;Si, equivalent numbers
are 330 and 485°K. The ratios of these temperatures
are 0.75 and 0.68, and the difference between these two
ratios is a measure of the error attributable to regarding
the materials as having a common frequency spectrum.
These differences are comparable to those present in
the pure elements, and the full specific-heat curves for
all the compounds would be necessary to resolve the
problem. It will here be assumed that for V3;X com-
pounds (62)1/2 is 0.7070=1.040 . Table VIII shows
calculations of the transition temperatures of V;X
materials based on this supposition, u*=0.13, and an
assumed 7 for vanadium in V3;X of 4.49. This value
of n is 1.77 times the value for » in the pure element.
The last column shows the electronic density of states
at the Fermi level for these materials.? Note that the
present calculation describes correctly the order and
approximate magnitudes of 7, while if the electronic
density-of-states factors were the important considera-
tion, two pairs would be reversed.. If the same factor
1.77 is used to scale the bcc value of 5 for niobium to
the B-tungsten values, the transition temperatures of
Nb;X compounds can be calculated from their specific
heats. The calculated temperature for Nb;Sn based on
its (@2)12 of 243°K is 21°K. The measured transition
temperature is 18.0°K.

The complexities of the phonon modes and distribu-
tions in materials having several atoms of quite different
masses per unit cell should keep one from literally

19 7. E. Kunzler (private communication).

201.. J. Vielund and A. W. Wicklund, Phys. Rev. 166, 424
(1968).
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believing the theoretical estimates even if the basic
theory were perfect. (Similar considerations prevent a
useful analysis of systems like Ti-Hf alloys.) These
results do suggest, however, that the systematics of
superconductivity in the §-tungsten structure appears
favorable to superconductivity, for typical transition
elements exhibit in this structure about a factor of 1.8
increase in 7 over the values for close-packed or bcc
structures.

IV. CONCLUSION

By using a local representation of phonons and an
angular momentum description of Bloch waves, it has
been possible to characterize the strength of the
electron-phonon interaction in transition metals by
two parameters of a short-range or chemical nature.
One of these parameters, the mean vibrational fre-
quency, is a characteristic of the bonding; the other is
an atomic property expected to be weakly environment-
dependent within a given type of bonding. The theory
described is another in a line of theoretical and empirical
attempts to understand the systematics of super-
conductivity in transition metals.® Because at present
the calculation of 5 ab initio is difficult, the theory can
be tested only by examining its agreement with experi-
ment. The most useful additional experimental in-
formation would be determinations of the specific heats
of alloys at intermediate temperatures to provide a
better estimate of the mean vibrational frequency. The
number of additional systems to which the theory
might be hoped to apply directly is circumscribed by
the present necessity of presuming only one vibrational
frequency and an equal partitioning of Fermi-surface
electrons between all transition-metal ions.

In order that the Coulomb interaction not be the
dominant problem in determining 7%, it has been
necessary to restrict attention to only half the transition
metals. Use of isotope effect information would extend
the range of the theory to include a variation of the
Coulomb pseudopotential. In this regard, the large
Coulomb interaction of rhodium when present in small
concentrations in zirconium is particularly interesting.

A major difference between the present attempt at
systematization in the transition metals and past
attempts is the use of the angular momentum repre-
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sentation to argue that N(0) is #of the major parameter
of interest. It is the trends of vibrational frequencies
which are of theoretical interest, a point already em-
pirically noted. The correlation between mean vibra-
tional frequencies and the mean density of states at the
Fermi energy is quite strong, which makes it difficult to
demonstrate definitely the relative irrelevance of N(0).
The transition temperatures of VzX compounds do
exhibit features which are inexplicable as N(0) effects
and explicable in present theory, but the application of
present theory to these compounds requires a good bit
of faith. The general correlations between super-
conductivity?! and hardness or melting point?? become
qualitatively understandable if N(0) is irrelevant, but
again do not prove this irrelevance. It is perhaps worth
noting that because Coulomb interactions of the type
(D+D — D+D) take place, a high Np can increase
Coulomb interactions with no compensating change in
the electron-phonon interaction.

A second possible comparison of theory with experi-
ment is through experimental details of the electron-
phonon interaction. The present structure of theory
indicates that those parts of the Fermi surface which
are characterized by being chiefly S-P in character will
have abnormally skort relaxation times. Since such parts
also can be expected to have light masses compared to
the average mass, the frequency dependence of the
electrical conductivity (in the dc to near infrared range)
can provide some check of the theory. The anisotropy
of the superconducting energy gap, in conjunction with
calculated energy bands and wave functions, can
similarly be used to check the importance of P-D
scattering.
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