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1—nq, and for the improved calculation, for which

Z= 1/(1 —dZ jdte) .

We see that the two results are almost identical.

(53)

DISCUSSION

Perhaps the most interesting result of the present
work is that for U, ff in Fig. 5. If U, ff is to be equated
with the exchange splitting in the Stoner model, then
we 6nd that the Kanamori result for this quantity de-
parts more rapidly from the low-density result than
does the present calculation, as the number of carriers
increases. If we believe that an improved calculation
gives more correlation reduction of this quantity, then
v. e must say that our result is an improvement and that
the Kanamori result overestimates the increase of U, ff.
The above belief would be a fact if the claim made in I
for a minimum principle were verified. At any rate,
these considerations may have serious consequences as
for example in the work of Calloway's' recent article in
which he finds that the increase in U.ff is very important
in stabilizing the ferromagnetic state for small but
finite n. This effect seems also to be important in
Ni. ~

There are several mitigating factors here. One is that
we are considering the worst possible case, namely,
U —&~. Secondly, we are using the scnn model, and the
work of Calloway in particular is based on a second-
neighbor face-centered cubic model which has, like
nickel, a peak in the density of states near the band
edge. The argument here is that the Kanamori result
should be good in this case, as the Fermi level is very
close to the band edge. We should examine U, ff in this
case and hope to do so in the future. Calloway has also
applied his result to Ni" and the same remarks apply,
with the additional factor that he considers, and we

neglect, degeneracy. Finally, to compare our work with
that of Lang and Ehrenreich, ' for example, we need to
find the corresponding quantity for the paramagnetic
state. U,«maynot be the same for the ferromagnetic and
paramagnetic states, as pointed out recently by Penn. "

Nevertheless, it does appear that the Kanamori result
can be improved upon and extended to higher densities

by methods based on the present work, and also that
the two pole approximation gives a reasonable value for
U, ff at finite carrier densities.

"J. Calloway and H. M. Zhaver, Phys. Letters 28A, 292
(&969)."D.R. Penn, Phys. Rev. 1?7, 839 (1969).
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The density perturbation bp(r) about a Coulombic impurity in strong magnetic fields is analyzed in the
degenerate case. The results show that (a) anisotropic Friedel oscillatory behavior is discernible along the
direction parallel to the magnetic 6eld, and (b) exponential decay along the direction perpendicular to the
magnetic field deprives the result of long-range character. These results are in accord with those of
Rensink, save for the fact that the 8-function impurity used by Rensink results in a Gaussian decay in the
perpendicular direction, in contrast to the exponential decay in the perpendicular direction seen to result
from a Coulombic impurity here. This indicates that the qualitative nature of the spatial decay in the
perpendicular direction is dependent upon the character of the impurity potential. The results obtained
here are valid at large distances from the impurity for a wide range of field strengths. A qualitative discus-
sion of low-field behavior in the approach to the zero-6eld limit is presented, and the role of self-consistent
aspects of response is briefiy indicated.

I. INTRODUCTION AND FORMULATION

HK study' of the dynamical properties of a
quantum plasma in a high magnetic field has

revealed the existence of interesting physical effects

' N. i. Horing, Ann. Phys. (N. Y.) 31, (1965).The notation of
this reference will be maintained here, and a brief review follows:
a&~= (4s.e'p/m)'"; p is the density; m is the effective mass; cu, is
the cyclotron frequency (=eIf/me); p is the wave vector
[=(p„p)g; r is the position vector from impurity [=(r„r)g; H is
the magnetic field along the g axis; p= (ET) '; E is Boltzmann's

due to Landau quantization and nonlocality. Moreover,
one may expect static properties to be correspondingly

constant. ; T is the absolute temperature; g is the chemical po-
tential, equal to the Fermi energy Ez in the degenerate limit;
fo(co) is the Fermi-Dirac distribution function [=(1+e~" r&p)

Pp is the Fermi wave number [=(2mi)'"/it]; and pn is the
Debye-Thomas-Fermi (DTF) wave number [= (4s.estop/8$)'~'j.
(Also, ro is the interpa'rticle spacing, ao is the Bohr radius, and
r.=rojao. ) Note that two-vectors referring to the plane per-
pendicular to the magnetic 6eld are represented by lightface
barred letters.
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influenced. In particular, the Friedel density oscil-
lation which occurs about an impurity is a relatively
high wave number phenomenon (p 2pz) of the quan-
tum plasma, and as such, one may expect it to be
sensitive to the effects of Landau quantization. Alterna-
tively, one may say that the disruption of the Fermi
surface by Landau quantization disturbs the theoretical
basis of the Friedel density oscillation, and different
behavior is to be expected. In a recent publication, '
Rensink has investigated the effects of Landau quanti-
zation on the Friedel density oscillation about a 8-func-
tion impurity. His results indicate that behavior in the
nature of the Friedel density oscillation is still discern-
ible in an anisotropic fashion along the direction parallel
to the magnetic field, whereas the density perturbation
due to the b-function impurity suffers a Gaussian type
of spatial decay along the direction perpendicular to
to the magnetic field. The first part of these results is in
good qualitative accord with our earlier work' as far as
behavior along the magnetic field direction is con-
cerned. However, the qualitative nature of the spatial
decay in the transverse direction is, in fact, dependent
upon the character of the impurity potential. We shall
investigate here the density perturbation about a
Coulombic impurity in high field, and show directly
that the Coulomb impurity potential is characterized by
a simple exponential type of spatial decay in the trans-
verse direction, rather than by the Gaussian which arises
in conjunction with the 5-function irrtpurity potential.

The density perturbation about a Coulomb impurity
may be expressed in terms of thermodynamic Green's
functions' by virtue of the fact that p == —iGi(1; 1+).
Moreover, if we neglect interparticle interactions and
take U(1) to be the Coulornbic impurity potential,
then the equation for 0&, is simply given by

as well as ri —ri', in the following manner (see Ref. 1):
Gi'(1; 1') = C(ri, ri')Gi'(ri —ri', ti —ti'), (4a)

where

C(ri, ri') = expLi(-', e)ri HXri' —ip(ri)+t'4t (ri')], (4b)

C(ri, ri)=1, and C(ri, r2)C(r2, ri)=1.
These properties clearly allow the replacement of 6'&

by Gio' when Eq. (2) is used to calculate the density
p =- —iGi(1; 1+):

Gi(1; 1+)=Gio'(1; 1+)

+ d(2)Gi" (1—2) U(2)Gi" (2 —1+) (5a)

Introducing spatial Fourier transforms, one finds

dp
""U(y)

(2m.)'
G (1 1+)=G "(1 1+)+

dg
X Ct Gio'(q, —t)Gio'(q —y, t 0+) . (5—b)

(2ir)'

A thorough discussion of the integral

Gio'(q, —t)Gi"(q —y, t 0+) (6a)—
(2~) '

has been carried out in Ref. 1, employing the thermo-
dynamic Green's function appropriate to arbitrary
magnetic field strength. Actually, it should be observed
that Eq. (5b) is subject to two equivalent interpreta-
tions, depending on whether hGi(1; 1')/6U(2) is taken
to represent the "periodic" response of the system or,
alternatively, the physical (retarded) response. For the
former, one may make the specific identification
LEq. (I.33) of Ref. 1]

I~I(y, i —+0), (6b)
where 6~ is the one-electron thermodynamic Green's
function for a Pauli electron in an arbitrarily strong
constant uniform magnetic field. This Green's function
has been discussed in detail in Ref. 1. It should be re-
marked that the Pauli-spin term must be included in
studies of high-field phenomena, since spin splitting of
levels is comparable with Landau-level separation. The
Gi equation (1) may be converted to an integral equa-
tion and iterated for solution. The leading term,
which is linear in the Coulombic impurity potential,
is given by

Gi(1; 1') =Gi'(1; 1')+ d(2)Gi'(1; 2) U(2)G, '(2; 1'), (2)

which corresponds to saying that the response to the
impurity is governed by

bGi(1; 1')/BU(2) =Gi'(1; 2)Gi'(2; 1') . (3)

Now Gio(1; 1') depends on the gauge p and on ri+ri'
' N. J. Boring, J. Phys. Soc. Japan Suppl. , 21, 704 (1966).' M. E. Rensink, Phys. Rev. jl'4, 744 (1968).

whereas for the latter, one must make the specific
identification (footnote 6 of Ref. 1)

I~ I(p, a)=0+is) ~ ImI(p, co=0+i&). (6c)

dy 4mZe'
tip(r) =p(r) —p (r) =

(2ir)' p'

&&ImI(y, a) =0+is) . (t)

Since we are directly interested in the physical response,
we shall adhere to the latter interpretation, given by
Eq. (6c) Lwhere we have already noted that ReI(p, cu)

does not contribute for co= 0, since it is an odd function
of co].' The fact that zero frequency is involved here
rejects the fact that we are calculating the density
perturbation a very long (infinite) time after the
Coulomb impurity is "turned on, "so that all transients
have died out and the density perturbation is inde-
pendent of time (corresponding to cd —& 0). Noting
that U(p) =4irZe'/p' for a Coulomb impurity (having
Z units of charge), one then obtains
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This result may also be understood in ter ms of usual
linear response theory, employing a longitudinal
dielectric function in the ordinary Hartree-Fock
approximation. The important integral I(p, e)=0+is)
is applied to the degenerate case of interest in the Ap-
pendix of this paper, utilizing its development in Ref. 1.

II. QUANTUM STRONG-FIELD LIMIT

The evaluation of Bp(r) in the quantum strong-
field limit may be undertaken using the result for
ImI(p, e)=0+is) as given in the Appendix in the case
A4d,)f:

obtained for ps [r, [))1 following the method of Light-
hill, ' with the result

ps m) '"cos2prr,
ep(r) =

2pr[r. [

dp 4srZe'
elm'T

(2sr)' Ps+(2pr)'

Ap'
Xexp[ — . (12)

2m44)x

The behavior of 4)p(r) as a function of r is determined

by the integral

ImI(p, 4d =0+is) i ~~r~
$44 T

exp�(

P'/PH—'), (»)
(2 )' P'+(2P )'

Xln
ne) +Ap, '/2m+ (2P, 'g/m) "'

(g)
ne), +kp, '/2m —(2P, 'i/m) ')'

where ps= m'"4e j'"/2')'~'O' It should be noted that
the argument of the logarithm may be factored as
folio ws:

L .+ (s1+iy.)7L,+ p(1 —i r„
In[ . [-+ ln

p p p p )7
9

L'p. —p r(1—iv„)7LP.—Pr(1+i'.)7

pst' m q')' / @ps q
ImI(p, e) =0+is) = ——

[ [ exp[
A E2P.'l.l 4 2me), )

p.+2pr " 1 )sp' )"
X ln — +P—

p, —2pr =in! 2me), /

where iy„= (1—nke), /f)'" so that r„ is real for n&~1,
(he),)f), but its= 1.Thus the branch point of the n=0
term is real, whereas the branch points of n ~& 1 terms
are complex:

where we have introduced the notation piI ——(2me), /)s) '"
= pr(h4d, /l)')'. It should be noted that the connection
between this calculation and the one of Rensink' may
be made by replacing the Coulorv. b pole structure
4srZe'/Lp'+(2pr)'7 by a constant representing the
4)(r) ™puritypotential in p space. (Under this replace-
Inent, the integral 5 would simply become the Fourier
transform of a Gaussian in the transverse plane, which
yields the Gaussian dependence on [r[ characterizing
Rensink's result. ) Actually, the Coulomb pole structure
is very important in the asymptotic determination of

and in fact it yields a simple exponential type of
spatial decay as a function of [r[. In the analysis of S,
it is useful to write the Coulomb pole structure in
exponential form

dx e

One may then complete the square in the argument of
the exponential integrand

'
of S, translate the inte-

gration variable according to q= p ir/2(x+PH -'),—and
then evaluate the .wave-number integral trivially. The
result is"given by

LP*+Pr(1+i~.)7LP.+PF(1 i~-)7—
X» . (10)

LP*—P r(1—i~-)7LP*—P s'(&+i'y-) 7—
4vrZe2

g ——
(2sr)' s

d~ e rs/4(x+pa —s)e (spa) x— — (14)
&+PH

One can readily verify that the contributions to 4)p(r)
of the terms having n ~& 1 are smaller than that of the
n=0 term by factors exp( —y P) [r, [) because of the
complex nature of their branch points for n~& 1. Hence
such terms can be ignored in considering the long-
distance behavior of 8p(r), and we have (Ae), )f')

Some further manipulation of the integration variable
(simple rescaling and translation) then yields

g —Ze2& (2m& j&&)

pp m)'"
t)p(r) =——

[

2fi

dp Ap'
e'" " exp

(2sr) 2me),

dP. 4srZe' 1 P, —2Ps
i PzTz

2sr p +px px px+2pp

Xexp f —sr (2p rr) 'Lt+ (2p,r)-'/t7} . (15)

At large distances the lower l™t2(prrr) '= (2f/tin), )
X(ps'r) '(&1 may be set equal to zero, and then the t

integral may be identified in terms of the modified

M. J.Lighthill, Introduction to Pomner Analysis and Generalized
An asymp«ti«st)mate of the P, integral is readily J 44NCtio)ss (Cambridge University Press, New Yorir, 195g).
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Hankel function Eo (BHTF II, p. 82, No. 23), '

&= 2«'e "or"n"&o(2pr Ir I ) . (16)

The asymptotic behavior is that of a simple exponential
decay given by (BHTF II, p. 86 No. P)'

po mq't'
gp(r)=Ze& ——

I

e(»rior)'—
A 21.) pr[r[)

cos2pFr~
Xe—&el I —.(17)

2p. I"I

It should be noted that this. result is not directly appli-
cable to the special directions strictly parallel and per-
pendicular to the magnetic field, since we have invoked

both the conditions pr[r[))1 and pr[r, [))1.However,
it is applicable for all intermediate directions, thus
being of greater interest, and the special directions may
be approached arbitrarily closely with this result for
suKciently large distances p& I

r I))1. Anisotropic
Friedel oscillatory behavior is discernible in the r,
direction through the factor cos2prr, . However, the
exponential decay in the r direction exp( —2p& I

r
I )

deprives the result of long-range character.

III. LOWER MAGNETIC FIELD STRENGTHS

The evaluation of hp(r) at lower magnetic field
strengths 1)Ate&)AT may be undertaken using the
corresponding result for ImI(y, co=0+is) as given in
the Appendix:

m'co l Ap' " Ap' ) r!
ImI(p, to=0+is) = P' P I

exp-
4n'p o=»=o (2m&a, 2m&a, J (n+r)!

Ap' ' 1 &'n&o +Ap '/2m —(2p, '/m)'t'Ll —a»(&,&')]'t'
X I„" — 2 P —

rt (1 —a„(+,a'))ln . (18)
2mto, +,'+ As &'nto, +Ap, s/2m+(2p, /m) D am(~y+ ))' '

It should be noted that the argument of the logarithm and
may be factored as follows:

ln[

—a„„(+,&')=
I
&1&'n —(n+2r+1) jrsAto. , (21a)

—a„„(&,W') =I &1%'n—(n+2r+1)jrsA(o, (21b)
= —a,„(a,+') —a'nhto, .

Lp./p. -~-(~,~')PLp./p. -&-(~,~')jln, (19)
Lp./'pr+p-(+ ~')Xp /pr+~-(+, +')3

where

~-(~,~') = L1—,-(~,~')/i-3'"
+ I:1—-(~,~')/i 3'", (2o )

A,.(a,a') =
I 1—a„„(a,a')/i g'"

(2ob)

Again, the contributions of terms having complex
branch points are negligible compared to those of terms
having real branch points, so we eliminate the former by
inserting a cutoff factor st~(f —a„„(&,W')). Taken
together with the other cutoff function already
present, rt~(i a,„(&,&—')), the product of these two,
rt+(1 —a,„(&,&'))rt+(1 —a,„(&,W')), retains all terms
in the series having real branch points, and automatic-
ally neglects all terms having complex branch points.
LNote that these cutoff functions guarantee the reality
of P„„(&,&') and 6„„(&,&') for contributing terms
which thus have real branch points. j Thus we have
the result $p~= (2m', /A)'"= pr-(Ate, /i)'"j,

fm Goo 2—z' z z +o.-".(~,~')) .o.—"-(~,~'))—
(4n A (n+r)!

'" "(p'/p ')" p( p'/p ')—
(2w)'

XLL,"(p'/p~') 3'
dp* 4n«1 I-p, —p,p,„(~,~')jLp.—p,A„„(~,~ )j

e'»"g —ln (22)
p'+p' p* Lp +pra-(~ ~')lI:p*+pr~-(~ ~')j

Again one can obtain an asymptotic estimate of the p. integral following the method of Lighthill. 4 The result is

s (a) BHTF refers to Baternan Manuscript Project, Higher Transcendentat Functions, edited by A. Erdeli (McGraw-Hill Book Co. ,
New York, 1953); (b) BIT refers to Bateman Manuscript Project, Tables of Integra/ Transforms (McGraw-Hill Book Co., New
York, 1954).
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[subject to the conditions
I prp„„(&,&')«, I))1 and

I p«4„„(&,&')«, I))1]

16M, 2 r!
~p() = —Z' 2 Z .+(r —'.(~,~'))~.0.—,.(~,~'))—

4~2 $3 n=o r=o p', y (n,+«)!

cos[p«P, „(a,a')«,]
(X

p.~-(~,~') I'I
cos[p rD,.(a,a') «,]

4
P.A-(~,~')

I -I

e'"'(p'/pii')" exp( —p'/P-')[L "(P'/p~')]':
(2&r)' P'+P«'P, „'(&,&')

dp 4mZe2
e'«7'"(p'i/PIi'i)" exp( —p /PI&~)[1„"(p2/PH~)]& — . (23

(2~)' P2+p 2A 2(~ ~r)

[C is defined to be zero when 6,.„(+,&') vanishes,
since inspection of Eq. (22) shows that there can be no
such contribution. Otherwise 4 is identically unity,
irrespective of whether the nonvanishing value of

A„„(&,&') is positive or negative. $
The behavior of Bp(r) as a function of r is determined

by integrals of the form [see Eq. (23)]

dp 4irZe'
exp( P'/p~')F—(P'/p~'), (24)

(2ir) ' p'+n'

where F(p2/pa') is a polynomial function of p'/PH2.
It is immediately clear that

S(F)=F( (B'/Bx'—+B'/By' )/pgg')g, (25)

where the evaluation of S has already been carried out
in terms of a modified Hankel function [note that n

replaces 2pr in Eq. (16)] under the condition that
2(Pirr) '=(2f/Ace, )(P«r) '«1. Even at reasonably low

fields (2f'/A~, )1) this condition is still satisfied, since
we are interested in large distances, (prr) '«1. Thus

the behavior of 6p(r) as a function of r for large r may
be determined from the asymptotic behavior of the
modified Hankel function for nlrl))1 [in the present
context this means that

I prp„„(+,&')r l))1 and

I p.~,.(~,~')r-I»1]:
g= 2Ze'ei »ir&'Eo(nlr I) —&

Ze2(2s./alrl)»2e&~&iH&'e ~IrI (26)
where

=P.s-(~,~'), p. l&-(~,~')
I

Now, in considering the action of spatial derivatives on
8 to obtain $(F)= F( (B'/Bx2+—B'/By' )/prr')S one
should note that the variation of the factor e
dominates such spatial derivatives for nlrl))1. For
example, one can very accurately make the replacement
(B'/Bx'+B'/By' )"8—+ n'"8 and obtain the result

g(F) =F( ~'/p ')Ze'e'~"rr"(2s/~l„l)'". ~'IIrl (27)

Since F(x) represents polynomial functions of the type
F(x) —+ x [L„(x)]'[Eq. (23)], the final result is given
by

m ~c2 r.f-z z z ..o-,.(~,~».,o--,.(~,~»—
2~2/3 n=o r=o +I,y (e+«)!

p, p,.'(~,~')q-- / p, 'p,.'(~,~')~ ~/
x e'" '""'+"'"""—

p
~ i & p„ i kpp„„(~~ ) I'-I i

cos[p«P,.(a,a')«,) p, 'D„„'(a,a')q —
/ p, 'Z„„'(~,~')q-2Xe-"»-i"&I'I +Ce'""""""'"" ——

p,p„„(+,a') lr, I p~' i 4 pH' i
27« cos[p rA„„(a,a') «,]

e p&rl&rn(k, +'&I Irl —
(2g)

&p, I
~,.(~,~')

I Ir I pr&„„(~,~')
I
«,

I

Again, anisotropic Friedel oscillatory behavior is dis-
cernible in the r, direction, but it is deprived of long-

range character by exponential decay in the r direction.
This multiple series is terminated by the cutoff functions

n+(t —~-(~,+'))n+(f —~-(~,~'))
after an appropriate number of terms, depending on the
size of A~,/f For examp. le, in the quantum strong-
field limit (Ace,/f )1) only the term characterized by

«i=0, «=0, & ~+ can contribute, and the double
counting of the n=0 term (indicated by the prime on
the e sum) can be compensated by selecting ~' ~ +'.
In this case, a„„(&,~') = g„„(~,~') =0, so
Pr~(~, ~')=2 and D,~(+,~')=0 (which also means
that C must be taken to vanish); and noting that L,o= 1, —
one recovers the quantum strong-field result of Kq.
(17). For lower magnetic fields (h~,/t &1), more terms
of the multiple series contribute before termination by
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the cutoff functions. Actually, the result t Eq. (28)$ is

valid even for rather small magnetic fields as long as we
are concerned with large distances, since the only
substantive condition on field strength which has been
used is that the parameter (2f/Ate, )(psr) '«1 should
be small; alternatively, the "mixed" parameter
(Ace,/2t')(pFr)'»1 should be large. In terms of this
mixed parameter, the magnetic Geld is effectively
large at large distances despite the fact that it may be
small in the sense that Ate,/)&1. In view of the occur-
rence of the mixed parameter, one can readily see that
attempts to analyze bp(r) for low fields by expanding in

powers of Aoi, /l actually result in expansion in powers
of the mixed parameter (in part), which is large at
large distances despite the smallness of Aoi,/f'; thus
such attempts to study the behavior of 8p(r) at large
distances are rendered futile, and one must have
recourse to Eq. (28).

It should be noted that in taking the largeness of
distance to be the dominant consideration in the
"mixed" parameter, we are precluding the possibility
of approaching the zero-field limit in which the small-

ness of the field is the dominant consideration (such is

the case within the framework of the present level of
approximation). Since the "mixed" parameter puts the
smallness of the Geld into competition with the large-
ness of distance, low-6eld behavior akin to the zero-
Geld limit can occur only over a limited range of
distances corresponding to small values of the mixed
parameter. Within this limited range of distances, one

may represent the low-Geld behavior by employing the
expansion' of bp(r) in powers of Are, /f mentioned above,
since the mixed parameter is small (and its occur-
rence as an expansion parameter is unobjectionable).
Of course, if Ace./f is made suKciently small, this
limited range of distances can be made arbitrarily
larg= indeed, su%ciently large so that the even

larger distances where low-Geld behavior akin to the
zero-field limit does not exist (because of the largeness
of the mixed parameter at such large distances) are

physically unimportant for the range over which this
aspect of response is measured.

The limitations of the approximation under consider-
ation here obscure another important aspect of response
which is emphasized by the self-consistency of the
random-phase approximation (RPA), namely, the
Debye-Thomas-Fermi (DTF) shielding pole' at
Pn (4rre'Bp/Bf—)'i' That is to .say, an improved treat-
ment of the problem using the RPA' introduces a
distinct contribution to bp(r) from the vicinity of the
DTF pole, and it decays exponentially like e»". If

we compare this with the contribution from the vicinity of
the logarthmic branch points Ps =- (2f'/Ao~, )Pn»pn,
which we have shown to decay exponentially like e»",
then it is clear that the DTF pole contribution is impor-
tant and likely to be dominant at high density
Ll/Ate„(a. /r. )'" r. '~'&&1$. This is also illuminating
in regard to low-field behavior and the zero limit: It
indicates that at the "even larger" distances where the
contribution from the vicinity of the logarithmic
branch points displays no low-field behavior akin to
the zero-field limit, this contribution is in fact negligible
compared to the DTF pole contribution, which does
exhibit appropriate low-Geld behavior and zero-held
limit.

IV. CONCLUSIONS

We have analyzed the density perturbation Bp(r)
about a Coulombic impurity in strong magnetic Gelds
in the degenerate case. The results show that aniso-
tropic Friedel oscillatory behavior is discernible in the
r, direction, but that it is deprived of long-range charac-
ter by exponential decay in the r direction. The aniso-
tropic Friedel oscillatory behavior of 8p(r) in the r,
direction is in good accord with the results of Rensink. '
However, the exponential decay of 8p(r) in the r direc-
tion for a Coulombic impurity stands in contrast to the
Gaussian decay of bp(r) in the r direction for a 8-function
impurity found by Rensink, indicating that the quali-
tative nature of the spatial decay in the transverse
direction is dependent upon the character of the
impurity potential.

The results obtained here are valid at large distances
from the impurity for a wide range of field strengths,
including rather low magnetic fields (Are, &f), as well
as the quantum strong-field limit (Ate,)f ).A qualitative
discussion of low-Geld behavior in the approach to the
zero-field limit has been presented, and the role of self-
consistent aspects of response to be expected from a
RPA analysis has been indicated.

APPENDIX

In this Appendix we shall derive the appropriate ex-
pression for I(p, Q= 0+is) in the case of degeneracy at
arbitrary magnetic Geld strength. It is illuminating to
calculate I(y, Q+ie) at arbitrary frequency, since its
imaginary part yields the plasmon dispersion relation,
and its real part yields plasmon damping (see Ref. 1).
Of course, the zero-frequency limit must then be taken
to give the density perturbation, and static shielding
as well. Proceeding from the results obtained in Ref. 1,
one has

'In this connection it should be noted that an attempt to
represent magnetic Geld corrections in this region by expanding
bp(r) in powers of the expansion parameter involving Aw, /i (and
the "mixed" parameter) must include a careful accounting of the
Lighthill expansion of the exact zero-Geld limit to an appropriate
order in (pzr) ', such that the approximation thereby constructed
is consistent in regard to the magnitudes of the terms retained
from the two distinct expansions.

fo(re) '" ds w'I'
ImI(p, Q+ie) = doi s«

o As . ; 2rri (2n.)'

t'2m) ygkto,
Xl i ~, (A1)

E s I tanh(-,'Are, s)
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2i

p

( A'—p 's)
dT e '"r exp~—

sm )

(—AP ,
— (—p'.

&&exp~~ cosh(-'C .s) exp~I (2T —iks)')
(2m,

'
5 Sms

The corresponding plasmon dispersion relation has
simple poles at all integral multiples of the cyclotron
frequency in the special case of propagation p perpen-
dicular to the Inagnetic field. A representation for
arbitrary p direction which explicitly corresponds to
this may be obtained by expanding the factor

egccsf —Q cess/I (y)

A p' cosPo), (2T iA—s)])
Xexp

~

—(i p i) —. (A2) in terms of modified Bessel functions I (BHTF II,
2mo), sinh2 Ao),s p. 7, No. 27).' Thus we have

2i (—A'p, 'sy (—Ap'
& =—exp( —

/
exp(

Sm ) &2m~.

Ap'

(2mo). sinh-,'Ao),s)

( p'
dT e '" exP( (2T—iAs)'

)
exp/in(o), T i~iAo),s)] (A—+ —A) . (A3)

)k Sms

The T integral is readily recognized as a complementary error function (erfc). Noting that I „=I„,one then
obtains

Ar'~' 2ms) '~' (—A'p 's) ( Ap'—
N =

[ exp( —
)

exp( coth2Ao), s
)
p' I„(Ap'/2mo), sinh(~iAo), s)

A Pc') 4 Sm ) E2mo)c ) n=o

X{e""c~'expL m(Q— n)o—')/2sp ') erfcLi(m(Q —no), )/p, 2 —-'A)(p, 2s/2m) &&2) —(A ~ A)

+e""e~ expL m(Q+—no) ) s/2p '] erfcfi(m(Q+no)c)/p —iA)(p s/2m)'~~) (A —+——A)}. (A4)

The prime on the summation sign indicates that the n= 0 term is double-counted and should be divided by 2. For
strong magnetic fields (Ao), t, Ao),P))1) it is appropriate to expand the part of g involving hyperbolic functions
in a series'of&powers of e """".Such an~expansion may be obtained by using the identity

exp( — coth~ Ao),s ~I„(Ap'/2mo), sinh2Ao, s) = 2~

4 2mo), ) (2mo), )

Xexp( —Ap'/2mo), ) sinh2 Ao),s g — (I.„"(Ap'/2mo), ))' exp I
—~i(n+2r+1) AM,s]

=o (n+r)!

(I.„"denotes the Laguerre polynomial). The resulting expression for g may be substituted into Eq. (A1), and one
then finds that the s integral of (A1) is given by

c+e~ dS ~3)2 2m~ I mAo), i m2o) r! Ap2 ) sx

caco N= — g' p g p —
~

exp( —Ap'/2mo), )LI„"(Ap'/2mo), ))'
2pri (2') S ) tanh-,'AO)cS 4ir px c=o x=0 +' + (n+r)! 2mO)c)

'+' ds
e"' exp{t ~ ~Ao), —(n+2r+1) 2Ao), —A2p, 2/Sm —m(Q —&'no), ) /2p, )s}

2xi
X{e""e)'erfcLi(m(Q &'n )/Po—)'—iA)(P 's/2m)'~') (A —+—A—)} (A5)

(In this equation there are two independent summations over the two possibilities of signature &:On the one
ha, nd, Q~ arises from the two possibilities of signature associated with spin; on the other hand, P~. arises in con-
nection with folding the summation from n= —~ to ~ into one from 0 to ~ . In so doing, the n= 0 term is double-
counted and must be divided by 2; the summation sign carries a prime to indicate this. ) The s integral is thus seen
to be the inverse Laplace transform of a complementary error function, and this may be evaluated in terms of

' Watson, J. London Math. Soc. 8, 189 (1938).
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elementary functions (BIT I, p. 266, No. 12).' Thus, with a bit of manipulation one obtains the result

m'~, (Ap' " (—Ap'q r! — (/ttp'y ' 1
ImI(p, Q+t'e) = — P' P I expI I

I,„"I
I P — —= dcc' fe(cc'+a„„(am'))

47r'p, e=e ~=o E2mcd, E 2mce, ) (n+r)! (2mcd, ) +',+ 2t't'

)&{Lce'—(mce'/2p ')' '0„+'] '—Ice+(mce'/ p, ')' '0„+'g '}+(Q~—Q) (A6)

where

and

quantum strong-field limit one has Ace,){as well as
/tee, P))1, and only one term of—a„„(a+')= I

+1m'n —(n+2r+1))-, /'tcc, (A7a)

0 +'= Q —a'no/, —ttp 2/2m. (A7b)
T=o +',+

dce fp(cv +/Jre(&+ )) ' ' ' +

~+({.-"-(~~'))
|'—

~re�(++')

dg e ~ e

This is equivalent to the result obtained by Stephen.
It should be noted that in the degenerate case the co'

integral is of the form (s/+ is a cutoff function)

survives the cutoff prescription. LThis convenience is
the reason for introducing the series expansion P, after
Eq. (A4).7 If the temperature is not exactly zero in the
degenerate case, the terms which are "cut off" do not
vanish entirely, but are small, being proportional to the
small factor exp{L{—ct„„(&&')jP},because the o/'

integral is of the form

Thus, in the degenerate case the individual terms of the
series (A6) have the role of the chemical potential
played by {—a,„(&&') instead', of {,and are accom-
panied by a cutoff factor s/+({ —ct„„(+&'))which cuts
off the series in the strong-field case. In fact, in the

dce' fe(cc'+ct,„(aa'))

One can amplify on the remarks above by performing
the cd' integration of (A6) in the degenerate case. The
integral is elementary, ' and the result is given by

m'ce ( Ap' )" —//tp') r! (Ap'
I~(p, Q+te)= 2'2

I

—

I
exp

4sr'p, e=o r=o 42mce, l 2mce, I (n+r)! (2mco, )
0H +'+(2p 2/m)i/2I i —a (~+')j»s—

r/+ —ct„„a+' ln +(Q~—Q) . (A8)o-' —(2 *'/m)"'I t.—a-(~+') j'"
In the quantum strong-field limit (t'tcc.)i) the cutoff function may be taken as st~(t —ct„„(&,&')) 8(&'=+)
)&8(+=+)8(r= 0) (where the 8 functions are Kronecker 8's). Noting that I.e"(x)—= 1, one Gnds

pg( m )'/' (—/ep') 1 ( t'tp' )"( Q ncc, hp—,'/2m—+(2p, '{'/m)'/ s

I~(p, Q+te) =—
I I

expI I ~ —
I I I», +(Q~—Q) (A9)

2'�(2p 2ff (2mce, / e=o n!E2mcc, t' k Q ncd, hp, '/—2m —(2p, 'f/—m)'/'

LThe sum P„e" is now unprimed, since the double
counting of the n= 0 term was automatically removed

by understanding the 8(&'=+) function to be mean-
ingful for the n= 0 term as well as for all the nonvanish-
ing n terms. ) The appropriate expression for p// in the
quantum strong-field limit is given by

—me/2~ f 1/2/21/2~2jz2 (A1Oa)

and this is a specialization of the more general expres-
sion for po in the degenerate case:

/oe
——(m'/2ce, /2'/ss'A') Q Q Li a-,'Ace, —(r+-,')Ace, j'/2

v=0

X&+({-~-,W, —(r+-', )a~,). (A1Ob)

M. J. Stephen, Phys. Rev. 129, 997 (1963).

Although we are concerned with static properties
here, it is of interest to note explicitly the role of

I(p, Q+ie) in the determination of the plasmon spec-
trum. ' The plasmon dispersion relation is given by

1—(4s e'/p') IrnI(p, Q+ie) = 0. (A11)

The relative importance of a root Q(p) of the plasmon
dispersion relation (A11) in response to excitation is
measured by the amplitude weight function Z(Q(p)),
which is given by

d 47t.e2

Z(Q(p)) =—— ImI(p, Q+ie)
I

. (A12)
p' & a=o(e)-

e H. B.Dwight, Tables of Isttegrals awd Other Mathematical Data
(The Macmillan Co. , New York, 1961), 4th ed. , No. 188.11.
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arises as a root of the dispersion relation may be expressedThe damping yg ~pqz o a~0~ z& f a mode or resonance which arises as a root o e is
as y=ZI', where

F(p, Q) = (Sme'/p') ReI(p, 0+i&) .

Proceeding from the results obtained in Ref. 1, one has

(A13)

/m~'~'
ReI(p, 0+is) =~ —

~

fo(~)
d(0

p h

c+zoo d$
goal

S

2~i

td s —cos-M

tanh(2A&o, s) k Sms

p
' t of modified Bessel functions I„ and then expand thei troduce an expansion in terms o mOnce again one may introdu

ials L,"(g„).This results inlatter in a series o e sqf th uares of I-aguerre polynomia s

R I(p, 0+is) = (m/27r)'"or, P' P P
fo(~)

de)
p

d$
Cd 8

2~i

'" sinh(-'AQs) cosh(-'A(o s) exp( —A'p, 's/Sm)(Ap/2m~, )"exp( —Ap'/ mM,

r! Ap'
X —L„"—expL —(++2r+ 1)2 A&a,sj

(e+r)! 2m(o,
dy exp L

—i-', (&—~'neo, )y —p.'y'/Sms j. (A15)

e y in
' ' '

uated as the Fourier~transform of a Gaussian, with the resultThe y integration is simply evaluate as e o

d . = (Sums/p ')'" expL —(W'no), —0)'ms/2p, 'j.

~~' —m(O' +')'/2p, ') functions, sois readil foun t a e s
'

is
'

d h t th integration gives rise to 8(cg—a„„( )—From this it is y
that the ensuing cv integration is trivia. ne n

r! ( Ap' )"
(p + )=( / )"'.( /p. )

( ( ~')+m(O. ')'/ p. ') —(fl —fl) ~. (A16)
2m~, i &2m~, i E4A3

In the degenerate case we have

/fo(~-(++')+ ) n+(l ~-(++ i —"),
the stron -field case above occurs here also. Specifically,and the same sort o cu of t ff prescription that follows in t e strong- e

ld limit for (A16) is given by the formulathe quantum strong-fie imi or

( —(0—rico —Ap '/2m) m/2p 2) (f1~ fl)

d h R I( =o+')—=o,
s in ica

he ntroduction we note t a e
~ 1 I( &=a+.) ~ - dl~ b .df.of Eqs. (A14)—(A17). Moreover, Imj&p,direct inspection o qs.

where
0 +' ~ —a' n(a. —Ap, '/2m,

since 0 —+0. This yie s t e resu s0 —+ 0 This yields the results employed in the main body of this paper.


