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direct response of Cooper p l,irs. We have

j'"= —(e'n/m) sr 7$(3)X(p) (6'/vr'T ')A+rrt'QA . (7.15)

These results confirm again Eq. (2.5). Note that quite
generally,

o.,s= i(esn/m)2X(p) (T,—T/T, )(1/0) . (7.16)

Consider now the case where 1/r. is not negligible.
One obtains a result which can be considered as an
interpolation between the two limits, Eqs. (6.8) and
(7.12). Let these expressions be rit&'i and rR"', respec-
tively. Then, this interpolation can approximately be
represented by the relation

tive expressions have been derived for the relaxation
time art $Eqs. (7.17), (7.12), and (6.8)j which hold for
temperature close to the transition temperature. The
relaxation time will be determined mainly by inelastic
electron-phonon collisions. One expects impurity scat-
tering to inhuence noticeably the relaxation time only
when the superconductor has such a low transition
temperature that the number of excited electrons and
phonons is small. However, if one considers the depen-
dence on the temperature difference (T,—T) of these
two processes, one is tempted to assume that for low
temperatures (which are outside the scope of the present
considerations) impurity scattering may give rise to an
effective relaxation mechanism in a superconductor of
short mean free path and considerable supercurrent
Row.
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In a previous paper, a new Green s-function decoupling scheme was applied to the Hubbard Hamiltonian,
and an improved version of Hubbard's first approximation was obtained. That result did not reduce to the
correct low-density limit as obtained by Kanamori. In the present article, the theory is improved for the
special case of a single reversed spin in an otherwise fully aligned band, and the improved theory is correct
in the low-density limit. Numerical results are presented for the simple cubic lattice. If we define an eRec-
tive exchange-interaction parameter U«t as the k=o reversed-spin self-energy for U~ ~, divided by
the number nt of up-spin electrons per site, we 6nd that the present. result departs rather rapidly from the
Kanamori result as ng is increased, and it is concluded that the Kanamori result overestimates the increase
in U, fg with ng, at least in the present case. For intermediate values of nt, the two-pole approximation of
the previous article and the present calculation give very similar results for this quantity.

INTRODUCTION

''N the first paper in this series, ' a new Green's-
function decoupling scheme' ' was applied to the

Hubbard model of a narrow nondegenerate band gov-
erned by the Hamiltonian

H = U Q n, tn, g+Q f;,c,,tc;. ,
2',jo

where c; annihilates an electron on the ith Wannier site.
This model includes in its simplest form the competition
between the intra-atomic Coulomb energy and the elec-

' L. M. Roth, Phys. Rev. 184, 451 (1969).We shall refer to this
as I.

2 L. M. Roth, Phys. Rev. Letters 20, 431 (1968).' J.Linderberg and Y. Ohrn, Chem. Phys. Letters 1, 295 (1967).

tron kinetic energy. This was solved in an improved
version of Hubbard's first approximation4 in which the
one-particle Green's function is assumed to have two
poles on the real axis.

In I, an improvement of the theory was suggested
which would lead to the correct low-density limit for
the electron self-energy. In the present article, we shall

apply the improved version of the theory to the case of
one reversed spin in an otherwise aligned nondegenerate
band. The advantage of this special case is that in the
fully aligned state, the electrons are noninteracting so
that the wave function is known. An argument will be
given to show that the approximation is good for finite
densities in this particular case. There are two purposes

4 J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1963).



ELECTRON CORRELATION IN NARROW ENE RGY BANDS. I I 429

to this study. One is to examine the stability of the
ferromagnetic state toward single-particle excitations.
We have studied already the stability of the ferromag-
netic state toward spin-wave formation. ' The other pur-
pose of the work is to compare the present approxima-
tion with the two pole approximation, and with
Kanamori s' T-matrix result, which is believed to be
a good approximation for Ni, v and which has been
studied extensively by Calloway. '

For numerical calculations we use once more the
simple-cubic nearest neighbors (scnn) case. The author
hopes in the future to apply the calculation to Callo-
way's' face-centered-cubic second-nearest-neighbor
model. It will be argued that the present results repre-
sent an extension of the T-matrix results to higher
densities, and that for a middle range of particle den-
sities, our 2-pole approximation is quite reasonable.

CALCULATION OF ONE-PARTICLE
GREEN'S FUNCTION

We wish to calculate the Fourier transform of re-
tarded and advanced Green's functions, ' ' which can be
defined as

provided that we choose the A„so that Ã is nonsingu-
lar. Other conditions are discussed in I.We then use the
E'from Eq. (7) via Eq. (4), in the Green's-function equa-
of motion, Eq. (3). We quote here the result for Green's
functions in which Bt is a member of the set (A }:

G-.= ((A-,A-')),
and the result is, for the matrix G,

G=(co e E—) —'N=lV/N(cu+e) —Zj N.

This is the only type of Green's function we shall need
here.

In dealing with the case of one reversed spin in an
otherwise aligned band, we construct Green's functions
in which the expectation value in Eq. (1) is in the fully
aligned state. The up-spin retarded Green's function is
given by

((ckt,'cktt)) 8kk'Gkt ~kk'/(M —ek+se)~

where ck is the Bloch state operator:

1/2 Q C'k R'C '

In calculating the down-spin Green's function, we begin
with the single fermion operator ck1. Commuting this

A;8 „= A,B dz, 2»stH
2vri 2 Her+2 —H—

where A and 8 are Fermion-type operators such as cI,
and ck" in the one-particle Green's function ((ck, ck )).
The expectation value is in the ground state, or is a
thermal average, as we wish, and the contour integral
encircles the real axis but excludes co which is above
(below) the real axis for the retarded (advanced) case.
The equation of motion is given by

"((A &))=(LA,&3+)+((LA,Hj; &)) (3)

In our decoupling scheme, we truncate' ' the infinite set
of equations of motion

LA„,H$=P E„A

by choosing a restricted set of operators fA„}, anti-
connnuting both sides of Eq. (4) with A/', where A1 is
in the set, and taking the expectation value of both
sides. Then if we define the energy and normalization
matrices

E„„=(LPA„,Hg, A t$ ),
N „=(fA„,A„tj+),

we can solve for E,

~ L. M. Roth, J. Phys. Chem. Solids 28, 1549 (1966).' J. Kanamori, Progr. Theoret. Phys. (Kyoto) 30, 276 (1963).
7 N. Lang and H. Khrenreich, Phys. Rev. 168, 604 (1968).' J. Calloway, Phys. Rev. 170, 576 (1968); 140, A618 (1965);

J. Calloway and R. K. M. Chow, ibid. 145, 412 (1966).'D. N. Zubarev, Usp. Fiz. Nauk SSSR 71, 116 (1959) [English
transl. : Soviet Phys. —Usp. 3, 320 (1960)g.

Lck'&Hj=ekck1+UN P ck'ttcstck+k' sp. (12)

In the two-pole approximation, we used the coefficient
of U as a second operator in the set

1
—N—1/2Q 'cRkj .n,tc1 (13)

"H. Suhl and N. R. Vilerthamer, Phys. Rev. 122, 359 (1961).

and then truncated with ck and di, . If we regard the
three-fermion operators as annihilation operators for
intermediate state particles, then in the two-pole ap-
proximation both the up-spin k' and electron q are local-
ized at the down-spin site. This results in their kinetic
energies being replaced by average values. In I it was
argued that in the low-density limit it was permissible
to average the hole energy as this is essentially the band
edge energy. This is accomplished by keeping the sum
over k' in the second term of Eq. (12).Then we use the
operator

Aks N p Ck'ttCstCk~k' —2& ~

k', (h'Pq)

Here we exclude the k'= q term to make this term inde-
pendent of ck. In the omitted term, we have n~gcj, g and
except for terms lower in order by 1/N, we can" replace
ns by its average value (nq). We use this fact to rewrite
Ak~ in the alternate form

Aks=N 1+ e' 'R'+'2 R/'(C;ttc, t —(C;ttC/t))c, g. (15)



430 LAURA M. ROTH 186

We see that here we have tied the hole to the reversed-
spin electron, but we are allowing the up-spin electron
to wander.

Another way of looking at our choice of fermion
operators is that we restrict ourselves to one- and three-
fermion operators, look at the limit of large U, and see
which operators commute past the Coulomb part of the
Hamiltonian without contributing a term of order U.
Clearly, (1—n, )c;, will do this, and is the basis of our
previous choice of ck, and dz, . But in Eq. (15), c,ttc;z
will also commute past the Coulomb term for iQ j, and
then c,.& does so also for our special case of the fully
aligned band. Therefore, in c& and A&q we are using the
most general one- and three-fermion operators which are
allowed for U~~, and we find a larger set for our
special case of one reversed spin.

It is now a straightforward matter to calculate the
matrices E and E, making use of the fact that the expec-
tation values are in the all-up state, so that

+U(ck ttcqtdk+k' q$+ck't dqfck+k' q$

—dk ttcqtck~k qz) $ r (20)

where dk, is given by Eq. (13). In the coeKcient of U
'here we can drop terms involving d&.t and d~& as these
will have two down-spin operators, only one of which
will be removed by commuting with ckp or~3k~. To
obtain E~~, we anticomlnute with ck, and using

dkyk'zrckz j+=1V Q ck"t ck'+k" t r (21)

we find

Eqi = (L~~kqr+~rCktj+) =

To evaluate 8, we commute Ai„ through H

LAkqrH7 1V Q t (qk+k' —q+qq qk')ck'ttcqtck+k' —q$
k' (k'+q)

c,& ~0)=a„~o)=o. (16)
= U~V-'~2

k' (k'Qti) k"
(ck tc,tck tck, k t)

We can anticipate that A and E are diagonal in k, and
so replace, e.g. , 1Vkk by 1Vii(k) Bkk .We then have 1Vii(k)
=1, and

1Vi,= (t A k„ckz j)= 0, (»)
which follows from the omission of the q=k' term in
Eq. (14). Next we have

lV«q =(Ak«Akq t)

=E Q(ck~t tcqt(ck+k~ qzrckp—k'~ qz't j+—cq~t tck«t), (18)

where we have made use of Eq. (16).We can now factor
the expectation value of four-fermion operators into
products of 2 two-fermion expectation values for the
noninteracting ground state. This gives

= U1V
—'z'P nk t(1 n, t)—. (22)

Finally for E«, let us first anticommute the second
term in Eq. (20) with Akq using Eq. (16):

(ck t cqtdkyk qzc4kq )
= (ckk~t cqt Ldkpk& qz rckpk&& qz jcq&t ck»t) . (23)

We now use Eq. (21), and then factor the operator prod-
ucts as before. For the first term of Eq. (20), we can use
the same argument as+in Eqs. (18)~and (19) giving
altogether

Eqq' = 8««IlV p (qk+k~ —«+qk qk~)nk~(1 nq)

lV„.=1V—
'bqq P nk t(1—n, t) . (19) +U1V i P nk (1—nq) (1—nq ) . (24)

Hei e we write nk fol' (ckt ckt). Let us summarize the matrices in block form:

1| 0
1V=

0 bq«nt(1 n„t)I—
—V "'Unt(1 —n, t)

(25)

41V '"Unt(1 —n, t) tI«q qkq(1 —n.,t)+Unt(1 —n, t)(1—n, t)J

Ekq = (ntA) p ZZk& (qkyk& q+ 6« qk&) (26)

is the energy of intermediate particles averaged over
hole states, and where nt = 1V ' Qk nkt is the number of
electrons per site. We notice immediately the factor
1—n~t, which Inakes S singular unless we restrict q to
unoccupied states, which we shall do. We can then
omit the j.—n~ factor.

Let us now calculate G= (Ncv —E) '.

(Gl qi Unt —A '"Unt
(»)

4—1V '"Unt bqq nt((o —skq) —Unt

To find the inverse, we write out the equations for G~~,

which from Eqs. (9) and (25) equals G», and G,i.

(cv —ek —Unt)Gii —Q' Unt)V '"G,i 1, ——(28)

—Unt V '"G»+nt(or qkq)G«z Q—' Un V'—G;i 0.'——
(29)
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Solving the second line for 6~i,

U (G&i 1
6, = -I +—x'Gg)

(a —ekqEXit2 E e'
(30)

~E, (kk') = UX-&(1+Ug&(kk'))-', (36)

have down and up spins, respectively, and let us general-
ize the result to cover unequal occupancy of up and
down spans.

Summing this over q, solving for P' G~i,
ql

Summing this over q, solving for g'G~i, and substi-
tuting into Eq. (28), we find

where
1 (1—n,g)(1—nk+k .,g)

gg (kk') =—P
&k+k'-g+ ~q

—~k'

The self-energy is now

(37)

where
LM —6k —Z(kco)]Gii= 1 ~ (31)

Z(k, ek) =p nk (ATE)(kk') . (38)

( U 1 —n, i—'
&(&~)= Untl 1+—P —

l
(32)

E 0 &kg 'CO J We note that in Eq. (38), we have a sum over occupied
states. If we replace ek by co in Eq. (37) (i.e., go off the
energy shell), and if we average the denominator over
the occupied k' states noting that n~g =0, we obtain the
result of the present work.

A rather commonly used approximation to the T-
matrix result is to place ek and ek by the band edge en-
ergies, and so to obtain Eq. (36) with

This is the result for the reversed-spin one-particle
Green's function which we have sought in this section.

COMPARISON WITH OTHER RESULTS

Let us now compare our result with other work. Con-
sider 6rst the two pole approximation for which we
take the result of I and specialize to the fully aligned
case. In Eqs. (73) and (74) of I, the down-spin one-par-
ticle Green's function is expressed in the same form as
Eq. (31), with

1 (1—n, g) (1—n, t)
g(kk') =g(00) =—P-

E q

(39)
2(e,—eg)

U(1 —n~)q-'
Z(k~) =n~ Ul 1+-

Wkg —a) f

We shall refer to this as the Kanamori result and we shall

(33) compare it with the present calculation in the numerical
example.

j'+0 jAO

2 ~k'nk't + 2 nk'ink"t&k'yk" —k ~

kl k/k I l
(34)

where from Eq. (21) of I, now specialized to the case
where we take all averages in the completely aligned
state, we have

ng (1—ng) Wkg

NUMERICAL RESULTS

We now wish to apply our result to the case of a
simple cubic lattice with nearest-neighbor (nn) interac-
tion, as in I. In order to carry out the integrals readily,
we shall make one further approximation. That is, in
Eq. (26), we would like to average the right-hand side
over surfaces of constant energy in q as well as in k'.
This is the same as performing a cubic average. We can
make the replacement

This is also the result of Ref. 5. Suppose we now con-
sider the result of averaging Eq. (26) for ok~ over the
unoccupied q states. We have

(1—ng) "P (1—n, g)ek, ——)ng(1 —g)nV't] '

Xp nk ~(1—»,~)(~k q+k+~, —~k). (35)
k/q

A comparison of Eqs. (34) and (35), using the fact that
pkek ——0 shows that the average in Eq. (35) is exactly
equal to 5'kg. Thus, the two-pole approximation in the
fully aligned case is obtained from the present result by
replacing the denominator in Eq. (32) by its average
value.

In comparing our results with T-matrix approxima-
tions, we find that there are several formalisms, all of
which give the same result at low densities. I.et us con-
sider that of Kanamori' who obtains an energy shift
AE(kk') for two electrons k and k', which we suppose

haik Rgik'R~ —iq-R ~k+k' —q
R (nn)

(4o)

because all nn contribute alike to an average over con-
stant energy surfaces which have cubic symmetry. Thus
we can put

where
'ka= y 3"k'~t (ts) + 'a ~

y=(ng.~v) 'P nk yak
l

(41)

(42)

is the negative of the average electron energy in the
occupied band. Using this approximation, we have for
the self-energy

U 1—n, g

z(k ) =hei(1+—p — —
)

. (43)
&V ~ e,L1 sky/(tz)']+y co)— —

We should point out that this approximation would also
result from choosing for our basis set not ck and Akq,
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This can be so ve~ve~ ~or ~k in terms of cubi, and through Eq.
(45) we obtain cok as a function of e . Tho ~k. e results are
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tok k(1 ent)+ntWkt

where from Eqs. (34) and (42),

W& ——y(1 —ynt ek/(«)')/(1 —nt) .

We haave also included these results in the 6
We see

s in e gure.
that the over-all behavior of tho e reverse -spin

an is similar for the two approximations, but there is
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(47)

(48)

as the solution of the equation

Mk= ek+ReZ(lk, tok) . (44)

This can be solved by Newton's method. Acme o . ctually for
~~, we use the following scheme. We let

~k= ~tl:1—"y/(«)'j+y, (45)

where
' '

e. en or U~co, Eq.where Mi is an auxiliary variable. Th f
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es+(Btt) Q (ek'qk —s ek')rrk't. (49)

becomes swallowed up by the continuum; this occurs at
the position of the cusp in Fig. 1.We note that there are
several solutions of Eq. (44) near this point, which indi-
cates that the quasiparticle picture is breaking down in
this region. Actually part of the detailed structure is an
artifact of our approximation of averaging quantities
over constant energy surfaces, and we find that the self-

energy is going to zero as an inverse logarithm. Above
the cusp the quasiparticle picture reemerges provided
the broadening is not too great.

The reason for the behavior of the level width can be
seen by examining the energy denominator in Eq. (32),
which vanishes for

8-
l
l
l

l(3}

/

"2 0

Fro. 5. Effective exchang splitting parameter U, f f =+ (0 cop)/.
np, for U —+~, versus up-spin Fermi energy. (1) Present calcula-
tion, (2) two-pole approximation, and (3) Kanamori result.

The second term here is just the energy of a spin wave in
the random-phase approximation. ' "Thus, the process
which contributes to the broadening is the reversed-spin
electron k going into an up-spin electron q plus a spin
wave of wave vector k —q. This becomes possible when
the reversed-spin band crosses the up-spin band, and the
crossing occurs because of the band narrowing effect. At
smaller k values, the reversed-spin electron should have
a level broadening due to emission of up spin electron-
hole pairs, but we have neglected this in our treatment.

To examine further the characteristics of the reversed-
spin states, we have plotted the spectral function for
three values of the up-spin Fermi energy in Figs. 2—4.
We can see that for the lowest value of e~ given, the
quasiparticle states are generally well defined but for
large eb (or n close to 1) the broadening becomes extreme
and we can hardly talk about bands. Even for small
k, the f1 function is losing strength to the continuum.
We should remark that the two-pole approximation
corresponds to replacing the spectral function by a
single 6-function peak placed at the center of gravity.

We notice in Fig. 1 that for el:——1, the lowest down-
spin state has gone above the Fermi level. (Actually
interpolating, we And that this occurs at c~——0.9,
rbt=0. '76.) Above this value of eb, the ferromagnetic
state is stable, while below it is unstable, although as
pointed out in the Introduction, we can still study the
reversed-spin states to compare approximations.

U„()— 1 —n—
'PEfi

2' fi 6' 6P-
(52)

The three are plotted in Fig. 5. We see that the present
approximation agrees with the Kanamori result for
very small n, but that as n increases, the Kanamori re-
sult increases much more rapidly than either of our
results. This appears to be due to the neglect of the fre-
quency dependence of the self-energy.

It is interesting to note that for intermediate values
of occupation of the bands, the two-pole result and the
present result for U,«are quite close together.

We can also calculate the residue Z at the pole in the
Green's function, or the spectral weight of the state.
The results are plotted versus e~ in Fig. 6, for both the
two-pole approximation, in which case it is given by

i.o

To make a comparison with the Kanamori result, let
us consider the k=0 down-spin state, and let us define
a quantity U,« in the following way:

Eb (k =- 0) eb nt U—.rr—-

We shall call the value of U,«we obtain in the present
calculation, U,fq('). The two-pole approximation gives

U~f f e b+ Wk )

and the Kanamori result gives

15

YosrY
A

& O. 1

/~Fr& 8 7
-3 -2 —

I 0 I 2 3
(U

FIG. 4. Spectral function S(co) = (1/s') ImGb(cu) for reversed
spin, for various wave vectors labeled by the associated energies
ek, and for n=0.922, es=1.8, U ~~. The area under S(ca) is
1 —et and the height of the 6 function is scaled so that the area
would be correct if it were a rectangle of width 0.5.

'2 T. lzuyama, Progr. Theoret. Phys. (Kyoto) 23, 969 (1960).

0.8

04

0.2

0
6F

Fxo. 6. Residue Z at the pole in the Green's function for k=0,
U~~, versus up-spin Fermi energy. Solid line is the present
work, dashed line is the two-pole approximation,
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1—nq, and for the improved calculation, for which

Z= 1/(1 —dZ jdte) .

We see that the two results are almost identical.

(53)

DISCUSSION

Perhaps the most interesting result of the present
work is that for U, ff in Fig. 5. If U, ff is to be equated
with the exchange splitting in the Stoner model, then
we 6nd that the Kanamori result for this quantity de-
parts more rapidly from the low-density result than
does the present calculation, as the number of carriers
increases. If we believe that an improved calculation
gives more correlation reduction of this quantity, then
v. e must say that our result is an improvement and that
the Kanamori result overestimates the increase of U, ff.
The above belief would be a fact if the claim made in I
for a minimum principle were verified. At any rate,
these considerations may have serious consequences as
for example in the work of Calloway's' recent article in
which he finds that the increase in U.ff is very important
in stabilizing the ferromagnetic state for small but
finite n. This effect seems also to be important in
Ni. ~

There are several mitigating factors here. One is that
we are considering the worst possible case, namely,
U —&~. Secondly, we are using the scnn model, and the
work of Calloway in particular is based on a second-
neighbor face-centered cubic model which has, like
nickel, a peak in the density of states near the band
edge. The argument here is that the Kanamori result
should be good in this case, as the Fermi level is very
close to the band edge. We should examine U, ff in this
case and hope to do so in the future. Calloway has also
applied his result to Ni" and the same remarks apply,
with the additional factor that he considers, and we

neglect, degeneracy. Finally, to compare our work with
that of Lang and Ehrenreich, ' for example, we need to
find the corresponding quantity for the paramagnetic
state. U,«maynot be the same for the ferromagnetic and
paramagnetic states, as pointed out recently by Penn. "

Nevertheless, it does appear that the Kanamori result
can be improved upon and extended to higher densities

by methods based on the present work, and also that
the two pole approximation gives a reasonable value for
U, ff at finite carrier densities.

"J. Calloway and H. M. Zhaver, Phys. Letters 28A, 292
(&969)."D.R. Penn, Phys. Rev. 1?7, 839 (1969).
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The density perturbation bp(r) about a Coulombic impurity in strong magnetic fields is analyzed in the
degenerate case. The results show that (a) anisotropic Friedel oscillatory behavior is discernible along the
direction parallel to the magnetic 6eld, and (b) exponential decay along the direction perpendicular to the
magnetic field deprives the result of long-range character. These results are in accord with those of
Rensink, save for the fact that the 8-function impurity used by Rensink results in a Gaussian decay in the
perpendicular direction, in contrast to the exponential decay in the perpendicular direction seen to result
from a Coulombic impurity here. This indicates that the qualitative nature of the spatial decay in the
perpendicular direction is dependent upon the character of the impurity potential. The results obtained
here are valid at large distances from the impurity for a wide range of field strengths. A qualitative discus-
sion of low-field behavior in the approach to the zero-6eld limit is presented, and the role of self-consistent
aspects of response is briefiy indicated.

I. INTRODUCTION AND FORMULATION

HK study' of the dynamical properties of a
quantum plasma in a high magnetic field has

revealed the existence of interesting physical effects

' N. i. Horing, Ann. Phys. (N. Y.) 31, (1965).The notation of
this reference will be maintained here, and a brief review follows:
a&~= (4s.e'p/m)'"; p is the density; m is the effective mass; cu, is
the cyclotron frequency (=eIf/me); p is the wave vector
[=(p„p)g; r is the position vector from impurity [=(r„r)g; H is
the magnetic field along the g axis; p= (ET) '; E is Boltzmann's

due to Landau quantization and nonlocality. Moreover,
one may expect static properties to be correspondingly

constant. ; T is the absolute temperature; g is the chemical po-
tential, equal to the Fermi energy Ez in the degenerate limit;
fo(co) is the Fermi-Dirac distribution function [=(1+e~" r&p)

Pp is the Fermi wave number [=(2mi)'"/it]; and pn is the
Debye-Thomas-Fermi (DTF) wave number [= (4s.estop/8$)'~'j.
(Also, ro is the interpa'rticle spacing, ao is the Bohr radius, and
r.=rojao. ) Note that two-vectors referring to the plane per-
pendicular to the magnetic 6eld are represented by lightface
barred letters.


