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The situation is investigated in which a superconductor in a state of supercurrent Row and near the
transition temperature is exposed to an alternating electric Geld. The induced alternating current is shown
to exhibit a frequency dependence (1—iDra), which is due to a relaxation process in the Cooper-pair
density. The relaxation time 7.R is determined by electron-phonon collisions (collision time v-,), in which case
Ta rPT—,/(T, T)g'@; —impurity scattering is important only under certain conditions, in which case
ra~10 "LT,/(T, T)g ' sec—.

I. INTRODUCTION

IME-DEPENDENT processes in superconduc-
tors which affect the density of Copper pairs

may occur under two quite different conditions. In one
case, the superconductor is gapless. This is realized, for
instance, in the Abrikosov mixed state'; where vortex
motion is the prominent time-dependent process. ' In
the other case, the superconductor has a finite energy
gap; and as a consequence, energy conservation severely
restricts changes in the density of Cooper pairs.

A time-dependent process of the last kind has been
realized by Gittleman and co-workers, in their experi-
mental work on the hf conductivity of a superconducting
filament as a function of a large dc through the filament.
Since the density of Cooper pairs decreases with increas-
ing momentum of the pairs (depairing eRect), the hf
conductivity due to accelerated supercurrents has to
decrease with increasing dc. However, the exact relation-
ship depends on the frequency Q. If 0 is suKciently
small, the density of Cooper pairs will change in time
corresponding to the hf part of the current, and it will
not change if 0 is very large. In a formal way, these
two cases are distinguished by Q~R((1 and 07-&))1,
respectively, where w& is the relaxation time of the con-
sidered process.

In the experiment mentioned above, the frequency
(23 kMc/sec) could not be varied. Jn analyzing their
data, the authors chose the case Qra&)1, i.e., 7-+((10
sec, and obtained consistent results (the criterion was
the magnitude of the penetration depth).
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' Another example is provided by a superconductor with para-

magnetic impurities of sufficient concentration. This situation has
recently been investigated by L. P. Gorkov and G. M. Eliashberg,
Zh. Eksperim. i Teor. Fiz. 54, 612 (1968) LEnglish transl. : Soviet
Phys. —JETP 27, 328 (1968)$.' Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev.
139,A1163 (1965);J.Bardeen and M. J. Stephen, ibid. 140, A1197
(1965); M. Tinkham, Phys. Rev. Letters 13, 804 (1964); A.
Schmid, Physik Kondensierten Materie 5, 302 (1966); C. Caroli
and K. Maki, Phys. Rev. 164, 591 (1967).' J. Gittleman, B. Rosenblum, T. E. Seidel, and A. W. Wick-
lund, Phys. Rev. 137, A527 (1965).

Theoretical calculations, ' ' however, result in much
larger values of vR. Though there are discrepancies
among these calculations, ' the general trend is clear
and results from the common assumption that inelastic
electron-phonon collisions furnish the energy required
to break up Cooper pairs. The corresponding collision
time r. is, even at higher temperatures (T& T,), seldom
much smaller than 10 ' sec.

This discrepancy has led the author to investigate
more closely the case in which superconducting Alms
in a current-carrying state are exposed to a small homo-
geneous hf electric field. Only the vicinity of the tran-
sition temperature (T,—T«T,) has been studied. It
is found that for clean samples (no residual resistance),
the relaxation time 7.R is essentially the same as given
in a previous paper, '

r,[T,/(T, —T)]"'.
Impurity scattering does not change this result if the
dc is zero (or sufficiently small). This reflects the fact
that impurity scattering is elastic. However, a peculiar
situation develops with larger dc. One obtains here a
finite relaxation time even without electron-phonon
scattering, under favorable circumstances (largest dc),
as small as

ra~10 "LT./(T, —T)j' sec.

In order to indicate how this particular result arises,
let us consider a clean metal in a current-carrying state.
Here, the quasiparticle energy depends on the direction,
such that the kinetic energy and the binding energy
of the electronic system is no longer constant on a sur-
face of constant energy of a quasiparticle. If a quasi-
particle scatters at an impurity, a transition between
states of different binding energy takes place. Although
the difference in binding energy is quite small, a series

4 G. Lucas and M. J. Stephen, Phys. Rev. 154, 349 (1967).
5 J. W. F. Woo and E. Abrahams, Phys. Rev. 169, 407 (1968).

A. Schmid, Physik Kondensierten Materie 8, 129 (1968).This
paper is the basis of the present investigations.' The treatment of Ref. 4 has been critized in Ref. 5. The calcu-
lations of Ref. 5 and Ref. 6 share a common starting point. The
author feels that the difference in the results is due, at least
partially, to an ansatz in Ref. 5 for the electronic self-energy
which is not adequate for temperatures close to T,. Cf. Ref. 19.
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of successive scatterings add up to the energy required
to break a Cooper pair.

This discussion shows that, in the vicinity of the
transition temperature, there is a considerable disagree-
ment between calculated values of ~R and those found
by experiment.

In the following investigation, we will first, in Sec. II,
analyze phenomenologically the experiment of Gittle-
man and co-workers. The microscopic analysis is based
on relations introduced by Eliashbergs in the case of
electron-phonon interaction and by Abrikosov and
Gorkov' in the case of impurity scattering; these rela-
tions will be presented in Sec. III. In Sec. IV, the equilib-
rium Green's function of a current-carrying state will be
discussed. The relations which determine the self-con-
sistent response to an external electric field will be de-
rived in Sec. V, and approximations will be introduced
according to arguments given in the previous paper. '
Sections VI and VII contain the results and discussion
in the clean and the dirty case, respectively.

II. PHENOMENOLOGICAL ANALYSIS

p, = (1/P) (n —q'/2m),

j,= (2e/mP) (n —q'/2m) q,
(2.1)

where n and P are the Ginsburg-Landau parameters.
The current is maximal for q '=23mo. . Note that q

cannot be surpassed in Row experiments. "
Consider the case of an alternating electric field

E ~ e '"'. We will assume that the acceleration law of
free particles holds also for the c.m. of the Cooper pairs.
Therefore

and

q=2eE

q=qs+(2e/ —iQ)E,

(2.2)

(2 3)

where qp is the momentum corresponding to the dc.
The change 8q=(2e/ —iQ)E causes a change in p„
Bp,= —(1/PVm)qs 8q, provided the frequency Q is low

enough to allow p, to follow freely. For high frequencies
however, bp, =0. The simplest expression which inter-
polates between the two limiting cases, and which is a
holomorphic function of 0 in the upper complex 0
half-plane (causal response), is given as follows:

In a state of homogeneous supercurrent Row, " the
Ginsburg-Landau wave function 4 varies as e&'~" ~',
where q is the c.m. momentum of the Cooper pairs.
Their density p, =

~

q'
~

' and their current density

j,= (e/m) p,q are found to be equal to

e'p p 1 c' 1
0sp

m 0 AX' Q

(2 3)

where X is London's penetration depth. In the case
07.~((1, the value of 0-, decreases from o-,p at qp=0 to
zero at qp= q; whereas, in the case Qr~))1, the value
of 0., decreases from 0 p to 30. p.

There are, of course, other contributions to the con-
ductivity, e.g. , the contribution of normal electrons.
Fortunately, their frequency dependence is weak and
their relative Inagnitude is small in most cases.

III. BASIC EQUATIONS

The case of a superconductor with electron-phonon
interaction as well as impurity scattering has already
been considered by Tsuneto, "who combined the results
of Eliashberg' and Abrikosov and Gorkov. ' Accordingly,
the self-energy 2 of the electron Green's function G
(the caret indicates 2&&2 matrices as introduced by
Nambu") is the sum of a phonon and an impurity
contribution,

(3.1)g —mph++ imp

The phonon contribution is defined by the following
equation:

Zz'h(1, 1') = —D(1,1')rzG(1, 1')r, , (3.2)

where D(1,1') is the phonon Green's function, and r~,
/=1, 2, 3, are the Pauli matrices. Coordinate-tempera-
ture representation'4 (1=ri, ri) has been used in &q.
(3 2)

According to Eliashberg, D(1,1') is practically un-

changed by the transition into the superconducting
state. From this we draw the conclusion that it will be
affected neither by space- nor time-dependent processes
in the superconducting system. This allows us to replace
D(1,1') by the equilibrium Green's function D(1—1').
Introducing the c.m. coordinate R= -', (ri+ ri ), and
Fourier transforming with respect to the difference
ri —ri. , we obtain from Eq. (3.2)

Zph(p; R; r, r')

Here, 7.8, is the relaxation time introduced in Sec. I.
In the following, we assume qs~~ E, since this is the most
advantageous situation.

The alternating part of the current is proportional to
8p,qs+p, bq. From this, we find the contribution 0,
to the hf conductivity

as qo f 2

I
1+

o.,s 3q '4 1 zQ—raj

bp, = —i(2e/PmQ)qs ~ E(1/1 —iQra) . (2.4)

' G. M. Eliashberg, Zh. Eksperim. i Teor. I'iz. 38, 966 (1960)
/English transl. :Soviet Phys. —JETP 11, 696 (1960)].

'A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor.
Fiz. BS, 1558 (1958) LEnglish transl. :Soviet Phys. —JETP 8, 1090
(1959)].

'~ J, Bardeen, Rev. Mod. Phys. 34, 667 (1962).
"A. Schmid, J. Low Temp. Phys. 1, 11 (1969).

D(p —p'; r r')rsG(p', R; r, r'—)rs. (3.3)
(2zr)'

"T.Tsnneto, Progr. Theoret. Phys. (Kyoto) 28, 857 (1962).
'3 Y. Nambu, Phys. Rev. 117, 648 (1960).' A. A. Abrikosov, I.. P. Gorkov, and I. K. Dzyaloshinskii,

Qguntlm Field Theoretical 3fethods in Statistical Physics (Per-
gamon Press, Inc. , New York, 1965).
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B(T T') =-
2Pp

dP PD(P, T —T') (3 4)

On the basis of Migdal's" arguments, Eliashberg has
shown that the most important region of the integral
is where Ip'I is close to the Fermi momentum pp.
Keeping this in mind, and averaging over the directions
of p', we find that D(p —p'; T T')—can be replaced by

2pp ( eiq. r /2

U() =I
E 0

0

r2/)

by means of a unitary transformation:

G'(r, r'; T,T') = Ut(r)G(r, r'; T, T') U(r'),
Z'(R; T, T') = U (R)Z(R; T,T') U(R),

where

(4.1)

(4.2)

Then,

Z»(P~Pp; R; T, T') = B(T—T—')T2G(R, Ri T,T )Ts ~ (3.5)

It should be noted that in a state of supercurrent Row,
the Green's function G(p'; R; T, T') will depend on the
direction of y. In this case, the transition from Eq.
(3.3) to Eq. (3.5) involves an additional approximation
which corresponds to neglecting the spatial range of the
electron-phonon interaction. No inconsistencies have
been found using this approximation. "

The impurity contribution to the self-energy is of a
similar structure to the one discussed above. The differ-
ence is connected with the fact that impurity scatter-
ing is elastic. Therefore, in the relation correspond-
ing to Eq. (3.5), the temperature-dependent function
—B(T—T') is replaced by a constant:

where

and

I G tri(II p rdv)7 = (srdv —SX)1—eTs p

e = y2/2222 —11, s= Ppq/22/2 = I/pq/2,

x= cosg(y, q).

(43)

As a result of this transformation, the self-energy is
independent of the space coordinates, and the Green's
function depends only on the difference of the coordi-
nates. Thus, the Fourier transforms take the simple
form Z'(&d„) and G'(p; &d„), where o/, = qrT(21 +1) are the
odd Matsubara frequencies.

The equations of Sec. III are covariant with respect
to the transformations (4.1) and (4.2). Note that in
(G;), the differentiation (1/i)V is replaced by (1/i) V
&-,'q. Therefore, the Fourier transform

Z' &(p~pp; R; T,T') =— T",G(R,R; T, T') Ts,
2VrE pr;

dp Pl~(P) I'
(ttdv Zll SX)1+eT2+Z12T1

G'(I; ~.) =- . . . (4 4)
(tppv Zll SX) e Z12

22TN pT; 2pp' p

Here, n; is the density of the impurities, N(p) the Fourier
transform of their potential, and Sp the density of
states. Any effects resulting from an anisotropy of
G(p, R; T, T') have been neglected; this is equivalent to
the assumption of isotropic scattering (i.e., we do not
distinguish between the collision time rj and the trans-
POlt tlIIle Ttr) ~

Equations (3.1), (3.5), and (3.6) together with the
constituent relation

where the symmetry Z»=Z», Z»=Z» has been used.
Note that Z~~ and Z~~ are odd and even functions of co„
respectively.

States of supercurrent Qow in the presence of large
impurity scattering have been extensively studied by
Maki. '7 In order to facilitate a comparison, we intro-
duce the notations

The term proportional to q' has been absorbed in the
definition of p. The Green's function in the supercon-

(3 6) ducting state is, according to Eq. (3.7), of the following
general structure:

(3.7)

where G„; is the Green's function of noninteracting
particles, form the basic set of equations.

IV. EQUILIBRIUM GREEN'S FUNCTIONS IN A
CURRENT-CARRYING STATE

We assume a homogeneous current-carrying state,
in which the c.m. of the Cooper pairs has a finite
momentum II. Consequently, the elements Z»(R; T, T')
and Z21(R; T, T') of the self-energy (the order parameter
and its complex conjugate if T = T') depend on the space
variable as e'&'" and e ''I', respectively. In such a case,
it is convenient to introduce new (primed) quantities

"A. B. Migdal, Zh. Elqsperim. i Teor. Fiz. 34, 1438 (1965)
(English transl. : Soviet Phys. —JETP 7, 996 (1958)j.

I6 Cf. Ref. 17.

2tdv = qrdv —Zii((dv),
+=Zls(tdv) p

sedv= srdv ZIIP (idv) p (4 5)
A(pp„) =ZI2»((d„),

and the connection is made by identifying ice„with
Maki's co. Therefore,

rd„//T. = sinhit cosX, s/rK= cosh/ sinX,
6/5= (1 AT;f) cosh'~(cosh&—+-2'T;6) ',

& = (s/&) L1+2(T,A) 2t cosh&7(cosh&+ 2 T;6)—',
rd/6 = sinhif~ (1—f'/cosh'), f= 22 (T;6)(s/6) 2,

provided 7.,A(&1. In this approximation, all terms of
order (T;6) are neglected unless they appear in the
combination f= 22(T;D)(s/6)2. We stress the fact that
this simplification has to be done in the 6nal result only.

I M. Maki, Progr. Theoret. Phys. (Kyoto) 29, 10 (1963); 29,
333 (1963).Note that the quantity v in these papers corresponds
to 27; in the present notation.
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In the relaxation phenomena we are studying, the
implications of A(~.) being frequency-dependent are
unimportant, thus, 6 can be assumed to be a constant.
The important feature is that the analytical continua-
tion of ice, has an imaginary part on the imaginary co„

(= real frequency) axis. This means that the single-
particle states have a finite lifetime because of collision
with phonons. Near the transition temperature (D((T),
iso„can be approximated by the expression which it has
in the normal state. Therefore, "

III. For convenience, we put 8Z= @. Since the electric
field is homogeneous, g is independent of its c.m. co-
ordinate R.

According to Eqs. (3.5) and (5.3), the phonon contri-
bution p&" is given by Lin Fourier transforms, P(r, r )
~ e—M7yT+Mlgp T

0'"(~.,~') = TZ—&(~-) -rsG. (p, ~.+~-)
(2s.)'

ice„=a[ice,+i sgn(Reco„)/2r. j, (4 7)
)&I —(e/m)A p1+j((o„+(e„,co„.+re„)g

provided that ~cv„~ &T (which is the most important
region here). By using properly renormalized quantities,
e.g., the Fermi velocity, the renormalization constant
u can be put equal to 1. The level width 1/2r„where
r, is the electron-phonon collision time, is proportional
to T'/O~' (O~=Debye temperature) which indicates
that it is proportional to the number of thermally ex-
cited phonons. "

where

J3((a„)= drei~l rg(r)

2 ( 02)—g' 1— ln( 1+ (5.5)

+G.(p, cv„+(u„)f„(5. 4)

V. RESPONSE TO AN ELECTRIC FIELD:
GENERAL RELATIONS

In the following section, we are interested only in the
linear response. We assume a homogeneous electric field
E= r)A/r)t in —the direction of the superflow, i.e.,
parallel to q. Correspondingly, there is a perturbation
in the single-particle Hamiltonian

gimp(~ ~,) rsG. (p ro„)
2s-1Vpr; (2s-) '

and co„=2znT are even Matsubara frequencies. The
last expression is an approximation and corresponds to
the Debye model. Similarly, the impurity contribution
is given by

bh = —(e/m) A(1/i) V', (5 1)
yP —(e/m)A p1+j(co„,re„.)jG.(p,ce„.)r", . (5.6)

which causes a change in the free Green's function

8(G' ) '=e/mA(1/i)~71. (5.2)

A term ~if A has been neglected, since it has no
inhuence on the current. The current itself can be found
from the change 8G' of the Green's function, which is
given by

fG'= G.'( 8(G'„;) '+ bZ—'jG.', -(5.3)

where G,' is the equilibrium Green's function of Sec. IV.
Equation (5.3) indicates that we first have to deter-

mine the change in the self-energy bZ. This has to be
done self-consistently, according to the relations of Sec.

"The form of Z11 in the normal state has been discussed in Sec.
21 of Ref. 14. The transition to the superconducting state intro-
duces a change in ImZn( —ice+0) of relative order (dP/T')
Xln(T/n), (n'/T~) ln(a&/n)(~co~ )a) etc. , which is negligible if
~'&&T'. Note that ~, as defined in this paper by A, =Z&2p", is
approximately constant for

~
co

~

& T, which is not the case if
defined as usual by h=co,&12 "/~, .

' In the constant-collision-time approximation, Eq. (4.7), the
electronic thermal conductivity limited by electron-phonon colli-
sions is given by the relation a = (~'/3)nk T~„provided the metal
is in the normal state. Using measured values of ~, we find the
collision times at T=T, to be equal 0.6 10 ' sec and 2.8 10 "
sec for tin and lead, respectively. The exceptional small value of
r, in the last case reQects the fact that lead has a high transition
temperature and a low Debye temperature.

'OThe currents calculated from the primed and unprimed
Green's functions differ only by an irrevelant constant part.

If one writes Eqs. (5.4) and (5.6) in detail using Eq.
(4.4) and the relation

d p =~%0
(2s-)'

dx

one finds that the solution is of the form

A A,

4 =A1+4sri,
~(- „-")=-~(.. .'),
A( ~~~ ~~') =A(ce~~ro" ) ~

(5.7)

Oe

yp" ((u„,co„.) =T P B((o„) L, (co„+re„,cv„.+co„)

Q ~ja(&6+~np ~v'+~n)A (~v+~n) o~v'+roe)

(5.S)

where j=1, 2. The functions I, and M, & are various

Equation (5.6) will be used to eliminate p™from
Eq. (5.4); the modifications ensuing from this procedure
are known as vertex corrections in the theory of alloys. '
We obtain
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Retd'
~r Re~«Recy„o

6
5

r' Re+If
2

(a)

(5.8) into a contour integral

I ZS

T P ~— dh coth
n 4'll 2T

(5.11)

The contour C is illustrated in Fig. 1(b). The tran-
sition to real frequencies is then made by letting
~„~—ice~ and ~„~—ior2. At the same time, we intro-
duce the c.m. frequency 0=co&—co2, and the internal
frequency o&=-', (&or+o»). In order to obtain the correct
retarded expression, we chose ImQ) 0. Let the super-
script p=1, . . . , 6, denote the analytical continuations
according to the six regions of Fig. 1(a), and put

4, &» (&d, Q) =yp" &» (—i&d —iQ/2, io&+—iQ/2) . (5.12)

Rez«cu„» Rei«0 Rez«w„

(b)

Then, the symmetry of the functions L;(» and M;I, &»

allows us to seek a solution with the following properties:

FIG. 1. (a) Domains of analyticity of P,q(ca„,cu„.).
(b) Contour C of the integral in Eq. (5.11).

combinations of the quantities

LC' "&(~ Q)3*=(—)Jc' "'(—~, —Q),
c, & &(--, Q) = (-) @,& &(-,Q),
C,"'(—o&, Q) = (—)'C, &'&(o&,Q).

(5.13)

i~ +'
pn(ok+&r') =

2 ]

2X' +
n COv)arv'

2

+'
R„(o&„,o&„)=—

2 ]

dx x
W(o&„)+ IU (o&„)

(i&o„—sx) (iso„—sx) +Ale
dx x—

LW+W']WW'
(5.9)

(ioo. sx) 5,'+ (ito„——sx) Z
dx x—

)
$W+W'1WW'

(2~r; —Pp+Qp)Ri —Rp(Pi —Qi)I o(o&p)&dp~) = 27rt jlV p (2, P )s Q s+R s

W(o&„)=L(i&o„—sx)' —6']' ' ImW) 0.

For instance, the quantities we need the Inost later are

In particular, @i&'&(0,Q) =0. It can be shown that the
difference C, &'&(0,Q) —4;&'&(O,Q) is neglegible (its rela-
tive order of magnitude is 6/8). This also means that
C, &'&(O, Q) 0. Since we only expect significant changes
in thefunctions C; over therangeco 0, weareallowed
to neglect the quantities C~'&' altogether.

If one puts 2 = s= 0 in Eq. (5.8), the ensuing homo-
geneous equation has a solution C» &'&

(o&) = &&(&o) at T= T,
(second-order phase transition). This homogeneous
equation will be subtracted from Eq. (5.8); at the same
time we try the ansatz 4» &'&

(&o,Q) = &&(o&). After some con-
sistent simplifications (for details, we refer to Ref. 6),
we arrive at the following equation:

o=a(i~ —o)) (Q)(p,e/m)A(Q)
—B(i&d —0)&i(Q)X(0), (5.14)

where

(5.10) X=),+X, ,
2~r (Po+Qo) Po'+Qo' Ro'— —

lls ss(o&„)o&„~)= —27I r [Xp
(2~r;—Po) '—Qo'+Ro' fy-Q/2q

dy «nhI
2T )

We assume that the vertex corrections do not introduce
changes in the analytical properties of the functions L,
and M;I„ i.e., we assume that they are holomorphic
functions of co, and co„ in the four regions Redo„&&0,

Rear, &&0. Then, it is a consistent assumption that
gp (&d„,o&„) is a holomorphic function in the six regions
shown in Fig. 1. LThe discontinuity at Reo&„=Reo&„
arises from the singularities of B(o&„) at Reo& = 0.) The
following arguments are given essentially in Ref. 6. In
order to find the analytical continuation into the region
of "real" frequencies, one changes the summation in

1

4mi

Q Q~
Xl.,&»~ -iy-i-, —iy+.—~,

2 2j (5.15)

( y+Q/2 y —Q/2)
dy

~

tanh —tanh
2T 2T )

Q Qy
XL s'~ iy i , 1—y+i———'

2' 2i
'
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/2 =
// r+/28 y

pg=
4xi

/y
—0/2

dy tanh~
2T

0 0
X/III»&1&~ —iy —i—, iy+—i

2 2

( y+0/2 y —0/2
dy

~

ta,nh — —tanh
2T 2T

( Q Qi
X/V22&2&~ —iy i , i—y+—i—~. (5.16)

zs
T g ~— ds tanh

4x 2T

Then, the contour C is deformed so that, e.g.,

T g P2(o&„, o&„—o&„)

(5.18)

(o&.2/0~2)j, whereas Ri is concentrated mainly in the
region of small o&.. Therefore, $2 can be considered to be
independent of o&„. (The c.m. frequency Qhas to beiden-
tified with io&„.)

The analytical continuation will be done in a manner
similar to the treatment above. First, one replaces

y
dy tanh (Ps&1&( iy; ——iy —iQ)

4xi 2TStarting from Gorkov's equation, " one obtains al-
most the same result. In that case, X(0) stands for the
change of the order parameter 5h, and —1VoB(io&—0)
stands for the interaction parameter EpV. However,
there is one difference in that the self-energy Z&p" does
not appear in the Green's function, i.e., there are no
electron-phonon collisions included.

For general information, we might add that the
regular quantities X„and p„can be expanded in powers
of (62/T2) and (q'/T') (terms of order 0/T can be ne-
glected). The reason for this is that 1.2&" and /M'22&'&

are holomorphic in the upper y half-plane. In contrast
to that, I2&" and 3522"' have singularities on both sides
of the real y axis; and the evaluation of the singular
quantities X, and p, is the most dificult task. Fortu-
nately, the linear approximation in 0 is sufficient. As
the coefficient of 0 is quite large (this reflects the fact
that rn is large, too), small contributions to this coefli-

cient can be discarded.
It is convenient to split the induced current density

j into a paramagnetic part j„and a diamagnetic part
jd. Considering that &1=0, we obtain from Eqs. (5.3)
and (5.9)

+P2/'& (—iy —iQ; iy)—$
1 y y —0

+ — dy tanh ——tanh
4xi 2T 2T

XP2&'&( iy; —iy+iQ) —. (5.19)

Contributions of the type displayed by the first and
second integral in Eq. (5.19) will be called regular and
singular, respectively. We will And that the singular
contributions are small and do not show any frequency
dependence in the range of interest.

VI' CLEAN-METAL: RESULTS AND DISCUSSION

If 1/r;= 0, we have from Eq. (5.10)

L2= EoR1, M22—= —Xo(Po+Qo). (6.1)

e 1$

j„&'&(o&„)= 3T P (—LP2(~„, o&„—o&„)
m oslo

Q2(o&n rd~ o&~)3~} ~
Ep 0

(5.17)
4 2T cosh'(y/2T)

( +yi/2 )r(y i/22. ,)+62—
e'n mj &2&(o&„)= 3T P — Ri(o&,,, o&„—o&„)

222 ~, ePp

Upon replacing ird„by y+i/2r. , we see that y and
s=r&pq/2 occur essentially in the combination y —sx. If
one absorbs —sx in the integration variable y, it appears
only in the argument of tanh, i.e., tanh$(y+sx&0/2)/
2T). From this it is clear that l1 and /1 can be expanded
in powers of s'/T'.

Consider now the leading term of p„

X42(rov) o&v o&n)

Note that j is parallel to A. The diamagnetic part js
is the same here as in the normal state. Therefore, we
obtain the total current if we subtract from Eq. (5.17)
the corresponding expression in the normal state and
add the current density in the normal state, namely,
mar„A.

According to the arguments given in Ref. 6, the de-
pendence of $2(ro„o&„—rd ) on o&„ is weak Li.e., of order

'L. P. Gorkov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958)
t English transl. Soviet Phys. —JETP 7, 505 (1958)j.

L(y+i/22. )2 +2ji/2((y z/2r )2 +2]l/2

j.
X , ; (6 2)

L(y+i/2~. )'—~'j'"+L(y —i/2~. )'—~'j"'
where the imaginary parts of the square roots in the
denominators are positive. Since for

~ y ~

&6

q
2 —1/2

( ya (
—0,2 ~~sgny (y' —62)'/2

zy
X 1& —,(6.3)

2"(y'-~')- '
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i07-,62
pg= Ep

4T
dy

cos&'(lX/T)
I X I

Ly' —~'j'"

the suni in the denominator of Eq. (6.2) is very small.
Therefore, the region

~ y ~

&6 is the most important one
(provided d ))1/r, ). Thus,

The left-hand side can be considered to be equal to
bh'. From Eq. (6.6) and A= —(i/Q)E, it follows that
this relation corresponds exactly to Eq. (2.4).

The contribution j„(2) of the current involves the
quantity R&, which in the present case is equal to
—(1/Ep)Lp. Therefore, the frequency sum (apart from
a factor of proportionality), leads to X; in particular

Qr, d
= ——Ep (6.4) e'm 7t (3) ep'q' 1

j(2) —j (2)— A
m 12 x2Tc2 1—i07R

(6.11)

Note that this expression is greater by the factor 27

than the corresponding one in the gapless case. Cor-
rections to the result (6.4) are of the relative order
r.Q, (r,D) ', and s'/T', which are small quantities.

Calculating p,., we find that the term linear in 0 does
not contain the large factor r,A; this allows us to put
0=0. Then, we obtain in standard approximation

Tc T7i.(3)—3~'+-,'sp'q'
1i„=—1Vp —+EP

T. 8 7r'T, '

Consider the Ginsburg-Landau equation in the case
where the order parameter has an e'I' dependence, "

T, T7i (3) 6'—+prep'q'
+Ep 6=0. (6.6)

8 m2T, 2

Considering j('), one finds that the singular part does
not contribute and one obtains the result

(6.12)

en T —T1
Osp =~

m T, 0
(6.13)

VII. DIRTY-METAL: RESULTS AND DISCUSSION

Adding up the total current, one recovers Eq. (2.5)
(except for the contribution which involves the con-
stant conductivity o „).In particular,

Case (a). The dc is zero; s=0. This is an introduction
to the general case. Considering Eq. (5.9), we find the
relation

One recognizes that p„ is the derivative with respect
to 6 of the left-hand side of Eq. (6.6).

The main contribution to A, is the simple term,
(7.1)zo' —()o'+no'= o.

) =- Ep(7i (3)/12j(hepq/s'T ') (6.7)

(7.2)
ri„= 1+(i/2r;) L(itp )'—6']-'~'

This allows us to simplify considerably the expression
The remaining contributions are by a factor LV/T', (5.1()) for 3f». Furthermore, we obtain from Eq. (4.6)
s'/T', 1/r, T, and Q/T (from X,) smaller.

The equation p=o de6nes a relaxation time COV 'MVQV 7 ~ ~/V 7

=(ImQ) ',

—&i2- T —~/2

T7' Tg p] —-qp/qMsj- le

8 7i(3)- T, T—
where Eq. (6.6) has been used, and where

4 m-2T, 2 T,—T
pm

=2=
7i (3) vp'

s 5GL (6.9)

26X(0) = ',eepsqA-
1—iQ~R

(6.10)

psL. P. Gorkov, Zh. Eksperim. i Teor. Fiz. 37, 1407 (1959)
LEnglish trsnsl. : Soviet Phys. —JETP 10, 998 (1960)g.

is the momentum corresponding to maximal current as
introduced in Sec.II.Note that relation (6.8) agrees with
the corresponding expression in Ref. 6, except for the
last factor which expresses the dependence of 6 on q.

The preceding results allow us to put Eq. (5.14) in
the following form:

Inserting these relations, we find that M'ss is the same
function of co„, co„and 6 as in the clean case.

Since Ls = 0, we have X(0)=ji'i = 0 and do not expect
a particular frequency dependence for the induced cur-
rent. Indeed, the current is found to be (r;T«1)

en 2K

7 (3

T,—T e2n7. ,
T r, —A+-

mi. )T, m

7i(3) &'

2 7r2T.2

1 Qq 1-
+—2 ln i ~+——(iQA) . (7.3)

T r,A 6) 2

The response of the Cooper pairs (first line) is reduced
by a factor L2n'/7$(3) jTr; as compared to expression
(6.13). For intermediate values of r;T, one 6nds this
factor to be Gorkov's X (p) function" (as it should be). In
the expression on the second line, we observe that the
hnite collision time 7., prevents a singular behavior for
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sn&all Q. Note that the ratio of the superconductive re-
sponse to the resistive one is of the order (T,/Q)(T,—T/T, ), which is quite large except under extreme
conditions.

Case (b). The dc is nonzero; sNO. The terms X, and
p, require particular care. In the last relation of Eq.
(4.6), we put pp = —iy&0 (assume 1/7, negligible), and
sinhP = —i(t/6). Then,

~4iQ(Tq'

5 T&a)
(7.9)

In the following, |«1. This means that the region
~y~))A 'contributes the most to ti„since there the
denominator is small. This allows us to use approxima-
tion (7.8), and to put t=y". in the numerator of N»tPi.
Thus, we obtain

The calculation of p,„poses no particular problem;
one obtains the result

The general solution of this equation is complicated;
fortunately, we do not need it. For

~ y ~))A, we have

T,—T 7i (3) 3A' +'&(p) v-p'q'

P, = —Ep +1Vp
T. 8 ir 2T2

(7.10)

y+i0= t&iAf. (7.5)

7rTi
~xi —I'o —— — dx

2

W+W' i/r;—
W+W'

Furthermore, the nearest distance of the complex
variable t to (6,0) is of the order hf'" Th.erefore,
M» "(—iy —iQ/2; iy+—iQ/2) can be expanded in
powers of Q, if Q«df't'. (In the clean case, this con-
dition was Q«1/r. ). The same holds for Jp&'&. In view
of this and the fact that X, and p, already contain a
factor ~ 0, we are allowed to put 0=0 in 3522(2) and
I (2)

It is important to evaluate the denominator in M22(2)

and 12(2) very carefully, because there are large cancel-
ling terms. Under suitable circumstances, it is a good
approximation to put W(pi„)+W(pi„) =i/r; [Eq. (5.9);
note that icp„=y+iO and ipse„=y —iOj for instance,

X=Ep[7$(3)/12)&(p)(hv qp/n'T, )P. (7.11)

Proceeding as in the previous section, we define a
relaxation time

where

27pr't'7$(3))' A ( T, )P q '/qP

640 5 8 I kT, ET, Tl (1 'q'/q ')—'—-

which is the same as Eq. (6.5) except for the factor
&(p)~[2m'/7t (3)jT,r;, if T.r,&&1. A corresponding
modification has to be made in the Ginsburg-Landau
equation (6.6).

The same procedure as outlined above will be applied
in the calculation of X. The contribution of X, is, in the
frequency range of interest, smaller by a factor 10 '
X (6/T)' than X„.The final result is

i7r7 i2 ( i
d~ ] W+W' —[. (7.6)

,/ Note that

Finally, one obtains for the denominator

gm =
7f(3) x(p)pp'

7f(3) a
4x' T

(7.13)

2(~r; Pp)+P p' Qp'+R—p'—
=4m'Ar cosh&+cosh&'

1 1
+hi —

I

—2f+0(r,a) . (7.7)
cosh& cosh&'J

10''hr, P (6P/y') fP . (7 8)

For y=0 and y=A, the denominator is of the order
4''Ar p and 4x'hr pt'"p, respectively. Using Eqs. (7.4)
and (7.5), we find for

~ y ~))d, that (7.7) becomes

No difFiculty arises in the calculation of the con-
tribution j(') to the current. The "singular" part is
negligible, and one obtains

j(') =—~'~ 7f(3) pp'q' 1
x'(t)

m 12 ~2T,2 1—iQr R
(7.14)

As far as the contribution j(') is concerned, we note
that its singular part is dif6cult to evaluate exactly.
However, an estimate shows that it is small and that it
leads to a conductivity o- which varies only slowly vrith
frequency (the range is DP" or 1/r„whichever is
larger). The regular part can easily be evaluated. As
in the clean metal, it has to be interpreted as due to the
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1 1
+

7-R 7.R(c) 7.R(i)
(7.17)

direct response of Cooper p l,irs. We have

j'"= —(e'n/m) sr 7$(3)X(p) (6'/vr'T ')A+rrt'QA . (7.15)

These results confirm again Eq. (2.5). Note that quite
generally,

o.,s= i(esn/m)2X(p) (T,—T/T, )(1/0) . (7.16)

Consider now the case where 1/r. is not negligible.
One obtains a result which can be considered as an
interpolation between the two limits, Eqs. (6.8) and
(7.12). Let these expressions be rit&'i and rR"', respec-
tively. Then, this interpolation can approximately be
represented by the relation

tive expressions have been derived for the relaxation
time art $Eqs. (7.17), (7.12), and (6.8)j which hold for
temperature close to the transition temperature. The
relaxation time will be determined mainly by inelastic
electron-phonon collisions. One expects impurity scat-
tering to inhuence noticeably the relaxation time only
when the superconductor has such a low transition
temperature that the number of excited electrons and
phonons is small. However, if one considers the depen-
dence on the temperature difference (T,—T) of these
two processes, one is tempted to assume that for low
temperatures (which are outside the scope of the present
considerations) impurity scattering may give rise to an
effective relaxation mechanism in a superconductor of
short mean free path and considerable supercurrent
Row.
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Electron Correlation in Narrow Energy Bands. II. One Reversed Spin
in an Otherwise Fully Aligned Narrow S Band
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In a previous paper, a new Green s-function decoupling scheme was applied to the Hubbard Hamiltonian,
and an improved version of Hubbard's first approximation was obtained. That result did not reduce to the
correct low-density limit as obtained by Kanamori. In the present article, the theory is improved for the
special case of a single reversed spin in an otherwise fully aligned band, and the improved theory is correct
in the low-density limit. Numerical results are presented for the simple cubic lattice. If we define an eRec-
tive exchange-interaction parameter U«t as the k=o reversed-spin self-energy for U~ ~, divided by
the number nt of up-spin electrons per site, we 6nd that the present. result departs rather rapidly from the
Kanamori result as ng is increased, and it is concluded that the Kanamori result overestimates the increase
in U, fg with ng, at least in the present case. For intermediate values of nt, the two-pole approximation of
the previous article and the present calculation give very similar results for this quantity.

INTRODUCTION

''N the first paper in this series, ' a new Green's-
function decoupling scheme' ' was applied to the

Hubbard model of a narrow nondegenerate band gov-
erned by the Hamiltonian

H = U Q n, tn, g+Q f;,c,,tc;. ,
2',jo

where c; annihilates an electron on the ith Wannier site.
This model includes in its simplest form the competition
between the intra-atomic Coulomb energy and the elec-

' L. M. Roth, Phys. Rev. 184, 451 (1969).We shall refer to this
as I.

2 L. M. Roth, Phys. Rev. Letters 20, 431 (1968).' J.Linderberg and Y. Ohrn, Chem. Phys. Letters 1, 295 (1967).

tron kinetic energy. This was solved in an improved
version of Hubbard's first approximation4 in which the
one-particle Green's function is assumed to have two
poles on the real axis.

In I, an improvement of the theory was suggested
which would lead to the correct low-density limit for
the electron self-energy. In the present article, we shall

apply the improved version of the theory to the case of
one reversed spin in an otherwise aligned nondegenerate
band. The advantage of this special case is that in the
fully aligned state, the electrons are noninteracting so
that the wave function is known. An argument will be
given to show that the approximation is good for finite
densities in this particular case. There are two purposes

4 J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1963).


