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A calculation is presented of the dissipative part of the wave-number-dependent, high-frequency di-
electric tensor of a free-electron gas. The calculation, which is exact to lowest order in 0 and r„ includes
dynamical correlational (screening) effects which lie outside the random-phase approximation (RPA). The
results, which can be expressed entirely in terms of integrations involving the RPA dielectric functions,
di6er significantly from those of previous work. The k2 coeScient of the plasmon linewidth is predicted to
be about an order of magnitude smaller than that measured in high-energy electron scattering experiments.
The source of the discrepancy may be due to the failure of the r, expansion for metals or to phonon or im-

purity scattering and interband transitions, which have been ignored in previous work. These effects are
discussed here, but have not been calculated. The contribution of electron-electron correlations to optical
absorption is shown to be smaller than previously calculated by essentially a factor of the Fermi velocity
squared divided by c'. Previous calculations ignored terms arising from the perturbation of the screening
electrons by the high-frequency 6elds; these terms greatly reduce the correlational sects.

I. INTRODUCTION

~CORRELATION properties of the metallic valence~ electron gas have been investigated extensively in
the last twenty years by electron-scattering experi-
ments' and measurements of optical properties. ' Gross
features of these experiments are consistently described
by the random-phase approximation (RPA). ' Several
workers have predicted that electron correlational
effects which are not included in the RPA can be dis-
tinguished experimentally.

' ' In this paper, we will

treat two closely related phenomena: the dispersion of
the plasmon line width due to electron-electron colli-
sions and the ultraviolet absorption into a final state of
a plasmon plus an electron-hole pair. We conclude that
previous calculations4 ' of these effects make serious
omissions and that the correct results (unfortunately)
decrease their experimental significance.

The Landau damping process for plasmons in the
RPA vanishes for plasmon wave vector k less than

' G. Rutheman, Naturwissenschaften 29, 648 (1941); 30, 142
(1942); Ann. Physik 2, 113 (1948); W. Lang, Optik 3, 233 (1948);
Marton, Leder, and Mandlowitz, in Advances in Electronics and
Electron Physics, edited by L. Marton (Academic Press Inc. , New
York, 1955), Vol. 7 (survey up to 1955).„H. Watanabe, J. Phys.
Soc. Japan 11, 112 (1956); C. Kunz, Z. Physik 167, 53 (1962); N.
Swanson and C. J. Powell, Phys. Rev. 145, 195 (1965).' H. Ehrenreich and H. R. Phillip, Phys. Rev. 128, 1622 (1962);
H. R. Phillip and H. Ehrenreich, ibid 129, 15SO (1963).; H.
Ehrenreich, H. R. Philipp, and B. Segal, ibid. 132, 1918 (1963).

See for example D. Pines, Elementary Excitations in Solids
(W. A. Benjamin, Inc. , New York, 1964).

4 B. W. Ninham, C. J. Powell, and N. Swanson, Phys. Rev.
145, 209 (1966).' (a) N. Tzoar and A. Klein, Phys. Rev. 124, 1297 (1961);
(b) D. F. DuBois, V. Gilinsky, and M. G. Kivelson, ibid. 129, 2376
(1963); (c) M. Matsudaira, J. Phys. Soc. Japan 17, 1563 {1962).' R. J. Esposito, L. Muldawer, and P. E.Bloomfield, Phys. Rev.
168, 744 (1968).

'R. J. Cohn, Ph.D. thesis, University of Maryland, 1966
(unpublished).
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a critical value k, for a degenerate electron gas. 3 For
k(k„ the plasmon damping results from electron-
electron collisions not included in the RPA which cause
fluctuations of the microscopic electric fields about the
average self-consistent fieM of the RPA. It would be of
great interest to observe this damping experimentally
since it is one of the few effects in a free electron gas
which is caused entirely by electron correlations.
Nozieres and Pines on heuristic grounds estimated
that the plasmon damping y(k) due to these eGects
wouM be proportional to k'. The first serious micro-
scopic calculation was carried out by DuBois' (this
reference is referred to as I), who neglected screening
effects and whose results were numerically in error by
a factor of 4. The correct unscreened calculation of the
k' coefficient of y(k) gives a result about an order of
magnitude greater than that experimentally observed

by Powell and Swanson. 4 Ninham4 repeated this calcu-
lation with the hope of adding the e6ects of dynamic
screening. We will show that his method was incon-
sistent because several important coherent terms were
omitted from the transition amplitude. Using a tech-
nique previously applied to the high-temperature elec-
tron gas, " we have included the missing terms and
carried out the calculations in a more direct manner re-
quiring fewer simplifying approximations. The results
of our latest calculation given in Sec. III show that
screening effects reduce the k2 coefficient to a value
about an order of magnitude below the experimental
value' ""for Al.

' P. Norieres and D. Pines, Phys. Rev. 113, 1254 (1969).
s D. F. DuBois, Ann. Phys. (N. Y.) 8, 24 (1959), hereafter

r f.rred to as I."D. F. DuBois and V. Gilinsky, Phys. Rev. 135, A1519 (1964),
henceforth ref:rred to as DG. (See also DGK in Ref. 5b.)' C. Kunz, Z. Physik 167, 53 (1962)."C. V. Festenberg, Z. Physik 207, 47 (1967).
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410 D. I . DuBOIS AND M. G. KIVELSON

The plasmon damping is proportional to the imagi-

nary part of the longitudinal component of the local
dielectric tensor. The optical absorption is proportional
to the transverse part of the tensor. Beginning with the
work. of Tzoar and Klein, ' several authors' have con-
sidered the contribution to the optical absorption from

a pair-plasmon Anal state. Most recently, Esposito,
Muldawer, and Bloomfield' have considered the de-

tailed experimental significance of these results. The
conclusion of the present paper is that all of these previ-
ous results are seriously incomplete. We find that the
previous results for optical absorption by the pair-
plasmon process must be reduced by the square of the
Fermi velocity divided by c' and is almost certainly
not experimentally detectable.

The previous papers' ' omitted amplitudes for pro-
cesses corresponding to the perturbation of the screening
electrons by the exciting fields. These amplitudes lead
to cancellations causing a large reduction in the strength
of these processes.

In Sec. II, the calculation of the dissipative part of
the dielectric tensor for a degenerate electron gas is
summarized. The calculation is based on a "golden rule"
formulation of the problem used in several previous
papers. ' ' ' It should be emphasized that in this cal-
culation we adopt the popular fiction that the weak

coupling expansion in powers of r, has some physical
significance even though r,)1.8 for all metals. This is
discussed at the end of the present section. The most
important feature of the present calculation is the in-

clusion of the so-called triangle amplitudes which were
neglected in previous calculations. ' '

In Sec. III, the specific evaluation of these formulas
for T—=0 is considered. A separation into pair-pair, pair-
plasrnon, and plasmon-plasmon processes is made in a
unique way. The leading contribution to plasmon
damping, of order (k/p3)2, comes from the nonexchange
pair-pair process. The results can be written as fre-
quency and wave-number integrations over an integrand
which is expressed essentially in terms of components
of the RPA dielectric tensor. This integral is evaluated
numerically. The contribution of the pair-plasmon final
state to optical (ultraviolet) absorption is vastly re-
duced by a factor (21+/c)2 compared to the previous
calculations mentioned above. '

Since for k &k, a plasmon (or photon) cannot decay
into a single electron-hole pair, the damping arises from
the decay into two (and higher) pair states. The plas-
mon can couple to these states only during electron-
electron collisions. Because such collisions are screened,
they are actually many-body processes. The plasmon
can interact with the screening electrons, as well as
with "colliding" electrons. This effect is taken into ac-
count by the triangle amplitudes.

In Sec. IV, the additional complications which arise
from the periodic ion lattice are listed and brieRy
examined. The most important of these are interband
transitions which contribute to plasmon damping even
at k=-0 and which also contribute terms of order k'.
The effects of umklapp processes and nonparabolic en-
ergy bands are also mentioned. We conclude that the
experimentally observed dispersion of plasmon damping
does not give a direct measure of electron correlation
effects. It is first necessary to subtract out the lattice
contributions and impurity scattering effects which re-
main to be calculated.

In the RPA, the expression for the wave vector and
frequency-dependent dielectric tensor e;, is well known
(in units for which k = 1)':

k;k; k;k;i
eII(k)40) = eL(k)~) +eT(k)~) h4I

~

~ (12)
k2&

The plasmon or photon damping is related to the
dissipative part of the dielectric tensor by the relations
(assuming yL/&uL«1, yT/4d T«1)

pL, (kT)/~L, T(k) +L,T(k) ™L,T(ky&I, T(k)) ~ (1 3)

The plasmon frequency arL(k) is the root of

ReeL(k, coL(k)) = 0

and the plasmon normalization factor is

&L—'(k) 24dPB R=e (k4L, )/4dB~j
I „=„Lv„.

In the RPA, (1.1) gives

(gL (k) =40 2+k2(e2)+0(k4),

(1.5)

where

ZL, —
k'

kD'

4me' d P f3 l~ f2+i&—+ , , & ,P'P . (1 1)
co m 3~4~3 (22r) co —E2+,z+E2=&+ie

where f„=(e&&e~ »+1) ' in terms of the chemical po-
tential 44, E„=p2/2m, P= T ', where T is the absolute
temperature in energy units, e and ns are the electron
charge and mass, respectively, n is the electron density,
and 4d„=(42rne2/m)'" is the plasma frequency. (The
superscript 0 is used to distinguish the RPA from the
complete dielectric function. ) In an isotropic system,
3,;(k,~) can be decomposed into longitudinal and trans-
verse components:

1'D. F. DuBois, in Lectures in Theoretica/ Physics, edited by
Brittin, Barut, and Guenin (Interscience Publishers, Inc. , &e~
York, 1959), Vol. 9C, p. 469.

d3p p2
n(n2)= P f„and kI22 =(g 2/—(p2)

(2~)3 m'
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The transverse photon frequency is determined by

4eT ReeT(k teT(k)) = k c (1 &)

4 2 t

k'C' re cl Reev (k,re)
Zr—'(k) = +-

GOD 2 BM

In the RPA, (1.1) gives ksOJ

(a) (b)

In the RPA, the Landau damping given by (1.3) and
(1.1) is the familiar'

4xe'

SPins

d p
p—-', g —p+~V

(2~)'

X~&(ter.(k) ~y+ ,'k+—Ey 'k-) (1=1o) (c)

It is well known that for a degenerate Fermi gas this
damping vanishes for k(k„where

~,(k.)= k,P,/m+k, s/2~ (1.11)

and ps is the Fermi momentum.
The only method presently available to include cor-

rections to the RPA is the many-body perturbation
theory in powers of the dimensionless parameter r,
=rs/44, where rs is the interelectron spacing (47rrs'/3
=I ') and a is the Bohr radius, ks/4r4e'. The expansion
in r, is essentially an expansion in e and is not a simple
power series, but more likely some sort of asymptotic
expansion. For metals r, ranges from 1.8 for Al to 5.6
for Cs. Corrections to the RPA value of the specific-
heat indicate that the theory does not converge even
for r, as low as 1.8. " However, the calculated ex-
change corrections of order r, to the plasmon energy are
very small even for r, =5.6. ' Corrections to the
RPA value of the correlation energy are estimated to be
about 20/o. s Therefore, it is a Priori doubtful that the
theory is quantitatively accurate at r, = 1.8.The purpose
of the exercise presented here is to present the correct
perturbation calculation of the electron correlational
corrections to Imeq, r(k, te) and to make clear the rela-
tionship of such a free electron gas calculation to the
actual experimental situation. If the lattice corrections
discussed in Sec. IV can be evaluated, it may eventually
be possible to test the validity of the calculation against
experiment.

II. CALCULATION OF ABSORPTIVE PART OF
DIELECTRIC FUNCTION

The method of calculation used here is a simple ex-
tension of that used by DuBois and Giiinsky" (DG) to
calculate the dissipative part of the conductivity tensor

'4 B. W. Ninhatn, Ann. Phys. (N. Y.) 28, 220 (1964).
4' R. A. Ferrell, Phys. Rev. 107, 450 (1957); D. Pines, Physica

Suppl. 26, &03 (&960).

FIG. 1. Three diagrams of order r, contributing to collisional
conductivity. The remaining nine diagrams of this order are ob-
tained from these three by exchange of particles (3 ~ 4), exchange
of holes (1 +-+ 2), and exchange of both particles and holes (1 ~ 2,
3 +-+ 4). In each case, the intermediate momenta must be relabeled.

of a classical electron gas."This work in turn is an ex-
tension of the original calculation in I for the unscreened
degenerate electron gas. A formal derivation of the
"golden rule" formula from the principles of nonequi-
librium quantum statistical mechanics has been given
by DuBois. "The result is that the dissipative part of
the dielectric tensor can be written in the form

47re, e; Ime, ,(k,(e)

d pt

g4es epins (27r) 4

dps dps dp4

(2m ) ' (27r) ' (24r) '

X(1—c—t'")f„,(1—f„,)f„(1—f„)~

J e~'

X(24r) ~ (k+pl+ps ps p4)

Xb(re+Et+ Es —Es —E4) . (2.1)

The polarization unit vectors are e( ) =k for the longi-
tudinal case and e" '~ for the transverse case, where

e, & 'e;& &=8;,—k,k,/k'
a=1,2

(2.2)

In (2.4), J is a vector amplitude calculated from the
diagrams in Fig. 1 according to the rules given in DG'

"We take this opportunity to list several errata for DG (Ref.
10).
(i) A serious misprint is found in the square bracket on the right-
hand side of (3.78) which shouM read

(1; (44&444/9'); (44&'/9')+2).

(ii) There are several errors in signs in the equations leading up to
(3.22) and in (3.22), (3.25), and (3.35) the variables p1 and p2
should be interchanged.

The results (3.29)—(3.33) and (3.37)—(3.38) are unchanged.
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or in Ref. 13. This amplitude divers from that for the
classical electron gas considered previously only in that
electron spin and electron exchange are now taken into
account. The result is

Fro. 2. Diagram for Landau damping.

J e= i42re2( i+—(42re2)/m)i

X((X3 Xl)(X4 X2)LV(P4 P2t E4 E2)Ck(pltp3)

+ V(p3 —P1, E3 Et)Ck(P2 P4)
—42re2V(P4 —p, , E4—E,) V(y, —p, , E,—E1)
Xe.T(p3 —P1, E3—E„P4—p2, E4 E2)7—
—(X4 X,)(X,, X2)I V(p3 —p2, E3—E2)Ct:(pttp4)

+ V(p4 p1 E4 E1)Ck(P2 P3)
42r—e2V(p3 p2,—E3 —E.) U(P4 —pi, E4—E,)

+e' T(P3 P2 E3 E2 P4 Pl E4 Et)7}, (2 3)
with

C.(p', p, ) =
(p;+-', k) e

td E„+1,+E,—cg+E3, 1, E;. —(2.4)

gl= p3 pl ~

Q2
—p4 —p2 &

N2= +4—K,
we can write'

T;(qt, ui, q2, u2, k,40)

= r;+(qi,ui; k,~)+r,+(q2,u2; k,~), (2.5)

r,+(q,u; k,co)

d't
(t+-,'k);

m 4P1~4 (2tl ) 40+Et Et+tt

ft+tt ft+tt
X

u —ttt+Et4. tt
—Ety4+26

ft ft+tt

u+Et

Et+2+atE

(2.6)

In (2.2), V(q, &u) is the dynamically screened interaction

V(q, (a) = 1/q2e1, 3(q,o)), (2.7)

and I; the spin-wave function.
The amplitude I arises from the closed triangular

loop in diagram C of Fig. 1 and its exchange counter-
parts. In terms of the variables,

where 41.3(q,~) is the RPA longitudinal dielectric
function

4me'
41."(q,cu) = 1+

ft ft+tt
d't

4Ptttt td Et+tt+—Et+i4
(2 8)

This expression follows from (1.1) and the condition of
longitudinal current conservation. This expression is
valid to lowest order in the potential (i.e., in r,) pro-
vided that k(k, so that the Landau damping process
corresponding to the diagram in Fig. 2 is zero. I For
k&k„ the expression is not valid; and problems arise
in (2.1)—(2.6) because of vanishing energy denominators.
In this case, the Landau damping is so strong that the
correlation corrections are not of interest. )

Equation (2.1) is finite for k(k, (but anomalously
large) even when V(q, ~) is replaced by the unscreened

q ', in which case it is consistent to neglect the diagrams
with the triangular loops as was done in I, since these
are formally of higher order in e' or r, . However, when
the full screened interaction is included, these diagrams
must also be included, since they are of the same order
in e2 as the screening corrections (see Fig. 3). Ninham4
included screening but neglected the triangular ampli-
tude. The reduction of the complicated expressions
(2.1)—(2.8) to a useful form follows the same steps as in
DG so the details will be omitted here. The amplitudes
are expanded in powers of k p/m40. Within the ampli-
tude, many cancellations occur which result in the
vanishing of all terms of order one and leave a leading
term of order k. If the triangular amplitudes are not
included, the cancellation does not occur; and one
should incorrectly obtain a leading term of order one.
Ninham, who neglects the triangles, in fact obtains an
amplitude of order 0 because of some additional and,
in our opinion, ad hoc approximations.

Following the procedure of DG, we can reduce (2.1)
to the form

dP1 dP2 dq
e,e; Ime;, (k,(o) = (1—e3") Q

8&F2 ttt 4 (22r)3 (2tr)3 (2tr)3
du2 f»(1—f.t+.)f»(1—f32—.) (2~)&(»+u2 —~)

( tI pi 1 tI P2 1 ) (4trt;2)3 k'
x~I »— — q' » — — q'

I

— —{Iv(q, u) I'I v(~,u.) I'I'M(ak; Pi,p.,ut, u.) I'
m 2m m 2m J m'

—ReI V(4Lut) V*(tl',ut) V(thu2) V*(tl',u2)e M(ILk; pi, y2,ui, u2)e M (tI',k; yt, y2, 241,u2)7), (2.9)
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where

V—'(q, ui) -k q k.yi
M'=q'(k e) —4(k q)(q e) — e pi+ e q—

2eqqk ( q'

q' 4 2u,mi

V '(q, u2)-k q k y. 2e qq k ( q'
+ e p2+ -e q+ u~~ 1— . (2.10)

co m m q 5 2u, m

The exchange momentum and energy transfer variables are

q'=q+yi —y2 ul ui++4 @3 u2 u2++2 +1 (2.11)

It is interesting to note that the amplitude M is the same as in the classical case LDG Eq. (3.22)] except for the
factors of (1—q'/2uim) and (1—q2/2u2m) which are unity for the classical case, as can be seen by restoring the k
dependence explicitly.

The next step is to average over the directions of k since the system is assumed isotropic. We then obtain the
analog of DG, Eqs. (3.29) and (3.3'7). The exchange corrections can be dropped to lowest order as noted in I since
they make a contribution one order in r, smaller than the direct terms. We then have

1 (47re') k' (1—e s") 1 1
Immi„p(k)Gl) = dg ds Im

60m- m' (e
—~I&"+ ) —1) ez, '(q, —,'co+u) (e

—&~&"—")—1)
Im

Er,'(q, —,'co —u)

Here

XLnr. , pq'co'+2pr„zv, '(q, —,'(v+u)q'~ er, '(q, —,'co+u) t'+2pz„rv, '(q, —,'(o —u)q'( er, '(q, 2(o —u) (']. (2.12)

nr, =23) Pr, =16, mr=16, Pz =12. (2.13)

In this expression, eL,'(q, cu) is the RPA dielectric function given in (2.8). We have defined the quantity v, '(q, u),
which is the averaged square of the component of p perpendicular to q consistent with energy conservation as

(1/2m') J'd'p f~(1—f,+,)[p' —(p q)'/q']8(u —(p q)/m —(q'/2m)]
vi'(q, u) =

J'd'p f~(1—fi,+~)8(u —(p q)/m —q'/2m)
(2.14)

This quantity can be reduced to an expression involving statistics. It is convenient to express the result in terms
only the RPA dielectric functions. From Eq. (1.1), it of two integrals I and J as done in DG. For Fermi-
can be shown that Dirac statistics, we have

u' Imer'(q, u)
n, '(q, u) =

2q' Imez, '(q, u)

1 (4n-e') k' (1—e s")
(2.15) Immi. ,r(k, ra) =

60m' m' o)' (o

For classical statistics~(f~&&1), we find

u, '= m/(p) = mkpT.

Using this result, it is easily seen that (2.12) reduces to
Eqs. (3.29) and (3.37) of DG in the limit of classical

where

J(co) =co' dq q'

X{~i„rJ(~)+Pl„rI(co)), (2.16)

dQ,-~(, + )

XIm Im —, (2.17)
el.'(q, —',co+u) cr, '(q, -', &o-u)

dq q' du( ,'(v+u)'-

FIG. 3. Diagram of typical contribution to the screened interac-
tion. This diagram which is included in Fig. i(a) is of the same
order in e~ as the lowest-order contribution from the triangle dia-
gram, Fig. 1(c).

X
z
—P (y~+tr, ) 1 &

—P($&—&)

XImer'(q, 2~+u) Im . (2.18)
ez, '(q, —,'co —u)
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Note that these integrands are now expressed entirely =pr/m, where Er is the Fermi energy I.n these units,
in terms of RPA dielectric functions «,&'(q, —,co&u). the plasmon energy is

III. DEGENERATE ELECTRON GAS

A. Zero-Temperature Limit

In this section, we will work with the T= 0 (J3 —+~)
limit of equations (2.16)—(2.18). We also introduce a
system of units in which momentum is expressed in
units of the Fermi rnomenturn pr ——h/(nro) where
n= (4/9z)'~' and ro is the average interelectron radius

I (4w/3)ro' ——N 'j. Energy is expressed in units of 2E&

u„= (4nr, /37r) '~' (3.1)

4o~, k'
Im«, r(k, (u) = —$nr„—rJ(u&)+Pg, rI((u) j (3.2)

20vr 3z co6

and (2.17) and (2.18) become

and r, = ro/g, where a= 52/me', the Bohr radius. In this
notation, we write (2.16) in the limit P —&~,

J(ar) =a)' dq q'

—40
1
2

dl Im Im
er, (q, 2N+u) eL, (q, 2M —u)

(3.3)

00

I((o) = —— dq q'
2 0

du(-', a)+u)' )&Imez'(q, -', co+u) Im
eL,'(q, -', co —u)

(3.4)

From Eq. (1.1) an expression for Imez (q, u) in the RPA is easily obtained for a degenerate Fermi distribu-
tion for N&0:

Imer'(q, u) =
~q k q' 4i

u +—
q )for

q

r. ( s —,'q'
')

2qu'k q

/u+2q') ' /u —2q') '

q f 4 q i

=0,
u —

gq )
for

I
)1.

q ) (3 3)

The result of evaluating «'(q, ra) LEq. (2.8)j in this limit is well known, ' but we give the result for easy reference:

2nr, -(u+-,'q')' q' -u+-', q'—q-(u ——,'q'—)'—q' u —2q'+q
Re~r, '(q, u) = 1+ 1+ ln + ln

~q' 2q' u+ ,'q'yq- Q —
gg

—g-
(3.6)

mrs
Imer, '(q, u) = 2u,

gf
3

for —(1

ar, ( (u —-', q')'q /u+-', q')' (u —-', q')'

qa E q' I '
E q ) 4 q

(u —-', q' '
for

I

—)1.
q

(3.7)

In the region Im«(q, co) =0, it is well known that
Reer, '(q, cur, (q))= 0 at —Im —=—cur. (q)Zg'(q) 5((a —coz, (q))

«'(q, ca) 2

~&(q) =~,+3q'/10~, + (3.8)

This pole provides the plasmon resonance contribution,
and we must write

Im«o(q, (u)
+—,q(k, (3.9a)

I
«'(q ~)

I

'



zi-'(q) =Im«(q ~)

~
«'(q, ~) I'

(3.9b)

3—1+— +' ' '.
0 P —2)~O the term 1m&I.In the region Im~~ (5

-h le Pair continuum.eened electron o erepresents the sere
t separate out theseFor Pract. ical ca c '

rtition of I and J
, wem&s se

thus, obtain a par i i3 ~ IO
~ ' r- r lasmon-Pair
contributions an

~

(pl pr) and plas
he1 1) contributions. e,mon-plasmon p -p

isasumo f the following contri u io

wave num. ber, determinedwhere k, is the plasmon cutoff wave n

b the condition thaty

«'(q ~z(q)) =o,
@0,

q(k,
q&k, .

4

The residue factor is
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1 (4ar, ~k2
Imf& r(k GD)pp pp

= Im«'(q, 2a) —u)

I«'(q, l~-u)
I

Im«'(q, -', (o+u)
M )X z,

—' -'(v+u)' Imer'(q, —,'co+u)+n

1 (4nr, qk2' "'""'-"
2O.i3.). ,

dq q'~~(q) ~z(q) q(~ ~l.(q))—

'(q, — (q))
2&p 6) )X r„v'2 ~ ~r. q

~

—gr2n~, l.or q qIm, (k, ),i,i (3.14)

In (3.13) q is the step function

v)(x) =-,'(1+x/i xi).

th 1 o1 o tib tith i oti, i th&u) is nonzero, i.e., over ewhich Im~l„p (q, ~~ I
ed out.

(3.15)

B. Plasmon Damping
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1(pi q)'q 23

explicitly separat

uenc co„are zero since
der the full k dependence o= ~()

ThP -Pl o (PP
Dthreshold for t ese pr . uco= co„ is at or below thr

angle ampht4' but in both calculations, eN' ham' to be of or er; u
W ill not consider te is
ex uci ex1 't xpressions for «,z'(q, cv from

. If wese t the el.o factors in the
en

' . ) 1 'ty we obtai ex
lt fI. Th d

3.I6, equal to uni y,
one-fourt oh f the unscreened resu o

lted from a numericaical errorancy o af factor of 4 resu e
ln I.

'
nt to use the form o q.E . 3.12) toIt is most convenient o u



D. F. DUBOIS AN D M. G. K I VE LSD N

to- Nbu&)(unscreened)

N(co~)(screened)

FROM NINHAM 9
FQR Ai

.I
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.OI

Plasmon frequency, ~fs

FIG. 4. Plot of iV(co~) of Eq. (3.20) versus the plasmon frequency
& for both unscreened and dynamically screened interactions.
The point calculated by Ninham (Ref. 4) for Al is plotted for
comparison. = (5.6&(10—') eV. (3.21)

where 1V(to„) is the integral in (3.18) and depends on
co„(o~~= (4or./3a. )'~') through the definition of ers(x, y).
The function E(oi„) is plotted in Fig. 4 for both the
screened and unscreened cases. In both cases, it has
a nonvanishing limit as ar„~ 0. In this limit, screening
reduces the damping by a factor of 10. At larger co„,
for which the theory begins to break down, we can com-
pare our results with previous work.

For Al where co„=3, we have indicated a value of
E(oi„) which we obtain from Ninham's calculations
(Ninham estimates the effect of screening only for fre-
quencies of the order of s). We find that the damping
is about 6 the damping calculated by Xinham. Explic-
itly, we have for aluminum, converting to ordinary
(cgs) units,

4 k'
v (»l) =—(l)'&(l) (2& )

5a. p p'

evaluate the integral. We introduce the variables
x=to~/q and y=u/q and define the functions er„r'(x, y)
by the identity

ez, r'(x, y) = er„r'(ro„/x, co„y/x) . (3.17)

This substitution into (3.12) leads to

Imeg(k)pr pr
Sx 0 X'

Imer, '(x, x/2 —y) 1 23 Imer, '(x, x/2+y)
X

le '(x, */2+y)I'16 le '(* x/2+y)l'
8(x/2+y)'

+— Imer'(x, x/2+y) . (3.18)

In the limit &o„((1and ( er,e
l

' = 1 (i.e., no screening), the
integration can be carried out analytically using (3.5)
and (3.7), with the result

3m')„'k'
q ~, ~p"'(k, re~) =

l
34-22 ln2j,

80
(3.19)

pL pr-pr —y Im&L pr-pr—
4k'(o~'

E(oi,), (3.20)

I~ Note that there is also a misprint in I such that 2(34—22 ln2)
is given as (70—44 ln2). From Ninham's result for the unscreened
damping Lsee his Eq. (10) with the expression in brackets as de-
scribed in the following sentence which follows his equation), we
would obtain y, ,~' = Ime~, ~, = —,'P &i&

= (3s /10) q'a&„'(34—22 ln2).
Therefore, our calculation yields only —', of ¹inham's value in the
unscreened case.

which is smaller by a factor of 4 than the result in I.'~
We had noted this discrepancy already in comparing
the form of Eq. (3.16) with I.

The fully screened damping must be evaluated from
Eq. (3.18) by numerical integration. The damping is
conveniently written as

The experiments of Kunz, "Powell and Swanson, ' and
Festenberg" are in rather good agreement and produce
essentially the same y-versus-k curves if restricted to
wavelengths smaller than the mean crystallite size (see
Festenberg's). To compare with the experiments of
Powell and Swanson, ' we write the coefficient 8 of
their observations in terms of y as

&= b/k') (&.i/2&~) (3.22)

where E,& is the energy of the incident electrons.
At a&~= s, this gives 8=450 eV/(rad)', whereas, the

experimental value is 3.5 X 10' eV/(rad)'.

p s cs I, s
p s cs

'

which is less than or of the order (v')/c' for ce o~„since
kD'/p~' ——O(r, ). This factor is of the order of 10 ' for
metals. Because of this small factor, which arises from
the relatively long wavelength of light for co near or„,
the sects of electron correlations on the transverse ab-
sorption in this region are unobservably small.

Several authors" have proposed that optical absorp-
tion into a final state of a pair-plus a plasmon would be
an observable effect. We can identify the contribution
from this final state as arising from (3.13). Previous
calculations did not Qnd this absorption proportional to

C. Optical Absorytion into a Plasmon-Pair Final State

Next, we briefly dispose of the electron correlation
corrections to optical absorption. We note that
image(k, oi) is proportional to k'/p&' in ordinary units.
From (1.3) and (1.9), we obtain the optical absorption
yr(k) by setting &u'= k'c'+co„s in image'(k, &o). The factor
k'/ps' can then be written



186 P L A S M 0 N D A M P I N G A N D U L T R A V I 0 L E T A 8 S 0 R P T I 0 N I N M E T A L S 417

the small factor k'. This is due to the omission in all
these calculations of the triangle amplitudes. The in-
clusion of these terms, as we have pointed out several
times, results in additional cancellations which greatly
reduce the magnitude of this absorption. YVe will, there-
fore, not consider further details of this relatively insig-
ni6cant process here. Lattice eBects discussed in Sec.
IV may increase the magnitude of this process, but the
required calculations remain to be done.

For l= l', we have intraband contributions which are
the analog of the free electron gas effects. In a crystal
with cubic symmetry, we can again separate transverse
and longitudinal components. ' For the longitudinal
components, we can write

&I+k, !II p+-
I

klp, »
2)

IV. EFFECTS OF POSITIVE
ION LATTICE

The periodic ion lattice adds important modifications
to the free electron gas model. In this paper, we will not
attempt to include these effects; but it is important to
list them, to place the free electron gas calculations into
the proper context. Detailed calculations are, of course,
needed to determine the size of these modi6cations.

To include the periodic lattice in the many-body
theory, we clearly must replace the plane wave states
which we have been using by Bloch waves which can be
expressed in the form

(g) —e~y x P e~Kn xg l (4 1)

Here, the lattice momentum p is restricted to the first
Brillouin zone and the sum is over all reciprocal lattice
vectors K„. The index I labels the bands which have
energies E„'.The expansion coeScients a„,„' completely
determine the state.

The general formula for e;io(k, a&) in the RPA or col-
lisionless approximation can be written as

where 0 is the total volume and we define the matrix
element

2i

This formula is equivalent to that derived by Adler"
but neglects the local field corrections to the l~l' terms
arising from urnklapp processes which were erst calcu-
lated by Adler and which are small for Al.

"S. Adler, Phys. Rev. 126, 413 (1963).

by using current conservation. In the limit k ~ 0, we
have, because of the orthonormality of the p's,

k aE'/By
(I+O(k) j. (4.5)

This result is the same as that for the free electron gas
result in this limit if E„'=p'/2m*. The intraband
Landau damping can be treated in the same way as the
free electron case. For more details on this, we refer to
the review of Pines. '

This collisionless approximation is not suitable for
discussing real materials as is well known. Collisions
with impurities, phonons, defects, and perhaps electron-
electron umklapp collisions provide absorptive mech-
anisms even in the case k = 0. It is usually assumed that
the effect of these collisions can be described by replac-
ing ~ in (4.2) by a& i/r, w—here r is an appropriate col-
lision time. Such a collision significantly modihes only
the intraband terms (I= I') since the interband energies
are generally much larger than k/r Without .repeating
details, we note that 7- for Al has been estimated by
Erhenreich, Phillip, and Segal from low-frequency
optical data (k=0) to be

5.12)&10 "sec.

From this result, it appears from the optical data that
the principal loss mechanisms at frequencies near
co~(kor~ 16 eV) are from such collisional effects. The
data are probably not accurate enough, however, to
preclude a contribution of similar magnitude due to
interband transitions.

The contribution to Imei„r(k, ~) for k/0 from elec-
tron correlations as calculated in Secs. II and III can be
viewed as a collisional correction to the intraband
Landau damping (which vanishes for k(k, ), provided
that the conduction band is only partly filled so that
a parabolic energy-lattice momentum relationship (with
an effective mass) is valid. For this to be valid, the
important transitions must not take electrons close to

"H. Erhenreich, H. R. Phillip, and B. Segal, Phys. Rev. 132,
1918 (1963).
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the top of the conduction band. In the calculation of
Sec. III, we find that the important momentum trans-
fers are in the range (in ordinary units) q(p&. Thus,
the maximum lattice momentum involved will be of the
order 2p~. For a half-filled conduction band, this means
that electrons are excited up to the edge of the Brillouin
zone so the effects of nonparabolicity may be important.

The vanishing of the electron correlational contribu-
tion as k —+ 0 in a free electron gas is a direct result of
the parabolic energy-momentum relation for which
velocity and momentum are proportional. In this case,
since total current and total momentum are also pro-
portional, the momentum conserving electron-electron
collisions cannot alter the current which means that the
high-frequency conductivity is unaffected by electron-
electron collisions. The presence of a wave of 6nite k
destroys the momentum conservation in the collisions
and leads to a correction to the conductivity. For a non-
parabolic energy-momentum relation, as in a lattice,
current and momentum are not proportional; and we

expect a contribution from electron collisions to
Immi„z (O,oi). In Al, the conduction band is free-electron-
like, so we would expect only a weak contribution at
k=0; then the coefficient of O'

I in Imer. , i (k,oi)7 should
be well represented by the free electron gas calculation.

The free electron gas calculation assumed that mo-
mentum (now interpreted as lattice momentum) is con-
served. In a lattice, lattice momentum is conserved
modulo a reciprocal-lattice vector. The nonconserving
umklapp processes are usually expected to be small. "
One effect of umklapp processes will be an additional con-
tribution to Imer„r(0, oi) for k = 0 from electron-electron
collisions. It would perhaps be of some interest to cal-
culate the effects of nonparabolicity, umklapp collisions,
and interband transitions all from a consistent nearly
free electron pseudopotential model in order to compare
their relative importance. The fact that electron-
electron correlation effects can (in a lattice) contribute
even for k = 0 may be of particular interest in the optical
absorption. In the free electron case, we saw in Sec. III C
that the correlation effects were small because of a
factor k'/p~' which in turn is of order (v')/c' 10 '. The
correlation contributions, resulting from the lattice
effects, which do not vanish as k' may be larger than
this free electron estimate. It would be interesting to
see if the absorption into the pr-pl final state is suffi-

ciently enhanced by lattice effects to be experimentally
observable.

It is importa, nt to note that the intraband collisional
effects from impurities, phonons, etc., which contribute
to Ime J., r(0,oi) will also contribute for kN0 and, in par-
ticular, will contribute to the coeKcient of k'. Such cor-
rections cannot be measured by optical means, and they
have not been calculated. For low temperatures and for
very pure material, of course, the effects of phonon and
impurity collisions can be reduced. These parameters

~ J. M. Ziman, E/ectroms and Phonoes (Oxford University Press,¹wYork, 1960).

do not appear to have been optimized in the actual
experiments. ""

It must be emphasized that Immy r(O, o&) can be mea-
sured in optical experiments. The values of yr, (k=0)
as measured in forward electron-scattering experiments
were shown by Swanson" to be consistent with the
optical data. The interband transitions arise from the
L~l' terms. It is well known' that interband transitions
also contribute to Imez, r(0,o&). Recently, Pethick22 has
calculated Imer. (0,oi) for Al (and other materials) using
a weak pseudopotential model for the lattice. His cal-
culated Impel. (0,oi) is too small to account for the optical
data. This may indicate that the model fails" or that
the major contribution to Imer, (O,oi) is due to effects
other than interband transitions, such as impurity scat-
tering. If such a pseudopotential calculation is meaning-
ful, it would be straightforward to include Qnite k and
compute the k' coefFicient of Immy, (k,o&) caused by inter-
band transitions. Optical data give no information on
the k dependence of Immi, (k,oi), so we must rely on
calculations.

The corrections to~the interband transitions from
additional scattering mechanisms, such as phonons,
impurities, and electron-electron collisions, should be
relatively small, of the order (DE,r) '«1, where AE,
are the minimum gap energies involved and r is an ap-
propriate collision time.

V. CONCLUSIONS AND SPECULATION

To terms of order k', we can write generally using
(1.3), (1.5), and (1.6):

yi. (k) = (1—k'/2kD')oi„ Imer(0, oi~)

+ ', k'(cP/a-k')((uo Immi, (k, nil, (k))7, a. (5.1)

The coefficient of Immi, (0,oi~) follows from the expansion
of the factor

ZI.(k)oil. (k) = (1 k'/kii'+ )—
&&to„L1+-,'(k'/kn')+ 7 (5.2)

which occurs in (1.3) to terms of order k'/kii'. Note
that there is a negative contribution to the terms of
order k'/kii'. This contribution can be calculated by
using the optical data for Ime&(0, oi~) or equivalently by
using the experimental value for k=0 (0=0) electron
scattering. This negative contribution can then be
written:

——,' pp/kD~)y, (0)= —(k'/p, ') (y, (0)/nrem) (9~/40), (5.3)

"N. Swanaon, J. Opt. Soc. Am. S4, 1230 (1964l."C. J. Pethick (private communication)."In Pethick's preliminary calculations (Ref. 22) a local,
energy-independent pseudopotential, extracted by Ashcroft from
Fermi-surface data, was used. The energy dependence of the
pseudopotential may be very important since the plasmon energies
are very large. The disagreement between theory and experiment
may well be due to the inadequacy of using a local, energy-inde-
pendent potential. We wish to thank Dr. Pethick for communicat-
ing the status of his work to us.



I86 PLASMON DAM PI NQ AND ULTRAVIOLET ABSORPTION I N M ETALS 419

wllele wc llave used kn-=—(20/9vr)uf, pi; ) which follows
from (1.6). For Al, Powell and Swanson measure yl, (0)
~1.3 eV and we know ~„~15eV and r, =- 1.8. Thus, the
negative contribution to yl. (k)/~„ for Al is

—(k'/p, ')6.3X10 ' eV. (5.4)

This is small compared with the positive contribution in

(3.21) due to electron-electron collisions. The electron-
electron correlational contribution to (5.1) is only part
of the complete k' term as discussed in Sec. IV. Intra-
band phonon and impurity scattering and interband
transitions will contribute to Imer, (k,~r, (k)) for finite k

and will, therefore, also contribute to the coefficient of
k'. The calculation of these contributions is beyond the
scope of the present paper, but such calculations may
be feasible using something like a pseudopotential model
for the lattice effects.

We may summarize our principal results as follows:

(1) An exact calculation has been given of the con-
tribution to the dissipative part of the high-frequency
dielectric tensor caused by electron correlations in a
free electron gas to terms of lowest order in r, . The
result differs considerably from that given in previous
work. The applicability of this result to real metals such
as Al is uncertain.

(2) The contribution to the optical absorption from
a pr-pl final state is unobservably small. Our result is
smaller roughly by a factor of (e&/c)' than previous
calculations.

(3) The k' coefficient of the plasmon width as here
calculated is about an order of magnitude lower than
that experimentally observed. The agreement between
theory and experiment found by Ninham, Powell, and
Swanson4 resulted from an incorrect calculation. The
source of the discrepancy between theory and experi-
ment may be scattering (impurity, phonon) or lattice
effects (interband transitions) which have yet to be cal-
culated or may be due to the failure of the weak cou-
pling theory.

P1040,41$') the 11iost d&fflcult to suriliount of the ull-

certainties mentioned above is the small r, expansion.
The Fermi liquid theory which is a very powerful and
helpful phenomenological dodge for some calculations
is of no help here since we must deal with transitions
far from the Fermi surface. Detailed, higher-order per-
turbation calculations are prohibitively difficult and
meaningless for large r, .

The general results for Imer„r(k, cu) in (2.16)—(2.18)
have a very interesting and elegant form in that the
integrals I(co) and J'(cu) can be expressed entirely in
terms of RPA dielectric functions er„r'(q, 2cu+n) It .is
tempting to speculate that these expressions have mean-

ing if we replace the RPA e&,&' by exact dielectric func-
tions ~l. , z. We then have a set of nonlinear integral
equations for el. , &. It seems clear from some preliminary
work that replacing cL„&' by ez„& is equivalent to sum-

ming a selected set of higher-perturbation terms to all
orders in r, . Whether this set of terms is more important
than terms not included in this sum is not yet clear.
Since we have a rather good feeling for the qualitative
properties of the complete el„r(k,~) from experiments,
sum rule arguments, etc., it may be possible to use this
expression (if it is valid) to estimate the intermediate
coupling effects.
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